



# Background investigations at the KATRIN experiment using a transverse energy filter

#### **Dominic Hinz**

9th KSETA Plenary Workshop 2022 (14-16 March 2022)



#### www.kit.edu

#### Outline

- KATRIN: Experimental overview
  - MAC-E-filter principle
- Present background model
- **p**assive **T**ransverse **E**nergy **F**ilter (pTEF)
  - What is that?
  - Why is its use of interest?
- Transmission studies with Kassiopeia
- Measurement configurations
- Preliminary results
- Summary





#### **KATRIN** experiment



#### **MAC-E-filter principle**







#### **Transmission condition of background electrons**

• Beta electrons: 
$$\theta_{\max} = \arcsin\left(\sqrt{\frac{B_S}{B_{\max}}}\right)$$

Background electrons: 
$$\mu = \frac{E_t}{B}$$
 conserved  
 $\mu_{\text{init}} = \frac{E_{\text{init}} \cdot \sin(\theta_{\text{init}})^2}{B_{\text{init}}} \equiv \frac{E_{\text{final}} \cdot \sin(\theta_{\text{final}})^2}{B_{\text{final}}} = \mu_{\text{final}}$   
 $\theta_{\text{final}} = \arcsin\left(\underbrace{\sqrt{\frac{E_i}{E_f} \cdot \frac{B_f}{B_i} \cdot \sin^2(\theta_i)}}_{\leq 1}\right) \rightarrow E_t \leq \frac{B_i}{B_f} \cdot E_f$ 



If the condition is not fullfilled electrons get reflected at the pinch magnet and magnetically trapped



#### **Present background model**



- Many sources excluded: Penning discharges, external radioactivity, cosmic muons, ...
- Remaining: Radon-induced, detector background and Rydberg background
  - Rydberg background: Neutral particle mediated background highest contribution to total budget

#### **Present background model:** Rydberg background hypothesis

- Intrinsic radioactive contamination of <sup>210</sup>Pb
  - Half-life of 22 years
  - Resulting  $\alpha$ -decay <sup>210</sup>Po  $\rightarrow$  <sup>206</sup>Pb
  - Sputtering of atoms from vessel surface
- Neutral particles (atoms) as electron carrier
- Excited atoms: binding energy  $E_{\text{bind}} \propto \frac{1}{n^2}$ 
  - High n: very low energy
  - Black-body radiation photons ~ 70 meV
  - Enough energy to ionise
- Background electrons with small meV energies
  - Guided to detector by electro-magnetic field
  - No distinguishability of background and beta electrons at detector



# What is meant by a pTEF? What was our aim?

- passive Transverse Energy Filter
  - Micro-structured unit
  - Blocking of electrons which interact with the filter
  - Not useful for neutrino mass measurements
  - Background investigations only





- What is the aim of investigations with a pTEF?
  - Proof of concept for such a type of filtering device
    - Future silicon or scintilliating aTEF concepts
  - Probing the Rydberg background scenario
    - Polar angular distribution
    - Transmission as a function of *U*<sup>0</sup> and *B*-field
    - $\rightarrow$  Energy of background electrons
  - Are there eV electrons? (deduced by former PhD students)

# **pTEF** installation

- Gold plate with microscale honeycomb structure
  - Side length 100µm
  - Wall thickness 8µm
  - Depth 250µm
  - Open-area-ratio (OAR) 91.4%
- Specific holding structure mounted directly on FPD wafer flange
- Distance to FPD ~11cm
  - pTEF placed at center of detector magnet
  - homogeneous, well-defined field B<sub>det</sub>
  - Smallest impact of possible misalignment of pTEF with respect to magnetic field lines
- Measurement phase Dec '21 to Jan '22







#### **Transmission studies with Kassiopeia**

- Honeycomb structure implemented in Kassiopeia
- Simulation of electrons with varying polar angle  $\theta$  relative to  $\vec{B}$ 
  - Determine final positions of track: a) front surface, b) within hexagons or c) behind
  - Different electron energies (12.1, 18.6 and 34.1 keV)
- Final polar angle at pTEF/detector  $\theta_{\text{final}}$  as function of of  $B_i$ ,  $B_f$ ,  $E_i$  and  $E_f$ :
  - Using the invariance of the magnetic moment

• 
$$\theta_{\text{final}} = \arcsin\left(\sqrt{\frac{E_{\text{i}}}{E_{\text{f}}} \cdot \frac{B_{\text{f}}}{B_{\text{i}}} \cdot \sin^2(\theta_{\text{i}})}\right)$$

- Transmission ξ through pTEF
  - Nearly linear with  $\theta_{\text{final}}$
  - $\xi = 0$  for  $\theta > 43^\circ$
  - $\xi < 1 \text{ due to OAR}$
  - Most important quantity for transmission analysis







#### **Measurement configurations**

• 
$$\theta_{\text{final}} = \arcsin\left(\sqrt{\frac{E_{\text{i}}}{E_{\text{f}}} \cdot \frac{B_{\text{f}}}{B_{\text{i}}} \cdot \sin^2(\theta_{\text{i}})}\right)$$

