PAUL SCHERRER INSTITUT

Volker Schlott, Paul Scherrer Institut

Diagnostics Requirements for Ultra-Low Emittance Rings

I.FAST Workshop, Karlsruhe Institute of Technology (virtual) April 25th – 29th 2022

Acknowledgements \bigoplus \mathbb{C}

This presentation is based on information from many colleagues working at several light sources!

Special thanks go to…:

- … **Nick Sereno, Vadim Sajaev (ANL: APS, APS-U)**
- … **Christoph Steier; Greg Portman (LBL: ALS, ALS-U)**
- … **Ake Andersson, Jonas Breulin (MAX-IV)**
- … **Lorraine Bobb, Chris Bloomer (DIAMOND-I and II)**
- … **and from PSI (SLS, SLS 2.0):**

Masamitsu Aiba, Andreas Streun, Michael Böge, Boris Keil, Cigdem Ozkan-Loch, Daniel Grolimund, Ana Diaz

… **and especially to Nazanin Samadi for sharing her ideas on the "Dispersive Crystal Diffraction Monitor"**

From 3rd to 4th Generation Light Sources

- **NEG-coated small aperture vacuum chambers**
- **strong and compact PM magnets**
- **(ultra) fast injection elements**
- **advanced insertion devices**

Storage Ring Lattice Design

- **MBA lattices**
- **reverse and long. gradient bends**
- **on-axis / swap-out injection**
- **phase space matching of electron and photon beams**

Beam Diagnostics and Beam Stability have always been pre-requisites for successful LS operation – even more for 4th GLS

Technological Innovations \rightarrow **> 2 orders of magnitude lower horizontal emittance**

higher brightness and more coherent photon beams

Some Introductory Remarks on Diagnostics

Light Sources and Storage Rings evolve stepwise in generation

- $1st$ GLS **parasitic use of dipole sources (HEP facilities)**
- 2nd GLS **dedicated facilities (BM, wiggler)**
- **3rd GLS rdoptimized lattices for undulators**
- **DLSR multi-bend achromats and optimized IDs**

Diagnostic Systems are subject to a more continuous evolution…:

increasing requirements and new operation modes (e.g. low coupling, top-up, fs-slicing…)

experience and "lessons-learned" (e.g. calibration and drift-compensation)

technological advances (e.g. low latency digital electronics)

Diagnostics requirements for ultra low emittance rings are close to those of 3GLS in the vertical plane However, Diagnostics Systems have to provide improved performance and advanced functionalities

Basic Requirements and Functionalities

Pre-Beam Commissioning

- lab-calibration **→** 5-10% calibration errors (including DAQ systems)
- $-$ initial alignment \rightarrow sufficiently good to find, optimize and accumulate beam e.g. BPM offsets ≤ 500 µm, beam line optics pre-adjusted with alignment tools (e.g. laser)
- validity checks \rightarrow BPM non-linearity correction for large beam offsets and cross sums

Beam Commissioning

- full characterization of injected beam in injector and/or BR transfer line
- first turn / turn-by-turn operation modes for BPMs and BLMs (working horse diagnostics)
- profile measurements should be available after accumulation to allow optic checks

Beam Dynamics

- fast and efficient beam-based-alignment (BBA) with high resolution (µm level)
- indispensable for optics studies (orbit response matrix, coupling, LOCO, optics correction…)

User Operation

- very high reliability of all diagnostics systems (self-calibration, self diagnosis, negligible current and filling pattern dependency)
- high resolution / sensitivity (sub-µm level) at highest possible bandwidth (kHz)
- input for any kind of beam-based feedbacks (FOFB (local, global), top-up and filling pattern control, coupling / lifetime, injection)
- separate outputs for interlock and safety systems, provision of post-mortem (beam) data

reserve sufficient time for diagnostics commissioning with beam

reserve sufficient time for diagnostics optimization and implementation of beam-based FBs

Overview of Diagnostics Systems

*** These measurement systems will not be treated in detail during this presentation. Remarks and examples may be given in additional slides or references.**

