Numerical Methods for Image Segmentation

Philipp Lösel

Engineering Mathematics and Computing Lab Interdisciplinary Center for Scientific Computing Heidelberg University

19th of September, 2016

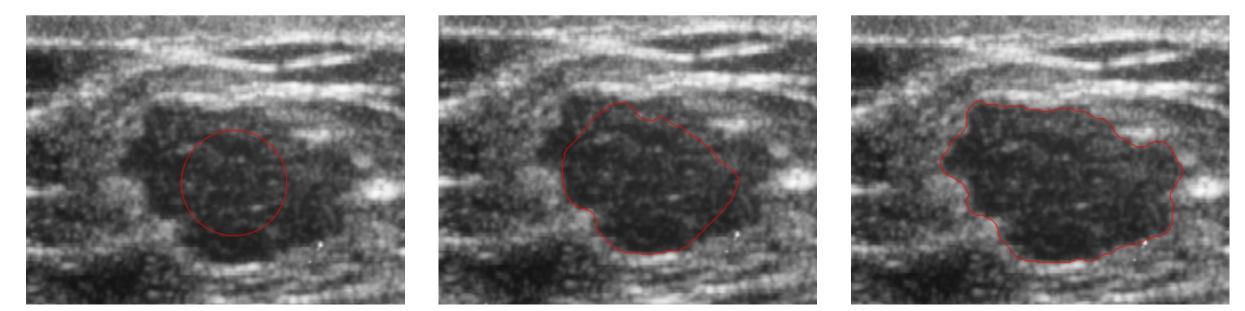
Numerical Methods for Image Segmentation

Outline

- 1. Active Contours Without Edges
- 2. GPU based diffusion for image segmentation
- 3. Results
- 4. Practical Session
- 5. Uncertainty Quantification
- 6. Inverse Image Segmentation
- 7. Summary

Let the curve C in Ω be the boundary of an open subset $\omega \subset \Omega$, i.e. $C = \partial \omega, \omega = inside(C)$ and $\Omega \setminus \overline{\omega} = outside(C)$. Let I(x, y) be the Image Data, $c_1 = average(inside)$ and $c_2 = average(outside)$, then we determine C so that it minimizes the functional

$$\begin{aligned} \mathsf{F}(\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{C}) &= \alpha \cdot \mathsf{length}(\mathbf{C}) + \beta \cdot \mathsf{Area}(\mathit{inside}(\mathbf{C})) \\ &+ \lambda_{1} \int_{\omega} |I(x, y) - \mathbf{c}_{1}|^{2} \, \mathrm{d}x \mathrm{d}y \\ &+ \lambda_{2} \int_{\Omega \setminus \overline{\omega}} |I(x, y) - \mathbf{c}_{2}|^{2} \, \mathrm{d}x \mathrm{d}y. \end{aligned}$$



Level Set Method: *C* is represented by the zero level set of a Lipschitz function $\phi : \Omega \to \mathbb{R}$, such that

 $C = \partial \omega = \{ (x, y) \in \Omega : \phi(x, y) = 0 \}$ inside(C) = $\{ (x, y) : \phi(x, y) > 0 \}$ outside(C) = $\{ (x, y) : \phi(x, y) < 0 \}.$

A curve that minimizes the Functional has to satisfy the Euler Lagrange equation

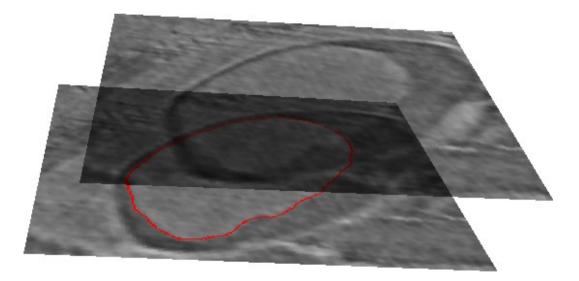
$$|\nabla \phi| \left[\alpha \operatorname{div} \left(\frac{\nabla \phi}{|\nabla \phi|} \right) - \beta - \lambda_1 (u_0 - c_1)^2 + \lambda_2 (u_0 - c_2)^2 \right] = 0$$

