

Optical Diagnostics for SOLEIL–Upgrade

Transverse beam sizes and emittance measurement

M. Labat, N. Hubert

Workshop @IFAST, April 2022

SOLEIL present storage ring

- Storage ring: 354 m circumference
- Lattice: DBA + distributed dispersion
- ϵ_x =3.9 nm.rad ; ϵ_y =40 pm.rad
- 29 beamlines

SOLEIL–Upgrade project

SOLEIL–Upgrade lattice

- Lattice: non-standard 7 DBA + 4 DBA
- ϵ_x =84.4 pm.rad ; ϵ_y =25.3 pm.rad
- Presently in TDR phase...

• Present vs. future parameters:

Machine	SOLEIL	SOLEIL–Upgrade
		Nominal / Machine tuning
ϵ_x (pm.rad)	4000	84.4 / 90
ϵ_{γ} (pm.rad)	40	25.3 / 1
σ_x in dipoles (μ m–RMS)	45–75	8.3 / 8–17
σ_y in dipoles (μ m–RMS)	25	12.5 / 2–3

- Specifications for $\epsilon_{x,y}$ ($\sigma_{x,y}$) measurement:
 - $\epsilon_{x,y}$ measurement with sub-pm resolution

 $\rightarrow \sigma_{x,y}$ measurement with sub- μ m resolution

- $\epsilon_{x,y}$ (nominal) measurement at >100 Hz repetition rate
- High reliability for $\epsilon_{x,y}$ (nominal) measurement
- At least 2 measurements of $\epsilon_{x,y}$ with different $\eta_{x,y}$

- Development of 2 types of optical diagnostics beamline:
 - X-ray range beamline(s):
 - Based on high-field dipole(s)
 - + Pinhole camera $\rightarrow \approx 5~\mu {\rm m-RMS}$ resolution at > 100 Hz (for users' operation)
 - + Fresnel diffraction $\rightarrow \approx$ 1 μm –RMS resolution at > 10 Hz (for machine tuning)
 - Near-UV / visible beamline:
 - Based on low-field dipole
 - + Polarized imaging $\rightarrow \approx 5~\mu m\text{-RMS}$ resolution at >100~Hz (for users' operation)
 - + Polarized diffraction imaging $\rightarrow \approx 1~\mu m-{\rm RMS}$ resolution at $>10~{\rm Hz}$ (for machine tuning)

 \rightarrow The beamlines design will ensure to swap from one technique to the other

X-ray beamline(s) >> Principle

- Principle: flip from users' to machine tuning mode removing M1–M2 specular mirrors
 Main components:
 - Easy: Aluminium window, copper absorber, scintillator, objective
 - Tricky: High-field dipole, absorber, adjustable pinhole, specular mirrors, camera

• Expected performances of the pinhole camera ($E_{phot} > 50 \text{ keV}$):

B=3 T, d=3 m, M_W =2.66, E_{ν} =50 keV, w_y =14 μ m

 \rightarrow Should resolve down to $\sigma_{x,y} \approx 5 \ \mu m$ -RMS

• Expected performances of Fresnel diffraction ($E_{phot} > 50 \text{ keV}$):

B=3 T, d=3 m, M_W =2.66, E_{ν} =50 keV, w_y =19 μ m

ightarrow Should resolve down to $\sigma_{x,y} pprox 1~\mu$ m–RMS

• Expected performances in the X-ray range ($E_{phot} > 50 \text{ keV}$):

- The dipole field has little influence on ultimate resolution
- BUT... a strong impact on photon flux !!!

 \rightarrow For 100 Hz (?) repetition rate \rightarrow $B{=}3$ T mandatory.

- Source dipole:
 - To enable 100 Hz measurements @ $E_{phot} >$ 50 keV ightarrow B > 2.5 T
 - Target: use one of the long dipoles with central field @ B=3 T

Long dipole longitudinal magnetic field with central field @ 3 T. Courtesy A. Loulergue. PRELIMINAR DESIGN.