Requirements for "Ready-to-Go" Systems

Requirements for Beam Position Monitors I

Mechanics button-type pick-up

- **-** small diameter beam pipe (≈ $16 25$ mm) and button feedthroughs (≈ $5 10$ mm)
- SS with Cu-coating and NEG layers
- SR shielding by diameter increase of pick-up and tapers or set-back of feedthroughs
- good impedance properties and careful feedthrough design to prevent trapped modes and heating
- mechanical de-coupling with bellows to prevent mechanical stress
- optional monitoring of mechanical BPM pick-up position (e.g. by using dial gauges)

ALS-U BPM Pick-Up Design

courtesy of S. De Santis and C. Steier

APS-U Prototype BPM Pick-Up

SLS 2.0 BPM PU / Corrector Chamber Design

courtesy of N. Sereno

Requirements for Beam Position Monitors II

Joseph Treating Calculation out a displayed the track feasible requirements fraction

Electronics numerous in-house and some commercial developments for DLLS projects

- **-** 4-channel parallel systems
- drift compensation and calibration by channel switching (cross-bar) or pilot tone
- radiation safe placement of analog front ends in tunnel (pilot tone approach)
- use of RF cables with low temperature and humidity dependence to avoid drifts
- temperature stabilization of racks and / or temperature regulation of electronics
- digital back-ends provide parallel outputs with different BW (operation modes)

Improved Noise Performance and Drift Compensation by Pilot Tone Correction (ALS BPMs)

G. Portman, E. Norum, M. Chin, J. Weber (ALS-U) presented at ARIES WS on Next Generation BPM and FB Systems, Barcelona, Spain Nov. 2018

Requirements for Beam Profile Monitors

Beam Profile emittance, energy spread measurements and coupling control

typical beam sizes: σ_h smallest beam sizes: σ_{v}

beam size changes: $\Delta\sigma_{h,v} \leq 100$ nm

beam size / coupling monitoring : coupling control \rightarrow FBs

profile monitors are very challenging!!! "lucky ones" can use proven concepts a few have to learn about X-ray optics & develop new ideas

ARIES Topical WS on Emittance Measurements for Light Sources & FELs

State-of-the-Art at 3GLS

imaging-based methods

- X-ray pinhole camera (> 15 keV)
- $-\pi$ -polarization (visible)
- coded aperture (X-rays)

interference-based methods

- double slit interferometry (visible)
- $-\pi$ -pol. with diffraction obstacle (visible)

coupling FBs with update rates of up to 100 Hz

mechanical constraints: limited vertical aperture (<< 10 mrad)

- \rightarrow difficult out-coupling of visible light
- dense lattices and small bending angles
	- \rightarrow large distance to first optical elements

Proposed Beam Profile Monitors for 4GLS

imaging-based methods

- existing methods and X-ray imaging
- Fresnel zone plates or KB mirrors (X-rays)
- compound refractive lenses (X-rays)

interference-based methods

- X-ray interferometry
- grating interferometry (X-rays)

Beam Profile Monitors – State-of-the-Art

X-Ray Pinhole Camera

 \rightarrow see presentation from Friederike Ewald (ESRF-EBS)

p**-Polarization Monitor with Diffraction Obstacle**

 \rightarrow see presentation from Åke Andersson (MAX-IV)

Single or Double Slit Interferometry

- \rightarrow T. Naito, T. Mitsuhashi, "Very Small Beam size measurement by a Reflective Synchrotron Radiation Interferometer" Phys. Rev. ST Acc. Beams **9**, 122802, December 2006
- → M. Masaki, S. Takano, "Two-Dimensional Visible Synchrotron Light Interferomerty for Transverse Beam Profile Measurement at the Spring-8 Storage Ring", Journal of Synchrotron Radiation **vol. 10**, **part 4**, July 2003, 295-302

Coded Aperture

 \rightarrow J.W. Flanagan et al., "X-ray Monitor based on Coded-Aperture Imaging for KEKB Upgrade and ILC Damping Ring" Proc. EPAC 2008, Genoa, Italy, TUOCM02, 1029

Fresnel Zone Plates

 \rightarrow H. Sakai et al., "Improvement of Fresnel Zone Plate Beam-Profile Monitor and Application to Ultralow Emittance Beam Profile Measurements", Phys. Rev. ST Acc. Beams **10**, 042801, April 2007