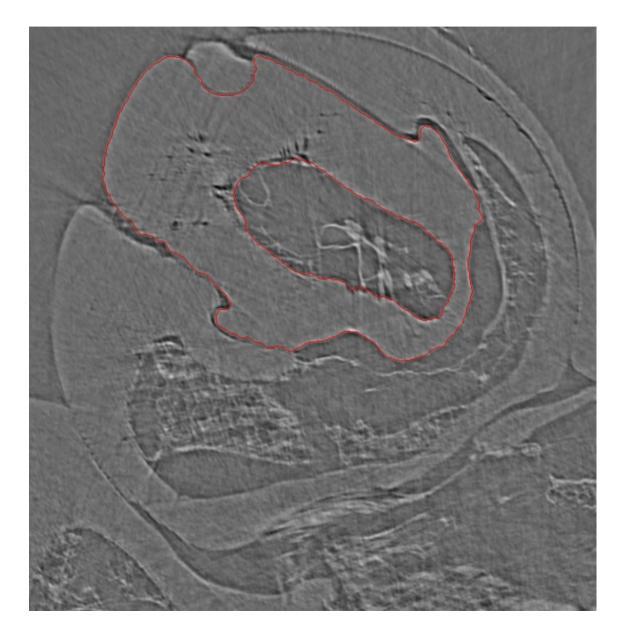
Introducing an artificial time $t \ge 0$, we have to solve

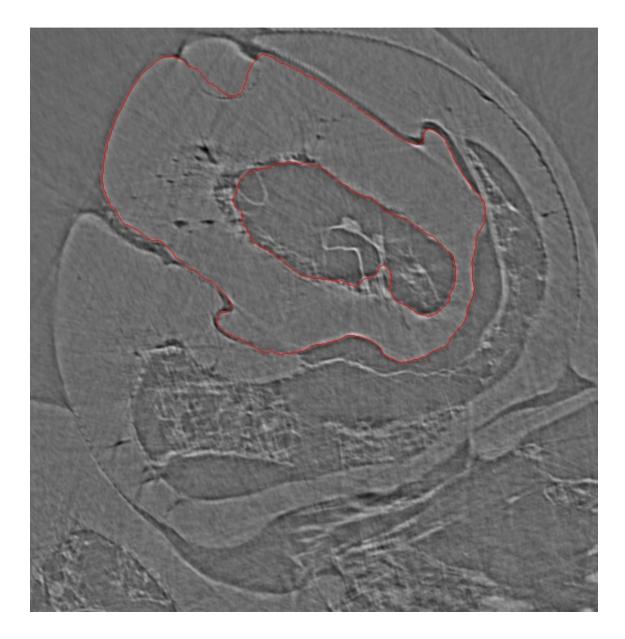
$$\frac{\partial \phi}{\partial t} = |\nabla \phi| \left[\alpha \operatorname{div} \left(\frac{\nabla \phi}{|\nabla \phi|} \right) - \beta - \lambda_1 (u_0 - c_1)^2 + \lambda_2 (u_0 - c_2)^2 \right].$$

Practical session

- How to segment 3D data?
- Active contours slice by slice
- Use prior segmentation as initialization and move forward in z-direction