- Investigation of background for different electromagnetic fields
  - 2.7, 5.0, 8.0, 12.0, 17.0 G with non-centered potential
    - Beneficial for background investigation
    - Maximal rate: nearly whole flux tube mapped
    - Larger magnetic field  $\rightarrow$  smaller flux tube volume
    - Variation of *B*<sub>i</sub>
  - 5.0G central potential (NAP) and standard SAP
  - Retarding potential  $U_0$ : -12.1kV, -18.6 kV and -34.1 kV
    - Variation of  $E_{\rm f}$
- Further special measurements





# **Results: Measured background fraction**

- Value of interest: transmitted background fraction  $\psi = \frac{R_{behind pTEF}}{R_{before pTEF}}$
- directly depends on  $\theta_{\text{final}}$  which is connected to  $\overline{B_i}$  and  $U_0$  via  $E_f$
- Background fraction increases
  - with magnetic field
  - (with high voltage)
  - SAP compatible to 8G to 12G fields
- Measured transmission significantly smaller than in original Rydberg hypothesis
  - meV-scale electrons would be transmitted by 70 – 85 % !!
  - ψ ~ 35% 60%
  - Do we have higher energetic electrons ?
    - If yes, where do they come from ?
    - If no, what diminishes the transmission ?



#### **Results: Ringwise background fraction**







- Combine pixel in rings for radial effects:
  - Different generation mechanism of electrons
- Statistical variations on the ringwise representation
- Compatible with flat transmission over whole flux tube
  - ► This does not reflect the radial background rate dependence!
  - Hint to at least 2 electron generation mechanisms
    - Classical Rydberg meV electrons
    - Others: higher energetic to explain the measured background fraction



#### **Results: Background fraction over magnetic field**

- Combine transmission probability  $\xi$ with  $\theta_{\text{final}}$  to perform a fit with transverse energy as parameter
- $\psi(E_t; c) = \xi(\theta_{\text{final}}(B_i, B_f, E_t, E_f)) + c$ •  $\theta_{\text{final}} = \arcsin\left(\sqrt{\frac{E_t}{E_f} \cdot \frac{B_f}{B_i}}\right)$ •  $E_t = E_i \cdot \sin^2(\theta_i)$
- $B_{\rm f} = 2.5 \, {\rm T} \, {\rm (fix)}$
- B<sub>i</sub> = ring-wise fields from simulation







#### **Results: Background fraction over magnetic field**

- Fit delivers transverse energy of ~450 meV
  - Isotropic directions: mean( $\sin^2(\theta_i)$ )  $\approx 0.66$
  - Initial Energy: ~680 meV
- velocity of generated electrons may not be isotropically distributed
  - If electrons start in direction of atom
  - mean(sin<sup>2</sup>( $\theta_i$ ))  $\approx 0.80$
  - → initial energy: ~560 meV
  - Depends on model & simulations
- Data also compatible with smaller transverse energies ~100 meV with offset to lower transmission
  - Mechanism of reduction needs to be investigated
  - Maybe backscattering from detector explains this observation
  - Combination of low and higher energetic e<sup>-</sup>
- Several hundred meV are also not described by <u>classical Rydberg model</u>







#### **Summary**

- Analysis of the pTEF Campaign is still ongoing
  - Detector background and alignment is taken into account
  - Alignment problematic since pTEF itself hinders investigation directly
  - -12.1 & -34.1 kV measurements and simulation work in progress
- Fit of data at -18.6 kV reveals best fit electrons with  $E_t \sim 450$  meV
  - Fit  $\psi(E_t; c)$  is applicable to describe the data
  - Consider different than isotropic directions
- Data also compatible with electrons of ~100 meV with reduced transmission due to unknown reason
  - Backscattering effects as possible candidate
- Extension on Rydberg background model
  - How can higher energetic electrons be generated in agreement with our observations?
    - Electromagnetic fields, pressure, temperature, ...
    - Doppler effect due to atoms motion
  - Beyond H-atom like description of ionisation by BBR
    - Excited oxygen atoms
    - Doubly-excited states
    - Autoionisation

# Thank you for your attention









Institute for Astroparticle Physics (IAP)

#### Some dependencies of transmission probability



Reduced background due to smaller flux tube volume

Magnetic and electric inhomogeneities



#### pTEF



# **Alignement problematic**

- Misalignment can be seen in pixelwise rate distribution.
- No misalignment each pixel per Ring sees same rate (step-like)
- In pTEF Campaign misalignment hidden due to pTEF
- Compare to KNM Background data
  - Sinusodial effect on rate on pixel in ring
  - Due to lateral shifts of detector on the mm-range
- For FPD/pTEF pixel selection
  - Strong differences on rate per ring observable
  - Down to 80% of rate on pTEF pixels in ring
  - Need to correct that, based on former measurements





## Polar angle distributions of starting positions (5.0G asym.)

#### Isotropic directions

•  $\rightarrow$  mean(sin<sup>2</sup>( $\theta_i$ ))  $\approx$  0.66

- From Rydberg paths simulation
- Atoms starting from surface crossing sensitive fluxtube
- Mean polar angle within ring volume
- $\rightarrow$  mean(sin<sup>2</sup>( $\theta_i$ ))  $\approx$  0.80

