

and shift

Beam Position Monitors and Orbit Feedback for Low Emittance Rings

Nicolas HUBERT, M. El Ajjouri, R. Broucquart iFAST Workshop 2022: Beam Diagnostics and Dynamics in Ultra-Low Emittance Rings

• Stability requirements

Beam stal at se	oility requirements ource points	3rd gen.	Low Em. Rings
	Position and Angle Stability (with respect to beam size and divergence)	10%	2-3%
Short Term	Minimum beam size (H/V) RMS	~200µm/~10µm	~5 to 10 µm both planes
	Position and Angle Stability (µm/µrad) RMS	~1 µm/µrad	~100 nm/nrad
	Range	0.01 Hz to ~1 kHz	0.01 Hz to ~1 kHz
Long Term	1 day	1 µm RMS	~ 500 nm RMS
	1 week	?	~ 1 µm RMS

Beam Position Monitor specifications

Туре	Data	Spec.	Conditions	
	Fast acquisition (~100 kHz, DC-2kHz bandwidth)	50 nm rms	Nominal current / Nominal filling	
Resolution	Turn by Turn	1 µm rms	pattorn	
		100 µm rms		
	Slow Acquisition (~10 Hz)	1 µm rms	0.1-1 mA in 1 quarter (commissioning)	
Beam Current	-	10 µm	From 0.1 mA – to nominal current	
Dependence		< 500 µm	Refore BBA	
accuracy	-	< 5 µm	After BBA	
Long term		500 nm rms	Day drift	
Stability	-	1 µm rms	Week drift	

Beam Position Monitors

• Usual guidelines for BPM design:

- Maximize the linear region.
- Maximize the amplitude of collected signal (for resolution)
- Minimization of the BPM impedance (impedance budget)

Low emittance ring new constraints:

- Improved stability:
 - Minimize the heat load on the BPM (SR, beam coupling)
 - Minimize mechanical stress from vacuum chamber
- Drastic size reduction: from massive blocks to 'key rings'
 - Miniaturizing the button and its housing with tightest mechanical tolerances
 - Mechanical integration constraints

BPM prototypes for SOLEIL (bottom) and SOLEIL-Upgrade (top)

Beam Position Monitors

- Button design:
 - Linearity:
 - Smaller beam pipe, smaller linear region.
 - Different available reconstruction methods (polynomial, Newton inversion) for studies at large amplitudes.

Delta over Sum response Φ16 mm BPM. Linear region is +-2 mm. BPMLab simulation [1].

- Button design: impedance optimization
 - Minimize BPM budget in the machine impedance
 - Minimize heat load on the button and the BPM block.

- What helps?
 - Small button diameter: 5 to 8 mm
 - Thin gap: trying to go down to 200 μm
 - Thick button: 3 to 5 mm

Beam Position Monitors

- Button design: impedance optimization
 - Minimize BPM budget in the machine impedance.
 - Minimize heat load on the button and the BPM block.

• What helps? -> Some tricks!

Beam Position Monitors

• BPM design: choice of the materials

- Button heat load mitigation
 - Buttons heated by the trapped modes
 - Button Conductivity >>Body conductivity to maximize the dissipated power on the body. *I. Pinayev, PAC 2009 [5]*

Button Body	Мо	316L	Part of trapped
Мо	50%	74 %	deposit that goe
Cu	64%	85%	the butt functior
316L	26%	50%	button a body m

Part of the trapped mode power deposition that goes on the button in function of the button and body material

- BPM heat load mitigation
 - Resistive wall is minimized for high conductivity materials.

Beam Position Monitors

Button manufacturing:

- Miniaturization: take care to the mechanical tolerances and accuracy
 - -> tightest tolerances
 - -> smaller pieces, adjustments are more complex
 - -> Metrology with optical devices
- Button gap and concentricity are the main concern:
 - Absolute error
 - Frequency/amplitude of the trapped modes
 - Button sensitivity (due to capacitance error)
- Button sorting before welding
- BPM measurement before installation
 - Lambertson method for the electrical offset *B. Roche, DEELS* 2019 [6]

Control of the button gap (200µm) and concentricity with a microscope (SOLEIL prototype).

- BPM Mechanical Stability:
 - For a usual air regulation at +-0.1°, low thermal expansion supports are mandatory to reach the stability specifications.
 - BPMs = fixed points of the vacuum chamber with bellows to isolate the BPM from vacuum chamber mechanical stress.
 - Upstream taper to keep the BPM in the shadow of the synchrotron radiation
 - Achromat BPMs may have relaxed stability specifications:
 - High density/ lack of space for bellows
 - Invar has non-zero magnetic permeability
 - Provided that:
 - Source points on bending magnet are nevertheless stabilized
 - Addition of the XBPMs in the orbit feedback loop
 - Correctors are in sufficient numbers to stabilize the source point positions independently from the achromat ones.

