

Experiences on Implementation and Collective Effects during Negative Momentum Compaction Operation at KARA

Patrick Schreiber, M. Brosi, B. Härer, A. Mochihashi, A. Papash, R. Ruprecht, M. Schuh, A.-S. Müller | I.FAST Workshop 2022

www.kit.edu

Motivation

- Synchrotron light sources are continuously under development
- Future machines on the verge of feasibility
- New schemes necessary
- Special magnet configurations considered
 - ⇒ Side effects are high nonlinearities and hard operation conditions
 - ⇒ Could be compensated using negative momentum compaction $\alpha_c < 0$
- KARA as accelerator test facility allows studies
 - Implementation of negative momentum compaction optics possible
 - Provides multitude of diagnostic tools

Contents

- Momentum Compaction Factor
- Implementation & Strategy
- Transverse Stability
- Bunch Length
- Longitudinal Instability

Momentum Compaction Factor

- Radius in magnetic field dependent on momentum
 - $\rho = \frac{\rho}{qB}$
- ⇒ Path length dependent on momentum

 $\alpha_{\rm c} = \frac{\Delta L/L}{\Delta \rho/\rho} = \frac{1}{L} \oint \frac{D(s)}{\rho(s)} \mathrm{d}s$

- ⇒ Circulation time dependent on momentum
 - ⇒ Higher momentum -> later
 - ⇒ Lower momentum -> earlier
- \Rightarrow Phase focusing on falling slope of RF

Negative Momentum Compaction Factor

- ⇒ Phase defocusing
- Necessary to shift the acceleration phase
 - ⇒ Regain phase focusing

KARA

- KArlsruhe Research Accelerator
- Electron storage ring of the KIT synchrotron light source

Location	KIT-Campus North
Circumference	110.4 m
Maximum Energy	2.5 GeV
Accelerating Frequency	500 MHz

Source: ibpt.kit.edu

Schreiber et al., DOI: 10.23732/CYRCP-2020-009.297

Implementation

- KARA consists of DBA cells
- Dispersion controlled with Q3 (centre quadrupole)
- Increasing strength of Q3 increases dispersion span into also negative areas

User Optics $\alpha_{\rm c} \approx 8 \times 10^{-3}$

Implementation

- Increasing strength of Q3 increases dispersion span into also negative areas
- Existing low α_c 1.3 GeV mode

¹Streun, OPA, https://ados.web.psi.ch/opa

- First, low α_c injection optics established
- Changes necessary extrapolated for negative α_c

Schreiber et al., DOI: 10.23732/CYRCP-2020-009.297

 OPA¹ simulations used for simulation of new optics Low $\alpha_{\rm c}$ Optics $\alpha_{\rm c} \approx 1 \times 10^{-4}$

Implementation

- OPA¹ simulations used for simulation of new optics
- Settings for direct injection into negative α_c implemented
- ⇒ Only a few turns beam storage
- Manual tuning of quadrupoles, kicker, septum and corrector magnets
- ⇒ Accumulation possible
- Unexpected working point
- ⇒ Tunes moved to usual injection tunes

¹Streun, OPA, https://ados.web.psi.ch/opa Schreiber et al., DOI: 10.23732/CYRCP-2020-009.297 Negative α_c Optics $\alpha_c \approx -2 \times 10^{-3}$

Implementation

- Large orbit deviations necessary for injection
- Can be reduced after injection
- Due to higher beam stability sub-mm orbit deviations possible at 1.3 GeV

Schreiber et al., DOI: 10.23732/CYRCP-2020-009.297

Status of Implementation

- Negative momentum compaction operation established
 - \rightarrow Found correct magnet configuration
- ✓ Multiple energies available
- Momentum compaction factor variable
- X Limited beam current (low compared to positive α_c)
- Now we can investigate differences in dynamics

Schreiber et al., DOI: 10.23732/CYRCP-2020-009.297

Transverse Stability

- Transverse position after kick at positive α_c and positive and negative chromaticities
- Strong residual oscillations at $\zeta_x < 0$
- Frequency of oscillations not corresponding to synchrotron frequency

Karlsruhe Institute of Technology

Transverse Stability

- Transverse position after kick at positive and negative α_c and negative chromaticities
- Strong oscillations at positive α_c
- Some steady oscillations at negative α_c due to increased dispersion

Transverse Stability

- Effects could be caused by head-tail effects
- Supported by current dependency of head-tail damping time

$$\frac{1}{\tau} \propto N_{\rm b} \frac{\zeta}{\alpha_{\rm c}}$$

⇒ Negative α_c allows $\zeta < 0$ while avoiding head-tail instability

Schreiber et al., DOI: 10.18429/JACoW-IPAC2021-WEPAB083

Bunch Length

- Determined by effective potential
- Effective potential: Sum between RF and wake potential $U_{\rm eff} = U_{\rm RF} + U_{\rm Wake}$
- For $\alpha_{\rm c}$ < 0 the RF potential is reversed
 - \Rightarrow Sum is different

Н Bunch т Т Н

Exemplary sketch with CSR Parallel-Plates Wake

Bunch Length - Effective Potential

Schreiber et al., DOI: 10.18429/JACoW-IPAC2021-WEPAB083

Bunch Length

Simulation

Measurement

Schreiber et al., DOI: 10.18429/JACoW-IPAC2021-WEPAB083

- Longitudinal instability observed at low |α_c|
- Rises when bunch radiates coherently (CSR) (for short bunches)
- Due to interaction of a bunch with its own emitted radiation
- Intensely studied for positive α_{c}
- Bursts of coherent THz radiation that could be used by some experiments
- Detrimental to other experiments (no stable beam size etc)

Intensity of emitted CSR varies

• Temporal properties of intensity variation differ between positive α_c and negative α_c

 $\alpha_{\rm c} < 0$

 $\alpha_{\rm c} > 0$

Threshold Current

- Scaling law² for positive α_c fits measurements³
- Significantly lower threshold at negative α_c
- Additional dependency on acceleration voltage

²Bane et al., DOI: 10.1103/PhysRevSTAB.13.104402

³Brosi et al., DOI: 10.1103/PhysRevAccelBeams.22.020701

CSR Intensity

- Intensity measured with identical setup at positive and negative α_c
- Higher peak intensity at negative α_c
- Higher mean intensity at negative $\alpha_{\rm c}$
 - ⇒ Corresponds to the observed shorter bunch length
- Stabilisation could result in high intensity yield

- Negative momentum compaction operation on shifted phase
- Successful implementation at KARA
- Transversal stability for $\zeta < 0$ and $\alpha_c < 0$
- Bunch shortening for $\alpha_c < 0$ at low currents
- Shorter bunches in general for $\alpha_c < 0$
- Longitudinal instability differs for $\alpha_c > 0$ and $\alpha_c < 0$
- Lower instability threshold for $\alpha_{\rm c} < 0$
- Higher CSR intensity for $\alpha_{\rm c} < 0$

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 730871.

- Negative momentum compaction operation on shifted phase
- Successful implementation at KARA
- Transversal stability for $\zeta < 0$ and $\alpha_c < 0$
- Thank you for your attention!
- Shorter bunches in general for $\alpha_{\rm c} < 0$
- Longitudinal instability differs for $\alpha_{\rm c}$ > 0 and $\alpha_{\rm c}$ < 0
- Lower instability threshold for $\alpha_{\rm c} < 0$
- Higher CSR intensity for $\alpha_{\rm c} < 0$

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 730871.

