

Optical Diagnostics for SOLEIL–Upgrade

Transverse beam sizes and emittance measurement

M. Labat, N. Hubert

Workshop @IFAST, April 2022

SOLEIL present storage ring

- Storage ring: 354 m circumference
- \bullet Lattice: DBA + distributed dispersion
- ϵ_x =3.9 nm.rad ; ϵ_y =40 pm.rad
- ²⁹ beamlines

SOLEIL–Upgrade project

SOLEIL–Upgrade lattice

- Lattice: non-standard $7 DBA + 4 DBA$
- ϵ_x =84.4 pm.rad ; ϵ_y =25.3 pm.rad
- Presently in TDR phase...

• Present vs. future parameters:

- Specifications for $\epsilon_{x,y}$ ($\sigma_{x,y}$) measurement:
	- $\epsilon_{x,y}$ measurement with sub–pm resolution

 $\rightarrow \sigma_{x,y}$ measurement with sub- μ m resolution

- \bullet $\epsilon_{x,y}$ (nominal) measurement at >100 Hz repetition rate
- High reliability for $\epsilon_{x,y}$ (nominal) measurement
- At least 2 measurements of $\epsilon_{x,y}$ with different $\eta_{x,y}$

Development of 2 types of optical diagnostics beamline:

- X-ray range beamline(s):
	- Based on high-field dipole(s)
	- \bullet + Pinhole camera $\rightarrow \approx 5 \mu$ m–RMS resolution at > 100 Hz (for users' operation)
	- \bullet + Fresnel diffraction $\rightarrow \approx 1 \ \mu$ m–RMS resolution at > 10 Hz (for machine tuning)
- Near-UV / visible beamline:
	- **Based on low-field dipole**
	- \bullet + Polarized imaging $\rightarrow \approx 5 \mu$ m–RMS resolution at > 100 Hz (for users' operation)
	- \bullet + Polarized diffraction imaging $\rightarrow \approx 1 \ \mu$ m–RMS resolution at > 10 Hz (for machine tuning)

 \rightarrow The beamlines design will ensure to swap from one technique to the other

X–ray beamline(s) >> Principle

- **•** Principle: flip from users' to machine tuning mode removing M1-M2 specular mirrors • Main components:
	- Easy: Aluminium window, copper absorber, scintillator, objective
	- **· Tricky:** High-field dipole, absorber, adjustable pinhole, specular mirrors, camera

• Expected performances of the pinhole camera $(E_{phot} > 50 \text{ keV})$:

 $B=3$ T, $d=3$ m, $M_W=2.66$, $E_V=50$ keV, $w_V=14 \mu m$

 \rightarrow Should resolve down to $\sigma_{x,y} \approx 5 \ \mu$ m–RMS

• Expected performances of Fresnel diffraction (E_{phot} > 50 keV):

 $B=3$ T, $d=3$ m, $M_W=2.66$, $E_V=50$ keV, $w_V=19 \mu m$

 \rightarrow Should resolve down to $\sigma_{x,y} \approx 1 \ \mu$ m–RMS

• Expected performances in the X-ray range ($E_{phot} > 50$ keV):

- The dipole field has little influence on ultimate resolution
- . BUT... a strong impact on photon flux !!!

 \rightarrow For 100 Hz (?) repetition rate \rightarrow B=3 T mandatory.

• Source dipole:

- To enable 100 Hz measurements @ $E_{phot} > 50$ keV \rightarrow B > 2.5 T
- Target: use one of the long dipoles with central field Φ B=3 T

Long dipole longitudinal magnetic field with central field @ 3 T. Courtesy A. Loulergue. PRELIMINAR DESIGN.

X –ray beamline(s) >> Main components

- Beamline(s) integration:
	- Source dipole $=$ long $+$ free dipole
	- To enable high resolution: $M > 2.5 \rightarrow d_{source-pinhole} < 3$ m

Integration of X–ray beamline on a 3 T long dipole. PRELIMINAR DESIGN.

 \bullet So: pinhole will still be *in between* DBA magnets.... = tiny space !

