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Superconductive Nanowire 
Single-Photon Detector
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Why are SNSPDs Particularly good for DM Search?
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• Infrared efficiency for single 
photons up to 15 μm: single photon 
sensitivity

• Efficiency: Competes with 
transition-edge sensors (98%)

• Dark-count rate (~ 1 per day)
• Convenient fabrication, shielding, 

amplification, operating temperature 
(≥ 1 K)
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 Using SNSPDs in Dark Matter 
Detection
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Nanowire Detection of Photons from the Dark Side
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Dark-Matter Detector Concept

10 cm

~1 mm

75 nm

M. Baryakhtar, J. Huang, R. Lasenby, PRD 2018 (Proposal/Theory)
Chiles, Charaev, Lasenby, M. Baryakhtar,  Huang, Roshko, Burton, Colangelo, Van Tilburg,  Arvanitaki,  Nam, 
Berggren  2110.01582



Data collected from 180 hours

• Confirmed robust alignment strategy
• Confirmed efficient photon detection at 1550 and 1700 nm
• Cooled down to 300 mK in sorption-type cryostat

arXiv:2110.01582
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Current experiment progress/limits

arXiv:2110.01582

• Prototype cuts into new parameter space with ~1 
week of runtime

• Factor of ~100x increase in signal possible with 
relatively minor updates

• Background veto could lead to additional >10x 
decrease in background
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Could the Detector Itself be a DM 
Target?

Inspired by related proposals, as well as preceding work: 
[Hochberg et al, 2017], 

[Hochberg, Zhao, Zurek, + w/ Pyle, + w/ Lin, 2015]
 
 



DM Scattering in NbN
Hochberg et al. arXiv:2110.01586 
[hep-ph]



Hochberg et al. arXiv:2110.01586 
[hep-ph]



image, courtesy 
of Mark 
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fabricated at 
MIT Lincoln Lab
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How Do Superconducting 
Nanowires Work?
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Comparison-Based Device
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Current Bias
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Critical Temperature ~ 11 K

4 nm

detector

Ibias

L
Rloa

d
A. D. Semenov, G. N. Gol’tsman, and A. A. Korneev, 
“Quantum detection by current carrying 
superconducting film,” Physica C, vol. 351, pp. 
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Absorption

photon-induced hotspot forces bias 
current above critical density

niobium nitride

A. D. Semenov, G. N. Gol’tsman, and A. A. Korneev, 
“Quantum detection by current carrying 
superconducting film,” Physica C, vol. 351, pp. 
349–356, 2001
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Breakdown

resistive barrier spans nanowire

niobium nitride
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Acceleration/Heating

niobium nitride

resistance grows from heating
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Diversion of Current
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current is diverted
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IR Sensitivity

● Toy-model of 
detection process

● Particle must have 
sufficient energy to 
excite system over 
barrier

● Inhomogeneity and 
noise prevent 
lowering barrier 
below certain 
value
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How is barrier determined?

● Current and 
temperature are used to 
lower superconducting 
barrier

● Remaining barrier can 
be made arbitrarily low 
in the absence of biasing 
noise
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Noise and Inhomogeneity
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Intrinsic Inhomogeneity ~ 40 μV (6.4 yJ)

Sacepe, PRL, 2008
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Current-Bias Noise
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● Thermal Noise/Shot Noise
○ Naive calculations of shot noise (which are certainly incorrect) 

suggest a major effect
■ √(2 B · q · 10μA)   ≈ 0.2 μA

○ Shot noise in Josephson junctions has been carefully studied
○ Shot noise in normal metal wires is well understood (Landauer 

‘93)
○ Shot noise in superconducting wires does not seem to be well 

understood by our community (maybe just me?) and might even 
be an open problem in theoretical condensed-matter physics (that 
maybe no one except us cares about…)



Thermal Fluctuations

● Independent thermal fluctuations
○ Berlin Theory (Semenov ‘20) is that a nanowire can be modeled as 

a large number of thermally independent fluctuations, thus 
correct model is of large # of detectors…

● All the “detectors” contribute to noise, but only one at a 
time detects a photon

Thermal Instability: Cryocoolers often exhibit significant thermal 
fluctuation, which isn’t always addressed in detector systems
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Mechanical Vibrations

● When a wire moves, a 
current is induced in it due to 
inertia of the electrons

● While this effect is small 
(O(1e-6)) for our current 
devices, it scales as 1/Δ, thus 
could become important for 
low-T

c
 materials.

● Has not been carefully 
considered for SNSPDs 27



Magnetic-field Noise

● Likely a small effect because critical fields are Tesla-scale, 
while fluctuations are 1e-5 Tesla scale

● Estimated suppression of I
C
 with field is  ≈10-4 A/T (Charaev 

‘18)
● Background B-field noise is likely ~ nT scale or lower (and 

thus is negligible).  However, it may vary with frequency, and 
local EMI effects could result in larger effects

● Has not been carefully studied (to my knowledge)
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 Superconductivity Team in QNN Group
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SNSPD SUPPORT
• Dept. of Energy 

(primary sponsor of this 
work)

○ Ongoing 
collaborations with 
Brookhaven/Fermilab/
Argonne

• U.S. Air force Office of 
Scientific Research

• U.S. Office of Naval 
Research

• DARPA DETECT and 
SuperHeadlights programs

• IARPA 
• NASA
• NSF
• Skoltech
• Many U.S. and 

international fellowships

31



Thank You!
● To the hundreds (thousands?) of PIs, post-docs, students, technicians who have supported 

this field over decades, and the thousands of administrators/facilities workers/family 
members who have supported them.  

● The major institutions that have been involved in this field include (in random order).
○ U. of Rochester, Moscow State Pedagogical University, Delft University of Technology, 

Karlsruhe Institute of Technology, National Institute of Standards and Technology, Yale 
University, University of Waterloo, University of British Columbia, Caltech Jet 
Propulsion Laboratory, EPFL Lausanne, MIT Lincoln Laboratory, Michigan State 
University, National Institute of Information and Communications Technology (NICT) in 
Kobe Japan, Nanjing University, Shanghai Institute of Microsystem and Information 
Technology (SIMIT), Heriot Watt University, Glasgow University, University of Roma TRE, 
Italian National Research Council (Rome, Naples)*, KTH Royal Institute of Technology, 
Los Alamos National Lab, Chalmers University, EPFL, Eindhoven University of 
Technology, The Technion, Argonne National Lab, and others that have slipped my 
mind...

Apologies in advance to anyone I neglected to mention.
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