X-ray beamline(s) >> Main components

- Beamline(s) integration:
 - Source dipole = long + free dipole
 - To enable high resolution: $M>\!\!2.5
 ightarrow d_{\it source-pinhole} <\!\!3$ m

Integration of X-ray beamline on a 3 T long dipole. PRELIMINAR DESIGN.

• So: pinhole will still be in between DBA magnets.... = tiny space !

X-ray beamline(s) >> Main components

• Pinhole design: (1) Stacking of blades + shims

Pinhole design from P. Elleaume et al., J. Syncrotron Rad. (1995) 2, 209-214.

- Pros: Proven, compact, cheap, reliable
- Cons: Fixed set of hole sizes, no or non-acurate metrology, painfull assembly

\rightarrow Alternative ?

- Pinhole design: (2) Alternatives investigated
 - LIGA >> no. Not enough attenuation power.
 - Motorized micro-slits >> no. Too expensive, not reliable enough.
 - Other mechanical design based on ESRF / ALBA experience >> yes.

Pinhole model from ALBA and ESRF. Courtesy U. Iriso and F. Ewald.

 \rightarrow Study of a new mechanical design to be soon started

- Monochromator (for Fresnel diffraction ONLY): just an idea...
 - Statements:
 - $\bullet\,$ We only need XX linewidth to reach 1 $\mu{\rm m}$ resolution in Fresnel diffraction
 - No need to implement XX linewidth standard monochromator: it will kill flux: see Diamond and ESRF....
 - Alternative idea: make a band-pass filter ?
 - High-pass filter = Copper attenuator
 - Low-pass filter = Pair of mirrors in specular reflection

Copper transmission = High-pas filter

- Specular mirror reflectivity = Low-pass filter
- Many critical issues still: x offset ? final flux ? alignement ? x_{camera} ?

X-ray beamline(s) >> Main components

- Scintillator:
 - Specifications:
 - Short time response (<0.1 ms)
 - Spatial resolution <1 $\mu \rm{m}$
 - High yield
 - Emission around 500 nm to match camera efficiency
 - Linear response
 - Thickness = compromise output yield / resolution decrease from d.o.f.
 - \rightarrow between 0.02 and 0.1 $\mu \rm{m}$

 \rightarrow CdW04, Yag:Ce, LuAg:Ce, GaGG

Resolution versus Numerical Aperture for different scitillator thickness.

X-ray beamline(s) >> Main components

• Imaging system:

- Compact + stable mechanics from Detetor Group design (housing: scintillator + mirror + objective + camera + focus stage)
 Objective = microscope
- Objective = microscope

(EdmundOptics + Mitutoyo to be tested)

Camera = ?

(not defined yet)

X-ray beam imager prototype.

- Principle: flip from users' to machine tuning mode adding an obstacle
- Main components:
 - Easy: Low-field dipole, thin obstacle, focussing lens, polarizer, objective
 - Tricky: Extraction mirror, camera

• Expected performances of the polarized imaging ($@\lambda=200 \text{ nm}$):

 \rightarrow Should resolve down to $\sigma_{\rm x,y} \approx$ 5 $\mu \rm m{-}RMS$

• Expected performances of the obstacle + polarized imaging ($@\lambda = 200 \text{ nm}$):

ightarrow Should resolve down to $\sigma_{{\rm x},y}pprox$ 2 μ m–RMS ightarrow to be more optimized...

• Expected performances in near–UV / visible range (down to 200 nm):

- Since we'll work with large θ_x :
 - ightarrow B longitudinal distribution will be important (flat / not)
- The lower the field... the higher the photon flux
 - \rightarrow For 100 Hz (?) repetition rate \rightarrow B <1.7 T mandatory

- Source dipole:
 - To enable 100 Hz measurements @ 200 nm $< \lambda < 1~\mu{
 m m}
 ightarrow B < 1.7$ T
 - Target: use one of the *short* dipoles @ *B*=0.87 T, or first/last part of a *long* dipole @ *B*=0.58 T

Short and long dipole longitudinal magnetic field. Courtesy A. Loulergue. PRELIMINAR DESIGN.

