

14.03.2022

KSETA Workshop

Tau Embedding at CMS

Sebastian Brommer

Institut für Experimentelle Teilchenphysik (ETP), Fakultät für Physik

The Tau lepton

The only lepton heavy enough (1.7 GeV) to decay into hadrons

- > 65% Pions and Kaons (hadronic decay, $T_{\rm h}$)
- > 35% Electrons or Muons

+ neutrino(s)

Standard Model of Elementary Particles

The Tau lepton

The only lepton heavy enough (1.7 GeV) to decay into hadrons

- > 65% Pions and Kaons (hadronic decay, T_{h})
- > 35% Electrons or Muons

+ neutrino(s)

In **di-tau** analyses, this results in **six** final states, of which **four** are used in the analysis

Analysis with TT final states

Many analyses have final states with two T leptons

Example: H→TT

Overlap of Z-boson mass peak and Higgs mass peak due to finite detector resolution

Good description of TT backgrounds is crucial for measurements of small signals

Tau Embedding

Estimate from data of genuine TT events. This is done by replacing two muons in a data event with simulated T lepton decays on and **event by event basis**

Requires a detector which can select muon decays with a high purity and efficiency

1. Selection

Select events with at least two muons

 $p_{T,1} > 17 \text{ GeV}$ $p_{T,2} > 8 \text{ GeV}$ Opposite charged muons Tracks in the muon system $m_{\mu\mu} > 20 \text{ GeV}$

Two muons with the largest $m_{\mu\mu}^{}$ are selected

1. Selection

Select events with at least two muons

p_{T,1} > 17 GeV p_{T,2} > 8 GeV Opposite Charge Muons Tracks in the muon system

 $m_{\mu\mu}$ > 20 GeV

Event Composition		
Z→µµ	97.36 %	
QCD	0.84 %	
ttbar	0.78 %	
Z →tt	0.74 %	
Diboson	0.20%	

2. Cleaning

Remove energy deposits of the two selected muons from the event

3. Simulation

Simulate decay of two T leptons using the kinematic properties of the muons and apply **selection requirements on the visible T lepton decay products** to enrich the sample

 \rightarrow Dedicated sample for each of the four final states

3. Simulation

Simulate decay of two T leptons using the kinematic properties of the muons and apply **selection requirements on the visible T lepton decay products** to enrich the sample

 \rightarrow Filters ensure, that only decays that have a chance to end up in analyses fully propagated through all steps of the technique $_{\circ}$

Final State	1st Decay Product	2nd Decay Product
$ au_{ m h} au_{ m h}$	$p_{\rm T}^\tau > 33{\rm GeV}~\eta^\tau < 2.2$	$p_{\rm T}^\tau > 33{\rm GeV}~\eta^\tau < 2.2$
$\rightarrow \mu \tau_{\rm h}$	$p_{\rm T}^{\mu} > 18{\rm GeV}~\eta^{\mu} < 2.2$	$p_{\rm T}^\tau > 18{\rm GeV}~\eta^\tau < 2.4$
$e\tau_h$	$p_{\rm T}^{\rm e} > 22{\rm GeV}~\eta^{\rm e} < 2.2$	$p_{\rm T}^\tau > 18{\rm GeV}~\eta^\tau < 2.4$
$e\mu$	$p_{\mathrm{T}}^{\mathrm{e}} > 10\mathrm{GeV}$	$p_{\rm T}^{\mu} > 21 {\rm GeV}$
	$p_{\rm T}^{\rm e} > 21 {\rm GeV}$	$p_{\mathrm{T}}^{\mu} > 10 \mathrm{GeV}$

Combine the cleaned event with the simulated **T** decays to form a hybrid event

Combine on the level of simulated & measured detector signals Detector Geometry of t decay simulation

Ideal

Detector Geometry of data taking

Combine the cleaned event with the simulated **T** decays to form a hybrid event

For the simulation, an ideal model of the detector is used

True Conditions

Detector Geometry of T decay simulation

Detector Geometry of data taking

Combine the cleaned event with the simulated **T** decays to form a hybrid event

Most crucial in the silicon tracker

local positions of tracker modules are shifted **in O(cm)**

Full reconstruction after combination of detector signals not possible

Comparison of geometry used for simulation and for data taking

Solution: Merge on the level of reconstructed subdetector objects

Combine the **cleaned event with the simulated T decays** to form a hybrid event, where only the decay of the **two T leptons is simulated**

Combine the **cleaned event with the simulated T decays** to form a hybrid event, where only the decay of the **two T leptons is simulated**

Validation of the technique

 $\mu \! \rightarrow \! \mu$ embedding on simulated $Z \! \rightarrow \! \mu \mu$ events

Benefits compared to full event simulation

- Better description of pileup, jet related quantities
- > Fewer corrections required
- Lower computational effort since only T
 lepton decays have to be simulated
- Easily applicable also for more challenging conditions, e.g. as anticipated for HL-LHC

With HL-HLC and the anticipated high event pileup (140-200), background estimations like this one will become even more important

Conclusion

- The **T-Embedding Method** is the default method of estimating genuine TT backgrounds
- used in multiple publications of CMS over the last years
- Developed and maintained solely by ETP
- Reduced set of corrections (+ associated uncertainties) compared to full process simulation
- Embedding principle can be expanded to embed other simulated decays

3. Simulation

Simulate decay of two T leptons using the kinematic properties of the muons and apply **selection requirements on the visible T lepton decay products** to enrich the sample

 \rightarrow After 1000 trials, the acceptance rate of the filter does not increase

anymore

3. Simulation

Simulate decay of two T leptons using the kinematics of the muons and apply **cuts on the visible T lepton decay products** to enrich the sample

Validation of the technique

Validate technique by

 \rightarrow T embedding on simulated Z \rightarrow $\mu\mu$ events and compare with simulated Z \rightarrow TT events