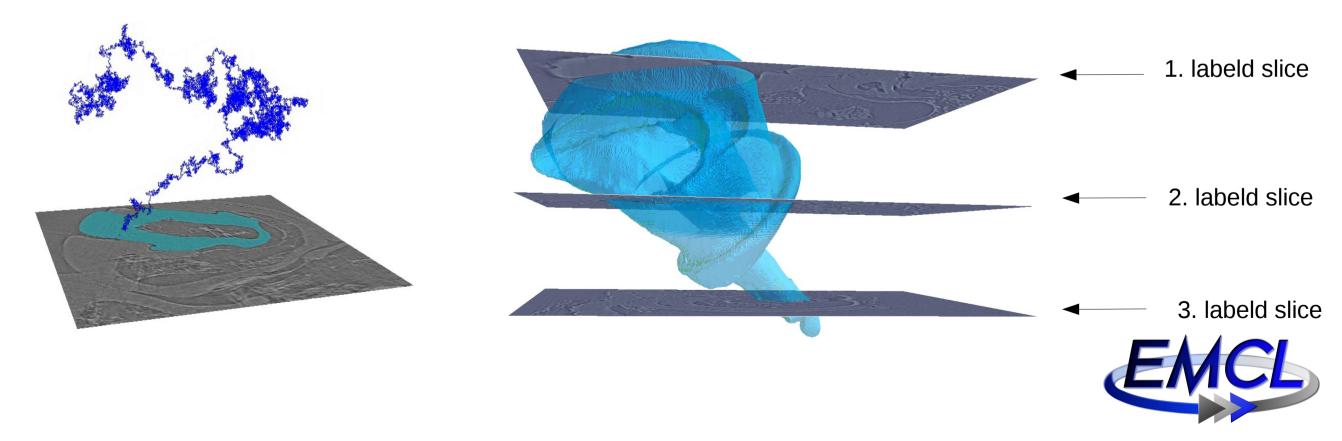






Multi-GPU based, parmeter-free diffusion method

- Segmentation by means of weighted random walks
- Several weighted random walks start in manually labeled slices
- An unlabeled voxel will be hit by random walks over time
- A voxel can be hit by random walks starting in the background or the labels
- Image Segmentation by assigning each voxel to the segment where the most random walks started from



Multi-GPU based, parmeter-free diffusion method

Let *V* be a set of vertices in \mathbb{R}^n . For $x, y \in V$ we write $x \sim y$ if *x* is adjacent to *y*. A weighted graph is a couple (V, P) where *P* is a non-negatove function on $V \times V$. Let I(x) be the image data. Further, let x_0 be the starting point of a random walk and σ_{x_0} the standard deviation from x_0 in a local area, then we set

$$\mu_{x_0}(y) = \frac{1}{\sqrt{2\pi\sigma_{x_0}^2}} \exp\left(-\frac{(I(x_0) - I(y))^2}{2\sigma_{x_0}^2}\right) \text{ for all } y \in V$$

and

$$\mu(x) = \sum_{y \in V, y \sim x} \mu_{x_0}(y)$$
 for all $x \in V$.

Multi-GPU based, parmeter-free diffusion method

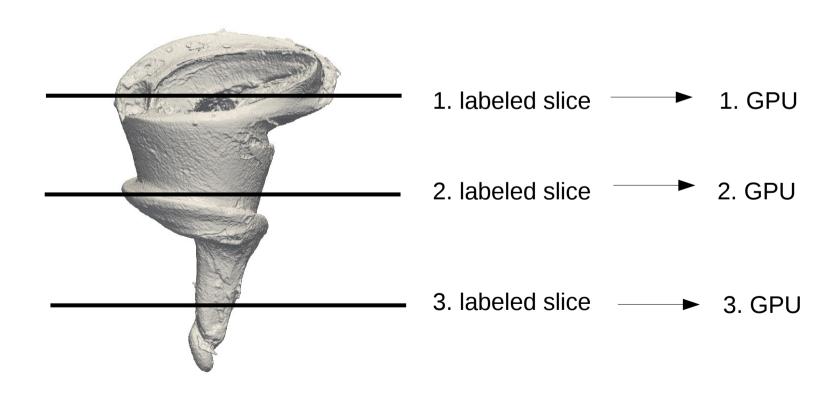
The function μ induces a Markov kernel

$$P_{X_0}(y,x) = \left\{ egin{array}{cc} rac{\mu_{X_0}(y)}{\mu(x)} & ext{if } y \sim x \ 0 & ext{else}, \end{array}
ight.$$

where $P_{x_0}(y, x)$ is the conditional probability of a random walk moving from x to y given its position x.