X-Ray Diffraction

 \rightarrow B. Yang, S. Lee, "Planned X-Ray Diffraction Diagnostics for APS-U Emittance Measurements" ARIES Topical Workshop on Emittance Measurements for Light Sources and FELs, Barcelona, Spain, January 2018

Beam Profile Monitors – New Ideas

X-Ray Beam Property Analyzer Based on Dispersive Crystal Diffraction

→ **N. Samadi**, X. Shi, C. O. Loch, M. Boege, J. Krempasky, D. Chapman, M. Stampanoni (2021), submitted to JSR

Dispersive Crystal Diffraction Monitor

Dispersive Crystal Diffraction Monitor

Data Analysis – Extracting the Source Size from the Transmission Spectrum

1 st Step: Measurement of "flat beam" (only DCM) **and "transmitted beam"** (DCM & Laue)

2 nd Step: Fitting process for known source profiles

- Normalized transmission function $I_p\left(y_i\right)$ is known from "dynamical theory" see e.g.: Zachariasen, W. H. W. Theory of X-Ray Diffraction in Crystals. (New York: John Wiley, 1945)
- Gaussian beam from bending magnet:

$$
I_{\rm s}(y) = \exp[-(y-y_{\rm s})^2/(2\sigma_y^2)]
$$

• Minimizing *err-function* by deconvolution of $I_p(y_i)$ and fitting the beam size $\sigma_{\mathbf{y}}$ to the measured data I_m (y_i)

$$
err = \sqrt{\frac{1}{n} \sum_{i=1}^{n} [I_p(y_i) * I_s(y_i) - I_m(y_i)]^2}
$$

Experimental Results – SLS Measurements

- **variation of source size** (vertical beam size) **by changing the horizontal-to-vertical coupling** (changing current in skew quadrupoles)
- **prediction of source size by model fitting using the TRACY-2 accelerator library**
- **excellent agreement of measured data and model fit**
	- → **confirms that a "dispersive crystal diffraction monitor" can measure small electron beam sizes with high sensitivity and accuracy** (< 10%)

- **DCM / Laue can be made of polished Si crystals** (crystal quality and costs are of no major concern)
- **PD line arrays may speed up sampling time** (emittance FBs may profit from high update rates)
- **resolution can be improved for 4GLS beam profile monitor requirements by using Si (3,3,3)** (…instead of Si (1,1,1) in SLS experiments)

Beam Stability and Feedback Systems

common effort

the facility

"Stability Task Force" (MAX-IV approach) implemented a common strategy for passive stability and isolation of vibrational and thermal sources over the whole facility (building, accelerator and beamlines)

This approach may only work for new facilities!

Upgrading facilities – the majority of 4GLS – may put the responsibility for electron and photon diagnostics in one hand…

2 nd Step

Implement a common feedback platform open to connect all electron and photon diagnostics systems and make use of their improved performance

Orbit & Source Point Stabilization

Example 1: Orbit Feedback System for APS-U

N. Sereno et al. IPAC 2015 & IBIC 2016; P. Kallakuri et al. IBIC 2017, J. Carwardine et al. IBIC 2018

Example 2: Fast (1 kHz) Feedback using XBPM Reading and Electron Beam Steering at DLS

C. Bloomer, G. Rehm, A. Tipper IBIC 2019

Closing Remarks and Summary

- **Many of state-of-the-art Diagnostics Systems are "ready to go" for ultra-low emittance storage rings (4GLS) – even with sufficient performance**
	- **→ BLMs can be important for commissioning and injection optimization**
	- → **new BPM** developments fulfill resolution and BW requirements
	- → *stringent drift requirements may be achieved by pilot tone calibration*
- **High resolution Profile Monitors are a challenge**
	- **→ existing designs may work for some "lucky ones"**
	- \rightarrow **many have to learn from beamline scientists on X-ray imaging**
	- → *new ideas* **are welcome and have already been tested successfully**
	- → **100 Hz to kHz update rates will allow for coupling / emittance FBs**
- **Newly designed FB Systems are open for electron and photon diagnostics monitors and improve photon beam stabilization on the sample to closed loop BW of up to 1 kHz**
- **I'm very excited to learn more about recent results from existing facilities and improvements of diagnostics systems for new (upgrade) projects**

Thank You

… for your patience and attention \odot \odot \odot

