

Experiences on Implementation and Collective Effects during Negative Momentum Compaction Operation at KARA

Patrick Schreiber, M. Brosi, B. Härer, A. Mochihashi, A. Papash, R. Ruprecht, M. Schuh, A.-S. Müller | I.FAST Workshop 2022

Motivation

- Synchrotron light sources are continuously under development
- Future machines on the verge of feasibility
- New schemes necessary
- Special magnet configurations considered
	- ⇒ Side effects are high nonlinearities and hard operation conditions
	- \Rightarrow Could be compensated using negative momentum compaction $\alpha_c < 0$
- KARA as accelerator test facility allows studies
	- Implementation of negative momentum compaction optics possible
	- **Provides multitude of diagnostic tools**

Contents

- Momentum Compaction Factor
- Implementation & Strategy
- Transverse Stability
- Bunch Length
- Longitudinal Instability

Momentum Compaction Factor

Radius in magnetic field dependent on momentum

$$
\rho = \frac{p}{qB}
$$

⇒ Path length dependent on momentum

 $\alpha_{\rm c} = \frac{\Delta L/L}{\Delta D/\rho}$ $\frac{\Delta L/L}{\Delta p/p} = \frac{1}{L}$ *L* ∮ *D*(*s*) $\frac{\sum(s)}{\rho(s)}$ ds

- ⇒ Circulation time dependent on momentum
	- ⇒ Higher momentum -> later
	- ⇒ Lower momentum -> earlier
- ⇒ Phase focusing on falling slope of RF

- When α_c < 0 higher energetic particles gain more energy
	- ⇒ Phase defocusing
- Necessary to shift the acceleration phase
	- ⇒ Regain phase focusing

KARA

- **KA**rlsruhe **R**esearch **A**ccelerator \blacksquare
- Electron storage ring of the KIT synchrotron \blacksquare light source

Source: ibpt.kit.edu

Implementation

- KARA consists of DBA cells
- Dispersion controlled with Q3 (centre quadrupole)
- Increasing strength of Q3 increases dispersion span into also negative areas

Schreiber et al., DOI: 10.23732/CYRCP-2020-009.297

User Optics $\alpha_c \approx 8 \times 10^{-3}$

- Increasing strength of Q3 increases dispersion span into also negative areas
- Existing low α_c 1.3 GeV mode
- First, low α_c injection optics established
- Changes necessary extrapolated for negative α_c
- OPA¹ simulations used for simulation of new optics

¹Streun, OPA, https://ados.web.psi.ch/opa

Schreiber et al., DOI: 10.23732/CYRCP-2020-009.297

Implementation

Low α_c Optics $\alpha_c \approx 1 \times 10^{-4}$

7/21 I.FAST Workshop 2022 Patrick Schreiber - [Negative Momentum Compaction](#page-0-0) IBPT, KIT

Implementation

- OPA¹ simulations used for simulation of new optics
- Settings for direct injection into negative α_c implemented
- Only a few turns beam storage
- Manual tuning of quadrupoles, kicker, septum and corrector magnets
- ⇒ Accumulation possible
- Unexpected working point
- Tunes moved to usual injection tunes

¹Streun, OPA, https://ados.web.psi.ch/opa

Schreiber et al., DOI: 10.23732/CYRCP-2020-009.297

Implementation

- Large orbit deviations necessary for injection
- Can be reduced after injection
- Due to higher beam stability sub-mm orbit deviations possible at 1.3 GeV

Schreiber et al., DOI: 10.23732/CYRCP-2020-009.297

Status of Implementation

- $\sqrt{\ }$ Negative momentum compaction operation established
	- \rightarrow Found correct magnet configuration
- \checkmark Multiple energies available
- ✓ Momentum compaction factor variable
- X Limited beam current (low compared to positive α_c)
- Now we can investigate differences in dynamics

Schreiber et al., DOI: 10.23732/CYRCP-2020-009.297

Karlsruhe Institute of Technology

Transverse Stability

- Transverse position after kick at positive α_c and positive and negative chromaticities
- Strong residual oscillations at $\zeta_{\rm x}$ < 0
- Frequency of oscillations not corresponding to synchrotron frequency

Karlsruhe Institute of Technology

Transverse Stability

- Transverse position after kick at positive and negative α_c and negative chromaticities
- Strong oscillations at positive α_c
- Some steady oscillations at negative α_c due to increased dispersion

Transverse Stability

- Effects could be caused by head-tail effects
- Supported by current dependency of head-tail damping time

$$
\frac{1}{\tau} \propto N_b \frac{\zeta}{\alpha_c}
$$

 \Rightarrow Negative α_c allows $\zeta < 0$ while avoiding head-tail instability

Schreiber et al., DOI: 10.18429/JACoW-IPAC2021-WEPAB083

Bunch Length

- Determined by effective potential
- Effective potential: Sum between RF and wake potential $U_{\text{eff}} = U_{\text{RF}} + U_{\text{Wake}}$
- For α_c < 0 the RF potential is reversed
	-

Exemplary sketch with CSR Parallel-Plates Wake

Bunch Length - Effective Potential

Schreiber et al., DOI: 10.18429/JACoW-IPAC2021-WEPAB083

Bunch Length

Simulation **Measurement**

Schreiber et al., DOI: 10.18429/JACoW-IPAC2021-WEPAB083

- Longitudinal instability observed at low $|\alpha_c|$
- Rises when bunch radiates coherently (CSR) (for short bunches)
- Due to interaction of a bunch with its own emitted radiation
- Intensely studied for positive α_c
- Bursts of coherent THz radiation that could be used by some experiments
- Detrimental to other experiments (no stable beam size etc)

Intensity of emitted CSR varies

Temporal properties of intensity variation differ between positive α_c and negative α_c

 $\alpha_c > 0$ $\alpha_c < 0$

Threshold Current

- Scaling law² for positive $\alpha_{\rm c}$ fits measurements 3
- Significantly lower threshold at negative α_c
- Additional dependency on acceleration voltage

Karlsruhe Institute of Technolog

²Bane et al., DOI: 10.1103/PhysRevSTAB.13.104402

³Brosi et al., DOI: 10.1103/PhysRevAccelBeams.22.020701

CSR Intensity

- Intensity measured with identical setup at positive and negative α_c
- Higher peak intensity at negative α_c
- Higher mean intensity at negative α_c
	- ⇒ Corresponds to the observed shorter bunch length
- Stabilisation could result in high intensity yield

- Negative momentum compaction operation on shifted phase
- Successful implementation at KARA
- Transversal stability for $\zeta < 0$ and $\alpha_c < 0$
- Bunch shortening for α_c < 0 at low currents
- Shorter bunches in general for $\alpha_c < 0$
- Longitudinal instability differs for $\alpha_c > 0$ and $\alpha_c < 0$
- Lower instability threshold for $\alpha_c < 0$
- Higher CSR intensity for $\alpha_c < 0$

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 730871. $\begin{tabular}{l} Horizontal beam\\ \hline distribution of
set in mm\\ -0.5 \\ \end{tabular}$ 0.5

- **Summary**
	- Negative momentum compaction operation on shifted phase
	-
	-
	- Bunch shortening for $q_c < 0$ at low currents Thank you for your attention!
	- Shorter bunches in general for α_c
	-
	-
	-