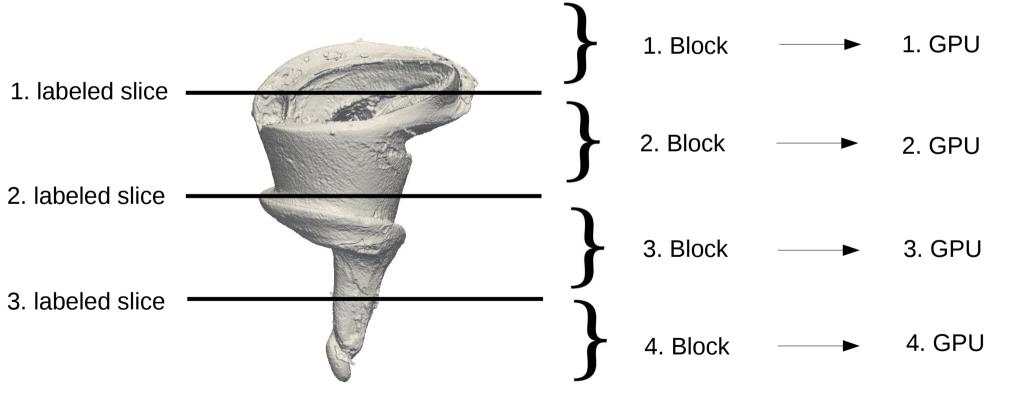
Multi-GPU diffusion (small images)

- Images < 125 MB
- Spread the labeled slices over several GPUs
- 1 GPU per labeled slice
- The GPU runs only the random walks belonging to this slice



Domain decomposition (large images)

- Split the image into blocks
- Each GPU runs all random walks for all labeled slices
- Each GPU considers only the hits in one block
- No storage of all hits necessary
- Argmax on the fly



BIOMEDIST' Biomedical image segmentation app

A free online application for segmentation of tomographic images

Wasp Project – Thomas van de Kamp (ANKA @ KIT)

BIOMEDIST' Biomedical image segmentation app

A free online application for segmentation of tomographic images

Practical session

Results

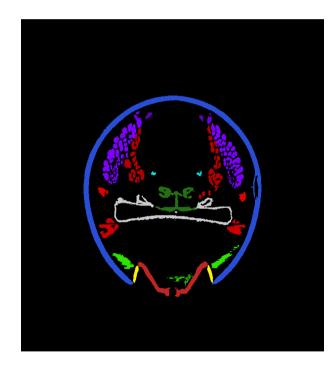
VS.

Biomedisa

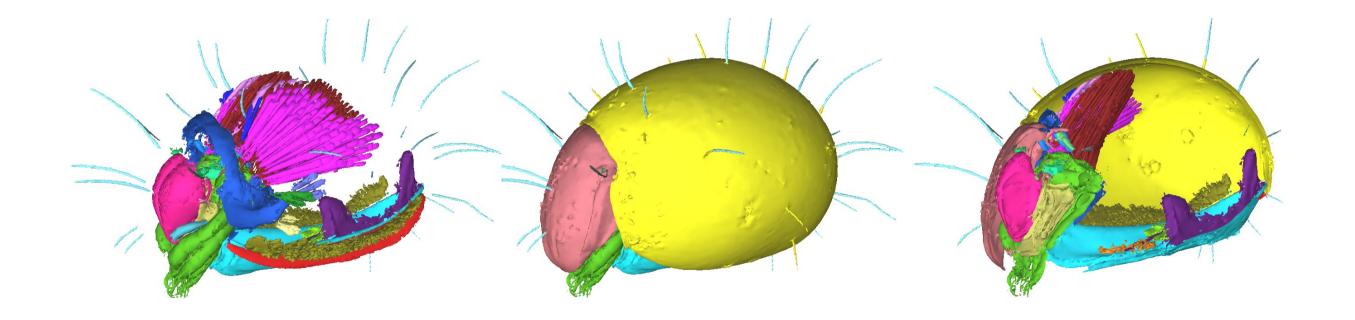
manual segmentation and interpolation with Amira

Results

- Any number of labels
- Gray values or colors (ImageJ)



Results



Euphthiracarus reticulatus - Sebastian Schmelzle (TU Darmstadt)