• Pinhole design: (1) Stacking of blades $+$ shims

Pinhole design from P. Elleaume et al., J. Syncrotron Rad. (1995) 2, 209-214.

- · Pros: Proven, compact, cheap, reliable
- Cons: Fixed set of hole sizes, no or non–acurate metrology, painfull assembly

\rightarrow Alternative ?

- Pinhole design: (2) Alternatives investigated
	- LIGA $>>$ no. Not enough attenuation power.
	- Motorized micro–slits $>>$ no. Too expensive, not reliable enough.
	- Other mechanical design based on ESRF / ALBA experience \gg yes.

Pinhole model from ALBA and ESRF. Courtesy U. Iriso and F. Ewald.

 \rightarrow Study of a new mechanical design to be soon started

- Monochromator (for Fresnel diffraction ONLY): just an idea...
	- **a** Statements:
		- \bullet We only need XX linewidth to reach 1 μ m resolution in Fresnel diffraction
		- No need to implement XX linewidth standard monochromator: it will kill flux: see Diamond and ESRE
	- Alternative idea: make a band–pass filter ?
		- \bullet High–pass filter $=$ Copper attenuator
		- Low–pass filter $=$ Pair of mirrors in specular reflection

- $Copper$ transmission $=$ High–pas filter $Specular$ mirror reflectivity $=$ Low–pass filter
- Many critical issues still: x offset ? final flux ? alignement ? x_{camera} ?

X -ray beamline(s) >> Main components

- Scintillator:
	- Specifications:
		- Short time response $(0.1 ms)$
		- Spatial resolution $\lt 1$ μ m
		- **•** High yield
		- **Emission around 500 nm to match camera efficiency**
		- **•** Linear response
		- Thickness $=$ compromise output yield / resolution decrease from d.o.f.
			- \rightarrow between 0.02 and 0.1 μ m

 \rightarrow CdW04, Yag:Ce, LuAg:Ce, GaGG

Resolution versus Numerical Aperture for different scitillator thickness.

X –ray beamline(s) >> Main components

• Imaging system:

- \bullet Compact + stable mechanics from Detetor Group design (housing: scintillator + mirror + objective + $camera + focus stage)$ \bullet Objective = microscope
- $(EdmundOptics + Mitutoyo to be tested)$
- \bullet Camera = \prime

(not defined yet)

X–ray beam imager prototype.

- **•** Principle: flip from users' to machine tuning mode adding an obstacle
- Main components:
	- Easy: Low–field dipole, thin obstacle, focussing lens, polarizer, objective
	- **Tricky:** Extraction mirror, camera

• Expected performances of the polarized imaging $(\mathbb{O} \lambda = 200 \text{ nm})$:

 \rightarrow Should resolve down to $\sigma_{x,y} \approx 5 \ \mu$ m–RMS

• Expected performances of the obstacle + polarized imaging ($\mathcal{Q}\lambda$ =200 nm):

 \rightarrow Should resolve down to $\sigma_{x,y} \approx 2 \mu m$ –RMS \rightarrow to be more optimized...

Expected performances in near–UV / visible range (down to 200 nm):

- Since we'll work with large θ_x :
	- \rightarrow B longitudinal distribution will be important (flat / not)
- The lower the field... the higher the photon flux
	- \rightarrow For 100 Hz (?) repetition rate \rightarrow B < 1.7 T mandatory

- **•** Source dipole:
	- To enable 100 Hz measurements @ 200 nm $< \lambda < 1 \ \mu$ m $\rightarrow B < 1.7$ T
	- Target: use one of the *short* dipoles \mathcal{Q} B=0.87 T,

or first/last part of a long dipole Φ B=0.58 T

Short and long dipole longitudinal magnetic field. Courtesy A. Loulergue. PRELIMINAR DESIGN.

• Extraction mirror:

- Principle: Slotted mirror $+$ air-cooling system
- To test high resolution polarized imaging with such system:

 \rightarrow Installation in January 2022 of a new extraction mirror on our visible beamline

Preliminar results with our new extraction mirror:

- Mirror performances:
	- \bullet Mirror made of Copper $+$ enhanced Alumium deposition
	- Very high surface quality even around the slot !!