• Extraction mirror:

- Principle: Slotted mirror + air-cooling system
- To test high resolution polarized imaging with such system:

 \rightarrow Installation in January 2022 of a new extraction mirror on our visible beamline

- Preliminar results with our new extraction mirror:
 - Mirror performances:
 - Mirror made of Copper + enhanced Alumium deposition
 - Very high surface quality even around the slot !!

(flatness < 250 nm PV, roughness <3 nm-rms)

• Excellent thermal stability up to 500 mA stored: no image distorsion !!

 \rightarrow High quality mirrors are feasible on copper :-)

- Preliminar results with our new extraction mirror:
 - Images measured and simulated vs. distance lens-camera (pol. V):

Images vs distance to lens. $\theta_{\chi}{=}3.5$ mrad, Pol. V.

 \rightarrow Good agreement "by eye" SRW / measurements :-)

• Preliminar results with our new extraction mirror:

• Images measured and simulated vs. ϵ_y :

 \rightarrow Sensitivity "by–eye" seems very good in both σ/π pol. :-)

• Preliminar results with our new extraction mirror:

• Horizontal beam size Σ_x and Visibility in image plane (pol. V):

Experiment / SRW with: d=5940 mm, f_X=3200mm, f_Y=3240 mm

 \rightarrow Quite good absolute agreement SRW / measurements... but to be improved

• Preliminar results with our new extraction mirror:

• Sensitivity Visility vs. ϵ_y from Pinhole Cameras:

 \rightarrow Good sensitivity in pol. V seems confirmed.

- Preliminar results with our new extraction mirror: TO BE DONE
 - Check experimental magnification with bumps at source point
 - Check vertical alignment of mirror
 - Improve beamline stability (N₂ or vacuum transport)
 - Improve periscope alignment
 - Improve SRW/measuremnt agreement

• Other development on our present visible beamline: ultra-fast imaging

- Kalypso (KIT) camera implemented on σ pol. branch
- $\bullet\,$ Ultra–fast acquisition (up to 3 MHz) \rightarrow turn–by–turn (846 kHz) imaging
- Allows to follow injection effect on stored beam for instance

• Even if not yet absolute beam size measurement...

 \rightarrow Very usefull for recent commissioning of MIK (to be published)

• Extraction mirror: back to SOLEIL–Upgrade topic...

- $\bullet~\mbox{For machine operation} \rightarrow \mbox{slot height} > 2~\mbox{mm}$
- For large large $heta_x$ measurements o $heta_x$ >20 mrad
- ullet For photon collection down to 200 nm \rightarrow $d_{\it source-mirror}$ >3 m
- But deposited power rapidly increases with *d_{source-mirror}*...
- And power density slowly decreases with *d*_{source-mirror}...

Intensity distribution at 200 and 500 nm at 0.4 and 2 m from source point. θ_{χ} =20 mrad, θ_{χ} =10 mrad.

 \rightarrow Extraction mirror design IS an issue... working on it...

- Beamline(s) integration:
 - Source dipole = short + free dipole
 - To enable large collection angle + limited power deposition on mirror:
 - \rightarrow extraction at $d>\!\!2$ m from source point.... with free path....

Integration of near–UV / visible beamline on short dipole. PRELIMINAR DESIGN.

 \rightarrow Beamline integration IS ALSO an issue... working on it...

• Other components:

- Transport mirrors, lenses, polarizer, bandpass filters, etc....
 - \rightarrow should be easy...
- Fast computation of beam size (100 Hz):
 - \rightarrow could be more tricky... \rightarrow to be tested on our visible beamline

 \rightarrow A lot of preliminar work can be done on our visible beamline

• For $\epsilon_{x,y}$ ($\sigma_{x,y}$) measurements:

- Pinhole + Fresnel diffraction in the X-ray range
- Polarized + obstacle imaging in the near–UV/visible range

• Announcement: two post-doc positions opened at SOLEIL

• Beam diagnostics for the new booster

https://www.synchrotron-soleil.fr/en/job-offers/post-doctoral-position-boosters-diagnostics

• Photon BPMs for the new storage ring front-ends

https://www.synchrotron-soleil.fr/en/job-offers/post-doctorat-photon-bpm

 \rightarrow to work on diagnostics for SOLEIL–Upgrade

