The Phonon Background from Gamma-Rays in Sub-GeV Dark Matter Detectors

Kim V. Berghaus Yang Institute for Theoretical Physics Stony Brook University Based on: arXiv2112.09702 <u>Collaborators: Rouv</u>en Essig, Yonit Hochberg, Yutaro Shoji, Mukul Sholapurkar

1

The Gamma-Ray Background in DM Direct Detection

Alan Robinson, Phs.Rev. D 95,021301(R), 2017

The Gamma-Ray Background in DM Direct Detection

Alan Robinson, Phs.Rev. D 95,021301(R), 2017

Predicts O(100) events in Ge, Si assuming 0.04 counts/kg/day/keV low-energy Compton scatter recoils of 1.461 MeV photons

The Gamma-Ray Background in DM Direct Detection

Alan Robinson, Phs.Rev. D 95,021301(R), 2017

Predicts O(100) events in Ge, Si

assuming 0.04 counts/kg/day/keV

low-energy Compton scatter recoils of

1.461 MeV photons

The Gamma-Ray Flux in DM Direct Detection

Assumed Gamma-rays based on EDELWEISS shielding capabilities

AIP Conference Proceedings 1672, 100002 (2015); EDELWEISS Collaboration10.1103/Ph ysRevD.98.082004

E_{γ} [MeV]	Source	$n_{\gamma} [imes 10^{-18} \text{ cm}^{-3}]$
0.143	235 U	0.176
0.163	Unidentified	0.143
0.185	235 U, 226 Ra	1.68
0.208	232 Th	1.39
0.238	$^{232}{\rm Th},^{226}{\rm Ra}$	16.65
0.269	Unidentified	1.44
0.295	226 Ra	5.47
0.336	232 Th	6.31
0.350	226 Ra	8.33
0.460	Unidentified	2.77
1.173	60 Co	11.85
1.332	60 Co	3.66
1.461	40 K	6.85
2.614	208 Tl	5.58

Table credit Mukul Sholapurkar

~ 0.04 events/kg/day/keV of flat Compton background

The process factors into Photon-Ion scattering \times material specific response

$$\frac{d\sigma}{d\Omega d\omega} = \frac{d\sigma}{d\Omega} (\boldsymbol{q}, E_{\gamma}) \times S(\boldsymbol{q}, \omega)$$

Phonons are produced by forward scattering since $E_{\gamma} \gg \omega$

The process factors into Photon-Ion scattering × material specific response

$$\frac{d\sigma}{d\Omega d\omega} = \frac{d\sigma}{d\Omega} (\boldsymbol{q}, \boldsymbol{E}_{\gamma}) \times \boldsymbol{S}(\boldsymbol{q}, \omega)$$

Figure credit Yutaro Shoji

Photon-electron Rayleigh scattering

Kim V. Berghaus, YITP

The process factors into Photon-Ion scattering \times material specific response

$$\frac{d\sigma}{d\Omega d\omega} = \frac{d\sigma}{d\Omega} (\boldsymbol{q}, \boldsymbol{E}_{\gamma}) \times \boldsymbol{S}(\boldsymbol{q}, \omega)$$

Phonons are produced by forward scattering since $E_{\gamma} \gg \omega$

Figure credit Yutaro Shoji

Kim V. Berghaus, YITP

Photon-electron Rayleigh scattering

$$\frac{d\sigma}{d\Omega}(\boldsymbol{q}, \boldsymbol{E}_{\gamma}) = \frac{q^2}{{\boldsymbol{E}_{\gamma}}^2} \frac{\alpha^2 \pi}{m_e^2} \times \left(1 + \left(1 - \frac{q^2}{2{\boldsymbol{E}_{\gamma}}^2}\right)^2\right) |\boldsymbol{g}(\boldsymbol{q})|^2$$

The process factors into Photon-Ion scattering \times material specific response

$$\frac{d\sigma}{d\Omega d\omega} = \frac{d\sigma}{d\Omega} (\boldsymbol{q}, \boldsymbol{E}_{\gamma}) \times \boldsymbol{S}(\boldsymbol{q}, \omega)$$