(flatness < 250 nm PV, roughness <3 nm–rms)

Excellent thermal stability up to 500 mA stored: no image distorsion !!

 \rightarrow High quality mirrors are feasible on copper :-)

- Preliminar results with our new extraction mirror:
	- Images measured and simulated vs. distance lens-camera (pol. V):

Images vs distance to lens. $\theta_x = 3.5$ mrad, Pol. V.

 \rightarrow Good agreement "by eye" SRW / measurements :-)

• Preliminar results with our new extraction mirror:

• Images measured and simulated vs. ϵ_y :

 \rightarrow Sensitivity "by–eye" seems very good in both σ/π pol. :-)

Preliminar results with our new extraction mirror:

• Horizontal beam size Σ_x and Visibility in image plane (pol. V):

Vs θ _x collection angle

Experiment / SRW with: $d=5940$ mm, $f_X=3200$ mm, $f_Y=3240$ mm

 \rightarrow Quite good absolute agreement SRW / measurements... but to be improved

• Preliminar results with our new extraction mirror:

• Sensitivity Visility vs. ϵ_{v} from Pinhole Cameras:

 \rightarrow Good sensitivity in pol. V seems confirmed.

Preliminar results with our new extraction mirror: TO BE DONE

- Check experimental magnification with bumps at source point
- Check vertical alignment of mirror
- Improve beamline stability (N_2) or vacuum transport)
- Improve periscope alignment
- Improve SRW/measuremnt agreement

Other development on our present visible beamline: ultra–fast imaging

- Kalypso (KIT) camera implemented on σ pol. branch
- Ultra–fast acquisition (up to 3 MHz) \rightarrow turn–by–turn (846 kHz) imaging
- Allows to follow injection effect on stored beam for instance

• Even if not yet absolute beam size measurement...

 \rightarrow Very usefull for recent commissioning of MIK (to be published)

- Extraction mirror: back to SOLEIL–Upgrade topic...
	- For machine operation \rightarrow slot height > 2 mm
	- For large large θ_x measurements $\rightarrow \theta_x > 20$ mrad
	- For photon collection down to 200 nm \rightarrow d_{source} \equiv _{mirror} >3 m
	- But deposited power rapidly increases with $d_{source-mirror}$...
	- And power density slowly decreases with dsource-mirror...

Intensity distribution at 200 and 500 nm at 0.4 and 2 m from source point. $\theta_x = 20$ mrad, $\theta_x = 10$ mrad.

 \rightarrow Extraction mirror design IS an issue... working on it...

- **•** Beamline(s) integration:
	- Source dipole $=$ short $+$ free dipole
	- \bullet To enable large collection angle $+$ limited power deposition on mirror:
		- \rightarrow extraction at $d > 2$ m from source point.... with free path....

Integration of near–UV / visible beamline on short dipole. PRELIMINAR DESIGN.

 \rightarrow Beamline integration IS ALSO an issue... working on it...

• Other components:

- Transport mirrors, lenses, polarizer, bandpass filters, etc....
	- \rightarrow should be easy...
- Fast computation of beam size (100 Hz):
	- \rightarrow could be more tricky... \rightarrow to be tested on our visible beamline

 \rightarrow A lot of preliminar work can be done on our visible beamline

• For $\epsilon_{x,y}$ ($\sigma_{x,y}$) measurements:

- Pinhole $+$ Fresnel diffraction in the X-ray range
- Polarized $+$ obstacle imaging in the near-UV/visible range

Announcement: two post–doc positions opened at SOLEIL

• Beam diagnostics for the new booster

https://www.synchrotron-soleil.fr/en/job-offers/post-doctoral-position-boosters-diagnostics

■ Photon BPMs for the new storage ring front–ends

https://www.synchrotron-soleil.fr/en/job-offers/post-doctorat-photon-bpm

 \rightarrow to work on diagnostics for SOLEIL–Upgrade

