

Pulsed laser device for low-energy calibrations

Kelly Stifter - Fermilab Cosmic Physics Center, Quantum Science Center EXCESS2022 workshop 2/17/2022

The future of low-mass particle dark matter searches

Wide range of particle DM models to explore:

Major R&D challenge: How do we lower the threshold of DM detectors?

The future of low-mass particle dark matter searches

Wide range of particle DM models to explore:

Major R&D challenge: How do we lower the threshold of DM detectors? \mathbf{V}

How do we calibrate these new, low-threshold detectors?

Calibrating low-threshold detectors

How do you calibrate devices below an eV?

Calibrating low-threshold detectors

Some available low-energy sources

Laser diodes (right): Readily available out to ~2μm (0.62eV)

Quantum cascade lasers (left): Out to \sim 16 μ m (0.08 eV)

[Single 1.5THz photon detection w/ QCD](https://doi.org/10.1038/s41550-017-0294-y)

Auston (photoconductive) switches (right):

~THz regime (300μm, 4meV), device under test must be sensitive to magnitude of E-field

Filtered blackbody (left): Previously used at 1.5THz (200μm, 6meV)

Possible applications of low-energy laser calibrations

Laser pulses probe electromagnetic interactions \rightarrow signals are e-/h pairs, phonons

Can be used to calibrate DM detectors of many types:

- TESs
- CCDs
- KIDs
- **Qubits**
- QCDs
- Etc…

Many interesting science targets within reach:

- Position sensitivity/energy threshold of novel detectors
- Phonon transport studies and simulations
- Quasiparticle poisoning in superconductors
- IR loading on TESs
- Your favorite application?

Calibration source wishlist

Works at range of low energies: many wavelengths accessible, from O(eV) down to O(meV) (equivalently: 1μm - 1000μm, 250THz - 1THz)

Time-resolved: pulsed operation (~us resolution)

Position-dependent: steerable, small beam spot (~μm resolution)

Cryo-friendly: functional at low temps (~10mK), low power dissipation

In-situ: no parasitic backgrounds

Device-independent: flexible, modular

Inexpensive

Low energy calibration device design

- 1. Start with light source of choice (in desired energy regime)
- 2. Focus and collimate the light into a beam
- 3. Chop the light to create a pulsed beam
- 4. Filter the beam to desired intensity and bandwidth
- 5. Inject beam into cryostat
- 6. Steer beam to desired XY location

End result: A pulsed, steerable beam with easily configurable bandwidth, intensity, and pulse characteristics

MEMS mirrors

Micro-electro-mechanical systems (MEMS) mirrors, aka micromirrors or microscanners

Very low power consumption during actuation and at static position

Aluminum reflecting surface \rightarrow high broadband reflectance

High scan speed with good tilt range, position resolution, repeatability

- O(1kHZ) max scan speed, mechanical tilt range of ±6°, 0.005° resolution

Left: MEMS mirror under microscope

Below: photo of a raster scan using MEMS mirror

Previous work

Cryogenic scanner previously built & operated at Stanford (400mK)

Used to map charge collection vs. position in Si & Ge

Also used to measure transmission through Si thin $films \rightarrow photoelectric effect$

Realized scanning across aperture acts like a shutter

Original setup open to 4K photon bath (right)

Upper left: photo of scanning device used for charge transport measurements

Upper right: schematic of scanning apparatus and result of charge transport measurement in Si

Lower left: schematic of scanning device used in Si photoelectric effect measurement

Optical chopper unit: In development at SLAC

委Fermilab

Benefits of modular MEMS-based design

- **Wide energy range:** can access sub-eV range and simulate arbitrary deposition of eV-keV
- **Small pulse width with good position resolution and repeatability**
- **In-situ:** Cryo-friendly, shouldn't introduce parasitic backgrounds
- **Customizable:** easy to swap source and filters mid-operations, can mount variety of devices at output
- **Flexible:** individual modules should be "plug-and-play", either could be cryogenic
- **• Cheaper, more flexible, or more functional than other options**

Design challenges

MEMS functionality at low temps (10mK)

- Original design used doped silicon control lines, freezes out at low temperatures
- Worked with Mirrorcle Inc. to deposit AI over control lines \rightarrow allows for low temp use
- Control hardware functionality with long cryo-cabling with high impedance
	- Modified voltage delivery
	- Developed adapter boards for DR feedthroughs
- Laser coupling to device without degrading performance or admitting excess IR
	- Ensure housing of steering unit is photon-tight, while still keeping footprint small for operation in DR

Current status

MEMS mirrors in hand & warm validation complete

- Auxiliary measurements in progress: beam spot size vs. tilt angle, position resolution, spectral component analysis, etc.
- Steering unit housing design near completion
	- V1: Produced by Hannah Magoon (Tufts undergrad), based on early bench tests by Israel Hernandez (IIT graduate student)
	- V2: 3D printed model pointed to several required changes, currently underway

Control hardware validation and device housing design underway in preparation for first functionality (cold) test with KID device

Above: Warm MEMS validation with 3D-printed version - MEMS is in foreground, reflecting a red laser

Left: CAD drawing of steering unit housing V1 (Hannah Magoon), same orientation as above

Future development

Several changes must be made to expand viable wavelength range:

- 1. Move to reflective focusing technique
	- a. Current focusing element (upper right) is refractive \rightarrow internals must be swapped for each new wavelength
	- b. No well-suited commercial options available, have design for home-brew solution
- 2. Move from fibers to THz waveguides
	- a. Current multimode fibers will work out to \sim 20 μ m

Summary

- Novel low-threshold detectors will require very low energy calibrations
- MEMS mirror-based design can provide pulsed, steerable beam with easily configurable bandwidth, intensity, and pulse characteristics in a cryo-friendly way
- Can be coupled to wide variety of low-threshold devices
- **• Many impactful science topics to be explored**

Thanks to:

Scanner team: Kelly Stifter (Lederman Fellow) *Israel Hernandez (IIT grad) Hannah Magoon (Tufts undergrad)*

Fermilab QSC group: Dan Baxter (Scientist) Daniel Bowring (Scientist) Lauren Hsu (Scientist) Rakshya Khatiwada (Scientist) Dylan Temples (Lederman Fellow)

Chopper team: *Noah Kurinsky (SLAC Scientist)* Anthony Nunez (Stanford undergrad)

Backup

Sample application: Phonon transport and simulation

Previous charge transport measurements were used to tune charge transport simulations

- Excellent agreement was shown (right)

Can repeat measurement, but for phonon transport, and similarly tune simulations

- Will feed into simulation of quantum sensors

Previous scanning setup (see slide 11) requires modifications for this task:

- Low temperature operation (10mK)
- Improved background mitigation
- Increased wavelength range

(b) Electron Simulation (Redl)

FIG. 3. Electron Charge Density Patterns: (a): Data. (b): Redl simulation. (c): One-dimensional projection of charge density onto a diagonal axis. The data (solid, blue) are compared to the Redl simulation employing the Herring-Vogt approximation (dotted, red). The horizontal scale ranges from $-4mm$ to $+4mm$. The vertical scale is arbitrary.

[arXiv:1505.00052](https://arxiv.org/pdf/1505.00052.pdf)