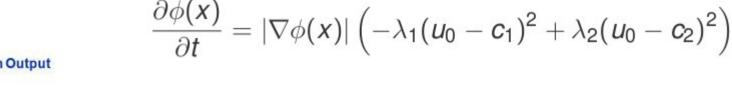
Image	Size	No. of labeled slices	No. of segments	time	Dice coefficient
Wasp female	2553 x 992 x 1077	224	56	4 h 21 min	
Wasp male	3311 x 1223 x 1267	299	40	6 h 4 min	
Eucrib	1088 x 766 x 698	109	33	1 h 7 min	0.926
Eucrib	1088 x 766 x 698	55	33	35 min 0 sec	0.924
Eucrib	1088 x 766 x 698	22	33	27 min 55 sec	0.915
Trigonopterus	479 x 482 x 440	21	2	3 min 17 sec	
Hair	348 x 477 x 412	29	2	3 min 51 sec	
Brain Tumor	240 x 240 x 155	1	1	8 sec	

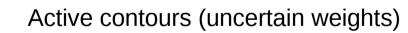
Uncertainty Quantification

"It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known." (wiki)

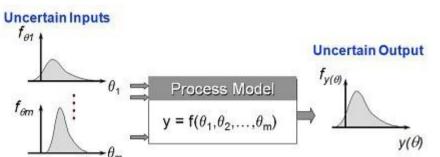
- Uncertainty of parameters, boundary conditions, initialization
- None-intrusive (Monte Carlo) and intrusive methods (Polynomial Chaos Expansion)

Active contours (deterministic)



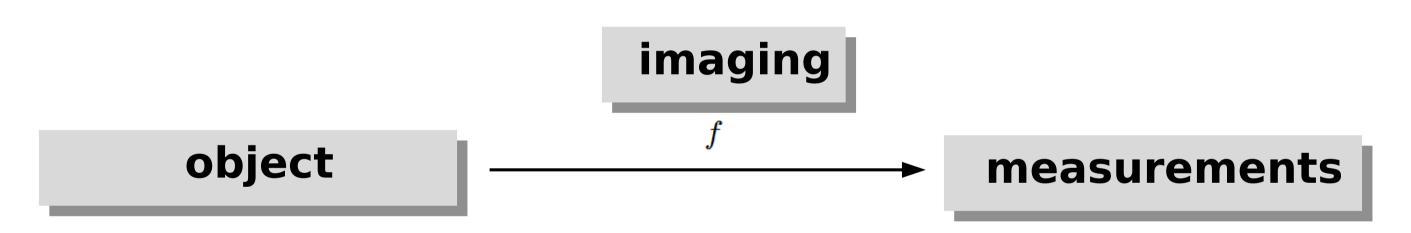


$$\frac{\partial \phi(x,\theta)}{\partial t} = |\nabla \phi(x,\theta)| \left(-\lambda_1(\theta)(u_0 - c_1)^2 + \lambda_2(\theta)(u_0 - c_2)^2 \right)$$



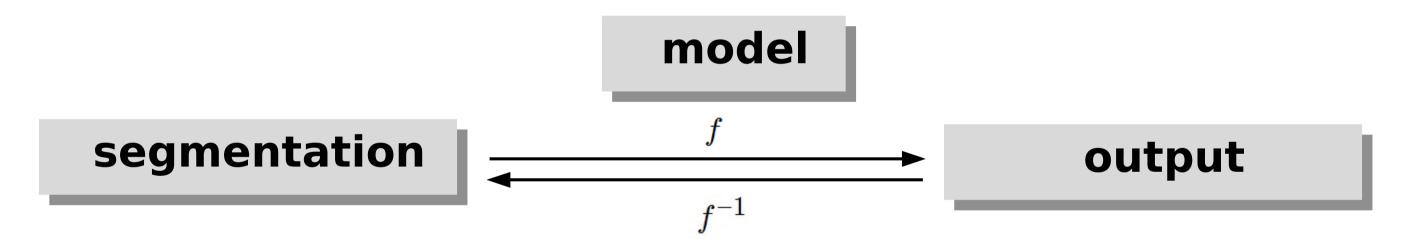
Inverse Image Segmentation

Forward:



Inverse Image Segmentation

Which segmentation satisfies the measured data?



Summary

- 1. Active Contours for image segmentation
- 2. Parameter-free, semi-automatic diffusion algorithm
- 3. Uncertainty Quantification
- 4. Inverse Segmentation

Thank you for your attention!