Figure credit Yutaro Shoji

Photon-electron Rayleigh scattering

Phonons are produced by forward scattering since $E_{\gamma} \gg \omega$

Kim V. Berghaus, YITP

EXCESS 2022 Workshop

arXiv 2112.09702

13

material specific response:

$$S(\boldsymbol{q}, \omega) = \sum \langle f | e^{iqR} | i \rangle^2 \, \delta(E_i - E_f - \omega)$$
Same operator appears in in neutron scattering

material specific response:

$$S(\boldsymbol{q},\omega) = \sum \langle f | e^{iqR} | i \rangle^2 \, \delta(E_i - E_f - \omega)$$

Same operator appears in in neutron scattering

Neutron scattering measures Phonon Density of States

2013 Apr 22;18(4):4776-85. doi: 10.3390/molecules18044776. PMID: 23609626; PMCID: PMC6269924

Kim V. Berghaus, YITP

material specific response:

$$S(\boldsymbol{q},\omega) = \sum \langle f | e^{iqR} | i \rangle^2 \, \delta(E_i - E_f - \omega)$$

Same operator appears in in neutron scattering

Neutron scattering measures Phonon Density of States

 $S^n(\boldsymbol{q},\omega) \propto S^1 S^{n-1}$

2013 Apr 22;18(4):4776-85. doi: 10.3390/molecules18044776. PMID: 23609626; PMCID: PMC6269924

Kim V. Berghaus, YITP

Phonon Background Rates from Gamma-Rays

Phonon Background Rates from Gamma-Rays

Phonon Background Rates from Gamma-Rays

Comparison to Signal Rates

hm: heavy scalar mediator (Trickle et al., 2021) Im: light scalar mediator (Trickle et al., 2021)

 $Id\gamma$: ultralight dark photon mediator (Knapen et al. 2021)

Comparison to Signal Rates

hm: heavy scalar mediator (Trickle et al., 2021)lm: light scalar mediator (Trickle et al., 2021)

 $Id\gamma$: ultralight dark photon mediator (Knapen et al. 2021)

hm and Im have the same $S(q, \omega)$ as the background

 $Id\gamma$ model can polarize materials (different $S(q, \omega)$)

Im gets enhancement at small ω due to $\frac{d\sigma}{dq} \propto \frac{q_0^4}{q^4}$

21

Comparison to Signal Rates

Kim V. Berghaus, YITP

EXCESS 2022 Workshop

22

• Detector veto can only reduce background by O(1) fraction

- Detector veto can only reduce background by O(1) fraction
- Gamma-ray background dominant over neutrino background

- Detector veto can only reduce background by O(1) fraction
- Gamma-ray background dominant over neutrino background
- Active veto needed to achieve sufficient background suppression

- Detector veto can only reduce background by O(1) fraction
- Gamma-ray background dominant over neutrino background
- Active veto needed to achieve sufficient background suppression
- Calculations available publicly on Github: <u>https://github.com/KBerghaus/phonon_background</u>

Thank you

Backup

Solar Neutrino Flux

$$\frac{d\sigma_{N\nu}}{d\Omega}(\boldsymbol{q}, E_{\gamma}) = \frac{G_F^2}{4\pi} q Q_W^2 \left(1 - \frac{q^2}{4E_{\gamma}^2}\right) |F(q)|^2$$

$$\frac{d\sigma_{N\nu}}{d\Omega d\omega} = \frac{d\sigma_{N\nu}}{d\Omega} (\boldsymbol{q}, E_{\gamma}) \times \boldsymbol{S}(\boldsymbol{q}, \omega)$$

Bahcall, Serenelli, and Basu, ApJ, 621, L85 (2005)

Backup

Kim V. Berghaus, YITP

EXCESS 2022 Workshop

arXiv 2112.09702

100

30

Backup

E_{γ} [MeV]	Source	$n_{\gamma} [\times 10^{-18} \text{ cm}^{-3}]$
0.143	^{235}U	0.176
0.163	Unidentified	0.143
0.185	235 U, 226 Ra	1.68
0.208	232 Th	1.39
0.238	$^{232}{\rm Th},^{226}{\rm Ra}$	16.65
0.269	Unidentified	1.44
0.295	226 Ra	5.47
0.336	232 Th	6.31
0.350	226 Ra	8.33
0.460	Unidentified	2.77
1.173	60 Co	11.85
1.332	60 Co	3.66
1.461	^{40}K	6.85
2.614	$^{208}\mathrm{Tl}$	5.58