	Linear thermal expansion coefficient (x10 ⁶ K ⁻¹)	Drift for T=+- 0.1 °C (considering 1.2m support)
Steel	12	2.9 µm
Invar	1.2	0.3 µm
Granit	5	1.2 µm

• Current BPM electronics:

 Largely dominated by digital processing with (fast) switching mechanism to compensate drifts of their analog frontend :

Libera commercial module: 4x4 channel multiplexing [7].

SIRIUS BPM RFFE: 2x2 channel multiplexing. D. Tavares, Next Gen. Beam Pos. Acq. and Feedback Systems Workshop (ARIES) 2018 [8].

- How to meet new specifications?
 - Beam current dependence: OK
 - Resolution: already almost achieved (with the help of smaller geometric factors)

BCD and resolution lab measurement on a Libera Brilliance + BPM electronics for a 25% simulated filling pattern and a geometric factor of 11.4 mm (SOLEIL).

- How to meet new specifications?
 - Beam current dependence: OK
 - Resolution: already almost achieved (with the help of smaller geometric factors)
 - Improve the long-term stability to reach 0.5 µm / day, 1 µm / week:
 - Cable stability vs temp. or humidity

- Drift compensation mechanism: Switching
 - Move switching in the tunnel, close to the BPM

Remote switching concept

P. Leban, MicroTCA Workshop 2021 [9]

- Drift compensation mechanism: Switching
 - Drawbacks: spikes at switching frequency and sub-harmonics

Effect of the switching on turn-by-turn data. Libera user manual, Instrumentation Technologies [7]

- To be pushed above the fast correction data bandwidth: increase of the switching frequency
- Switching to be stopped for turn-by-turn measurements typ. during machine physics studies

Turn by turn power spectral density for different switching frequencies. *SOLEIL test*

- Drift compensation mechanism: Pilot Tone
 - Mix the BPM signal with one (or two) tone close to the RF frequency.
 - Correct the RF signal with the tone drift assuming they 'see' the same perturbation.

Pilot Tone front-end developed at Elettra. G. Brajnik, IBIC 2018 [10]

BPM ADC Spectrum w/ and w/o pilot tone at ALS. *G. Portman, IBIC 2020 [11]*

- Drift compensation mechanism: Pilot Tone
 - Band pass filter
 - Usual narrow SAW bandpass filter have a strong temperature dependence.
 - Replaced by larger (flat response) bandpass filter
 - Degraded resolution for single bunch operation (short pulse response)
 - Switchable SAW filter for single operation but without compensation

Bandpass filter temperature dependance. G. Portman, IBIC 2020 [11]

Added a switchable SAW filter in the signal path

• Drift compensation mechanism: long term stability performance

Long term stability measurement at PETRA III with remote switching. *G. Kube, Libera Workshop 2021 [13]*

Long term stability measurement at ALS with pilot tone. G. Portman, IBIC 2020 [11]

- Latency:
 - Reduce as much as possible the latency of the fast data (used for fast orbit correction):
 - Increase of the fast data sampling rate: from ~10 kHz up to ~100 kHz.
 - Take care at the digital filtering group delay

Numerical filtering of the TbT data by a 25 kHz butterworth filter compared with the current 2 kHz FIR filter . *SOLEIL simulation.*

- Increase efficiency range of the orbit correction
 - Target: 0 dB point at ~1 kHz

- Target: 0 dB point at ~1 kHz
- Minimize latencies:
 - It is generally considered that the latency should not exceed the tenth of the closed-loop 0dB point corresponding period.

0 dB point at 1 kHz

-> latency must be below 100 µs

Influence of the latency and bandwidth on the feedback close loop response (with IMC controller). *G. Rehm, Low Emittance Workshop 2018 [14]*

Increase efficiency range of the orbit correction

- Target: 0 dB point at ~1 kHz
- Minimize latencies:
 - It is generally considered that the latency should not exceed the tenth of the closed-loop 0dB point corresponding period.

0 dB point at 1 kHz

-> latency must be below 100 µs

- Increase subsystem bandwidth accordingly:
 - BPMs
 - Magnets+ power-supplies
 - Vacuum chamber: good analytic models for simple geometries: *Podobedov, PAC09* [15].

Gain and phase response of a 1 mm thick, 16 mm diameter circular vacuum chamber.

