

Diagnosing collective effects in the MAX IV storage rings Miriam Brosi, Åke Andersson, Jonas Breunlin, Francis Cullinan, David K. Olsson, Pedro Fernandes Tavares I.FAST Workshop 2022, Karlsruhe, Germany (virtual)

MAX IV

- Linear accelerator:
 - Full energy injector
 - Driver for short pulse facility
 - beam lines 1
- 1.5 GeV Ring:
 - Emittance (6 nm rad)
 - Double-bend achromat
 - Beam lines 5
- 3 GeV Ring:
 - Ultra-low emittance (330 pm rad)
 - Multi-bend achromat
 - Commissioning started in August 2015
 - Delivery to users started in April 2017
 - Beam lines 9 (+2 under commissioning)
 - P. Tavares et al., 2018, doi:10.1107/S1600577518008111

- DCCT for beam current
- BPMs for center of mass position
 - Mode monitor
 - BBB feedback system for measuring of tunes / modes
- Transverse beam size monitors giving emittance and energy spread \Rightarrow Talk by Åke Andersson
- Pinger/Kicker for excitation
- Bunch length monitor (optical sampling scope)
 ⇒ now also streak camera(s)

- DCCT for beam current
- BPMs for center of mass position
 - Mode monitor
 - BBB feedback system for measuring of tunes / modes
- Transverse beam size monitors giving emittance and energy spread ⇒ Talk by Åke Andersson
- Pinger/Kicker for excitation
- Bunch length monitor (optical sampling scope)
 ⇒ now also streak camera(s)

Example 1

- DCCT for beam current
- BPMs for center of mass position
 - Mode monitor
 - BBB feedback system for measuring of tunes / modes
- Transverse beam size monitors giving emittance and energy spread \Rightarrow Talk by Åke Andersson
- Pinger/Kicker for excitation
- Bunch length monitor (optical sampling scope)
 ⇒ now also streak camera(s)

Example 2

- DCCT for beam current
- BPMs for center of mass position
 - Mode monitor
 - BBB feedback system for measuring of tunes / modes
- Transverse beam size monitors giving emittance and energy spread ⇒ Talk by Åke Andersson
- Pinger/Kicker for excitation
- Bunch length monitor (optical sampling scope)
 ⇒ now also streak camera(s)

Example 3

Example 1: Transverse mode coupling instability

/ertical position / a.u.

- Vertical single-bunch instability visible at low vert. chromaticity
- Saw-tooth pattern
- Clear current threshold, found when slowly injecting into single bunch
 - Threshold $3.5\pm0.2\mathrm{mA}$
 - Tunes (h./v.) 0.199 / 0.279
 - Chromaticity (h./v.) 1.08 / 0.18
- No sudden beam loss, but reduced life time
- Easily controlled by BBB feedback

Example 1: Transverse mode coupling instability

- Vertical single-bunch instability visible at low vert. chromaticity
- Saw-tooth pattern
- Clear current threshold, found when slowly injecting into single bunch
- No sudden beam loss, but reduced life time
- Easily controlled by BBB feedback
- Simulations suggest influence of sign of amplitude dependent tune shift

P. Tavares et al., 2018, doi:10.1107/S1600577518008111

F. Cullinan et al., ARIES 7th Low Émittance Rings Workshop, Jan. 2018, CERN

Example 1: Positive and negative ADTS - preliminary results

- Amplitude dependent tune shift (ADTS)
 - Measured by kicking the beam transversely
 - Detecting center of mass oscillation over turns
 - Extracting oscillation frequency dependent on displacement amplitude
- Vertical kicks in standard optics
 - \Rightarrow Negative, vertical ADTS
 - ⇒ Observed vertical saw-tooth instability above threshold current
- Vertical kicks in optics with adapted octupoles
 - \Rightarrow Positive, vertical ADTS
 - \Rightarrow Instant, partial beam loss at threshold current
- ⇒ Preliminary, experimental results support hypophysis that a negative vertical ADTS reduces growth-rate of observed instability

Similar effects were observed for multi-bunch instabilities at ELETTRA L. Tosi et al., 2003, doi: 10.1103/PhysRevSTAB.6.054401

standard optics

Data courtesy David K. Olsson

Streak camera at diagnostic beamline - R3

- Synchrotron radiation from bending magnet
- Visible wavelength
- Parallel measurement of transverse and longitudinal beam sizes
- One beamline in dispersive and one in non-dispersive section ⇒ Talk by Åke Andersson
- NEW streak camera at non-dispersive beamline

J. Breunlin et al., 2016, DOI:10.18429/JACoW-IPAC2016-WEPOW034

Streak camera at diagnostic beamline - R3

- Light split after last vacuum window
- Added foccussing element to reduce transverse size of light spot on streak camera
- Hamamatsu universal streak camera C10910

