

ESRF | The European Synchrotron

ESRF Diagnostics Group within the Accelerator and Source Division

TRANSVERSE BEAM SIZE DIAGNOSTICS AND SOME APPLICATIONS TO STORAGE RING OPERATION AND BEAM STUDIES AT THE ESRF

I.FAST Workshop 2022: Beam Diagnostics and Dynamics in Ultra-Low Emittance Rings 25-29 March 2022

Page 3 I.FAST Workshop 2022: Beam Diagnostics and Dynamics in Ultra-Low Emittance Rings | 25-29 April 2022 | Friederike Ewald

Pinholes in the ESRF Storage Ring

Pinholes in the ESRF Storage Ring

The European Synchrotron

Pinhole Implementation in Front End

ESRF

Pinholes used for

- Permanent quantitative emittance monitoring (at 1Hz, data available at 15Hz maximum)
- Permanent energy spread measurement
- Stabilisation of vertical emittance using a feedback system
- Qualitative observation of coupling, beam blow-up, instabilities
- For Beam Dynamics studies,
- Evaluation of influence of insertion devices on the stored beam
- … And (most of) this from day 1 of the ESRF-EBS commissioning...

First 2D Images from Stored Beam (6. December 2019)

Pinhole PSF

Optimum pinhole opening at 65 keV: $A_{opt} = f(E_{\chi}) = 10 \text{ um}$

=> pinhole PSF : ~ 5.2 um => corresponds to $\varepsilon_{H} = 17 \text{ pm.rad}$ $\varepsilon_{V} = 1.6 \text{ pm.rad}$

Performance

- → Deconvolution of measured beam size with contributions from diffraction at the pinhole and resolution of visible light imaging
- → An error of the emittance value is calculated from uncertainties of all input parameters (PSFs, lattice functions, magnification, data treatment,)

	Horizontal Gaps open	Horizontal Gaps closed (USM)	Vertical with blow-up (USM)	Vertical without blow-up (coupling 0.1 %)
Design value	139 pm	$^{\sim}$ 125 pm $^{(*)}$ σ $ riangle$ 14 μ m at source	10 рт σ $ riangle$ 13 μ m at source	0.125 pm σ $ riangle$ 1.4 μ m at source
Measured	\checkmark	122 – 129 pm (insertion devices, machine correction,)	✓ Fixed by emittance feedback	Down to < 1 pm difficult to determine the real <mark>absolute</mark> value
calculated systematic error	~10%	~10%	~13%	> 100%

(*) depends on exact radiated power

But relative changes < 0.1 pm can be monitored!

Vertical Emittance During Beam Delivery to Users (200 mA)

- Clear effect on the emittance, which is reduced by 0.08 pm (high frequency vibrations)
- and peak-to-peak values reduced by a about a factor of 2 (low frequency vibrations)
- Well corrected machine -> measured emittance close to design values -> is this real ?

Two pinhole source points available with

$$\eta_1 = 12,9 \ mm > \eta_2 = 0,6 \ mm$$

from

 $\sigma_{1,2}^2 = \beta_{1,2} \varepsilon_{1,2} + \eta_{1,2}^2 \delta^2$

we calculate the energy spread:

$$\delta = \sqrt{\frac{\beta_{1}\sigma_{2}^{2} - \beta_{2}\sigma_{1}^{2}}{\beta_{1}\eta_{2}^{2} - \beta_{2}\eta_{1}^{2}}}$$

Measurement of Microwave Threshold:

L. Carver et al., <u>Single Bunch collective effects in the EBS storage ring</u>, Proceedings of IPAC21

Measurement of Touschek Lifetime

At large vertical emittance values the Touschek lifetime can be supposed to be infinite or $1/\sqrt{\varepsilon_V} = 0$. During the scan $LT_{vac} = const.$ $\frac{1}{LT} = \frac{1}{LT_vac} + \frac{1}{LT_Touschek}$ and $c \propto = \frac{1}{\sqrt{\varepsilon_V}}$ ______ LT_Touschek

Courtesy of N. Carmignani & S. Liuzzo ESRF – Beam Dynamics Group

5th Synchrotron integral:

$$I_5 = \oint \frac{\mathcal{H}}{|\rho^3|} d\mathsf{s}$$

with

$$\mathcal{H} = \gamma_x D_x^2 + 2\alpha_x D_x D_x' + \beta_x D_x'^2$$

 → Dispersion in straight sections must not be neglected, otherwise the effect of undulator radiation on equilibrium emittance is over estimated.

Courtesy of Reine Versteegen ESRF - Insertion Device Group

Qualitative Observation of Beam Perturbations During Injection

ESRF

Observation of Actively Damped Beam Perturbations During Injection

2. December 2020

Exposure Time: 100us

We continuously monitor the beam blow-up (at a fixed delay) during normal operation in order to followup the beam perturbations during injection.

Position

Size

Conclusions

The pinhole camera is the workhorse of emittance measurements at the ESRF.

-> Reliable, robust, only few maintenance operations

-> resolves small vertical emittances down to a few pm.rad (few $\mu m \sigma$) (depends on implementation: β , X-ray magnification !) and relative emittance variations of < 0.1 pm.rad (σ < 1 μ m

-> serves for several other measurements as well, e.g.:

Touschek life time Energy spread vertical emittance feedback qualitative evaluation of injection perturbations

However, for beam studies, exploring the ultimate machine performances, alternative methods with better resolution should be developed.

-> tests using **X-ray lens imaging** are **in the process of being installed** (first results 2022 expected) -> later, X-ray diffraction techingues will be evaluated and tested (Fresnel diffraction from slit).

Thank you for your attention!

9