Material thickness to be considered for a cut-off frequency of 15 kHz (latency@1kHz < 10 μs) Case of a 16mm round vacuum chamber

Copper	35 µm
Aluminium	55 µm
Stainless steel	1.5 mm

SIRIUS fast correctors vacuum chamber. The 0.3 mm SS circular geometry gives a cutoff frequency of 48 kHz [8]

	Actual FOFB	Future FOFB (specifications)	
Position Processing <u>BPM</u> FA filter	190 µs	~40 µs	\rightarrow New eBPM
Position data gathering	60 µs	5 µs	
Correction Computation	6 µs	~2 µs	
Correction data distribution	0 Already on site	5 µs	
Communication to PSU	20 µs	5 µs	
FOFB com + comp total	86 µs	< 20 µs	
			\rightarrow New FOFB network
PSU controller latency	20 µs	10 µs	
PSU + Self rise time (90%)	30 µs (for 2.5% excursion range)	<i>Target</i> < 20 μ s (for 2.5% excursion range)	
Eddy Currents in vacuum chamber	Unknown	Target < 10 μs	
Total	~ 360 µs estimated, 400/500 µs observed	< 100 µs	

Latencies contributions for the current and the future SOLEIL fast orbit feedback.

- FOFB Network
 - From distributed to central architecture
 - Layered network:
 - Higher network:
 - Star network with a central node
 - Cell nodes aggregates the data
 - High data rate (10 Gbps)
 - Lower network:
 - Topology and data rate less critical
 - BPMs and correctors
 - Numerous high-density high-speed interfaces on the nodes
 - High speed interfaces on the power supplies

Foreseen topology for future SOLEIL FOFB.

Sets of correctors

- Generally difficult to have a single set of correctors that combines strength and high bandwidth.
- Correction efficient on a unified frequency range.
- Possibility to have several loops at different update rates that interact between each other. N. Hubert. DIPAC 2009 [16]

Centralized architecture:

- Slow and fast loops runs on the same hardware.
- Allows more complex controller schemes (mode control). G. Rehm, Low Emittance Workshop 2018 [14]
- Easy integration of additional sensors (XBPMs, injection events, temperatures...).
- Ease the control of fast AC machine parameters measurements (response matrix, BBA).
 Z. Marti, IBIC 2021 [17]

• BPM designs are driven by stability requirements:

- Heat load mitigation
- Stable supports
- Compensation mechanism for slow drifts (including cables)
- Big effort put on FOFB efficiency:
 - High bandwidths
 - Shortest latencies
- This attention must not be limited to BPMs and feedback (see Friday presentations)
 - Eliminate the perturbations at the source!

Open question:

Can the synchrotron frequency fall into the FOFB overshoot? Possible consequences to be studied....

Thank you for your attention....

[1] BpmLab

[2] M. El Ajjouri: "Preliminary Studies for the SOLEIL-Upgrade BPM", IBIC 2021.

[3] SLS 2.0 Storage Ring Technical Design Report.

[4] H. Duarte: "Design and Impedance Optimization of the SIRIUS BPM Button", IBIC2013 Oxford, UK.

[5] I. Pinayev: "Evaluation of Heat Dissipation in the BPM Buttons", PAC09, Vancouver, Canada.

[6] B. Roche: "BPM Block Offset Calibration Using Lambertson Method" DEELS 2019, Grenoble, France.

[7] Instrumentation Technologies. www.i-tech.si.

[8] D. Tavares: "BPM Electronics and Orbit Feedback Systems at SIRIUS", Joint ARIES Workshop on next Gen. Beam Position Acquisition and Feedback Systems, 2018, Barcelona, Spain.

[9] P. Leban: "BPM System for PETRA-IV", MicroTCA Workshop, 2021.

[10] G. Brajnik: "Integration of a Pilot-Tone Based BPM System Within the Global Orbit Feedback Environment of Elettra", IBIC 2018, Shanghai, China.

[11] G. Portman: "BPM Electronics with Self-Calibration at the ALS", IBIC 2020.

[12] G. Brajnik: "Current Status of Elettra 2,0 New eBPM System", Libera Workshop 2021.

[13] G. Kube: "Development Towards a New BPM System for the PETRA IV Project at DESY", Libera Workshop 2021.

[14] G. Rehm: "Ideal Orbit Feedback for Low Emittance Rings", 7th Low Emittance Workshop 2018, CERN.

[15] B. Podobedov: "Eddy current shielding by electrically thick vacuum Chambers", PAC09, Vancouver, Canada.

[16] N. Hubert: "Global Orbit Feedback Systems Down to DC Using fast and Slow Correctors", DIPAC 09, Basel, Switzerland.

[17] Z. Marti: "Fast Beam-Based Alignment Using AC Excitations", IBIC 2021.