Streak camera at diagnostic beamline - R1

- Similar setup as R3
- Non-dispersive beamline
- Light split for transverse and longitudinal diagnostic
- Automated filterwheel with neutral density filters
 → Integrated in HPDTA software
- Different streak units
 - Synchro scan
 - Slow & Fast single sweep
 → Bunch-picking in
 multi-bunch possible

Example 2: Multi-bunch

- Beam loading due to passive Landau cavities
- Standard inhomogeneous filling (165/176 bunches)
- Transient in synchronous phase and bunch length visible

- Mode 1 instability
- Homogeneous filling
- Transient not stationary with respect to main RF
- \Rightarrow Talk by F. Cullinan

- Mode 1 instability
- Homogeneous filling
- Transient not stationary with respect to main RF
- \Rightarrow Talk by F. Cullinan

- Mode 1 instability
- Homogeneous filling
- "Strength" of pattern depends on LC strength
- \Rightarrow Talk by F. Cullinan

$$V_{\rm LC} = 424 {\rm kV}$$

- Mode 1 instability
- Homogeneous filling
- "Strength" of pattern depends on LC strength
- \Rightarrow Talk by F. Cullinan

$$V_{\rm LC} = 416 {
m kV}$$

Example 3: Single bunch instability

- Longitudinal instability
- Single bunch operation
- Dynamic bunch profile deformations above threshold in bunch current
- Repetition rate approx. 2.7 imes $f_{
 m s}$

Example 3: Single bunch instability

- Longitudinal instability
- Single bunch operation
- Dynamic bunch profile deformations above threshold in bunch current
- Repetition rate approx. 2.7 \times $f_{\rm s}$

Example 3: Bunch profile dynamics

$\mathit{I}_{\rm b}=8.5{\rm mA}$

- Temporal development of bunch profile
- Average profile in green
- Clear deformations visible

Example 3: Longitudinal beam spectrum

- Visible in long. beam spectrum measured on BBB system
- Additional line at $\approx 2.7 \times f_{\rm s}$ \rightarrow corresponds to repetition rate
- Small frequency shift with bunch current visible

Example 3: Bunch length over current

Example 3: Single bunch instability - Simulation

- Simulations with Vlasov-Fokker-Planck solver Inovesa
- Temporal development of longitudinal phase space density
- Simplified 6 GHz broad band resonator impedance [1]
- $\Rightarrow\,$ Clear onset of instability visible between 7 and 8 mA

Example 3: Single bunch instability - Simulation

- Temporal development of bunch profile
- Similar overall deformations
- Difference in repetition rate approx. $1.9 \times f_s$ instead of $2.7 \times f_s$ (measured)
- Also difference in threshold 7-8 mA vs 6-7mA (measured)

Next steps:

- Update Inovesa model of 3 GeV ring
- Determine more accurate impedance model from measurements
- Discuss addition of further effects, e.g. resistive wall impedance/NEG impedance, Landau Cavities, ...

Analysis

- Small python module
 - Reads saved image data
 - Provides a class to access data and metadata like axis scaling
- Further analysis functions
 - Background substraction
 - Center of mass correction
 - Profile calculation
 - Bunch length calculation
 - FWHM or rms
 - User definable slice width (pixel to whole image/sequence)
 - Synchronous phase
 - Filling pattern

Analysis

- Small python module
 - Reads saved image data
 - Provides a class to access data and metadata like axis scaling
- Further analysis functions
 - Background substraction
 - Center of mass correction
 - Profile calculation
 - Bunch length calculation
 - Synchronous phase
 - Filling pattern
- Discussion points
 - FWHM vs STD bunch length calculation
 - Handling of different slow sweep durations with respect to signal to noise and center of mass motion

0.1

0.5

100

0.8

a 0.6

g 0.4

0.2

Influence of MCP Gain

Analysis

- Small python module
 - Reads saved image data
 - Provides a class to access data and metadata like axis scaling
- Further analysis functions
 - Background substraction
 - Center of mass correction
 - Profile calculation
 - Bunch length calculation
 - Synchronous phase
 - Filling pattern
- Next steps
 - Employ existing TCP/IP interface
 - Remote control
 - Automated (standard) measurements
 - Fast, direct analysis
 - ⇒ "live" diagnostic of the bunch length, longitudinal profile and dynamics

Summary

- Diagnostic for collective effects vital for studies at MAX IV
 - Example 1: Understanding transverse instability without beam loss
 - Example 2: Mode 1 instability during homogeneous filling
 - Example 3: Longitudinal microwave instability during single-bunch
- Streak cameras widen the diagnostic possibilities for collective effects
- Installed at non-dispersive, optical diagnostic beam lines in R1 and R3
- Python module towards fast analysis of streak camera data
- Next steps: Remote control and automated analysis

