

Search for anomalous couplings in the hadronic decay channel of Vector Boson Scattering at CMS

KSETA workshop, Durbach 2022 Max Neukum

www.kit.edu

Vector Boson Scattering at the LHC

- VVjj final state with V=W,Z
- Contains triple and quartic gauge couplings (QGC)
- Leading Order: EW (α_{EW}^{6}), QCD ($\alpha_{EW}^{4}\alpha_{S}^{2}$), and inteference ($\alpha_{EW}^{5}\alpha_{S}$)

Theoretical motivation

Hadronic decay channel

- Hadronic decays of V=W,Z have the largest Branching Ratio
- The final state is fully reconstructable, since there are no neutrinos
- Boosted regime:

Single fat jet

- No neutrinos, no charged leptons
- Main challenges:
 - Very large QCD multijet background
 - Small cross-section compared to background processes

Effective Field Theory approach

$$\mathcal{L} = \mathcal{L}_{SM} + \underbrace{\sum_{i} \frac{f_{i}^{(6)}}{\Lambda^{2}} \mathscr{O}_{i}^{(6)}}_{i} + \underbrace{\sum_{i} \frac{f_{i}^{(8)}}{\Lambda^{4}} \mathscr{O}_{i}^{(8)}}_{i} + \dots$$

- Include higher (mass-) dimension operators
- Integrate out higher energy effects \rightarrow truncate series
- Theory invalid beyond Λ
- aTGC: mostly dim-6
- aQGC: dim-8

Institute of Experimental Particle Physics, KIT

Effective Field Theory approach

$$\mathcal{L} = \mathcal{L}_{SM} + \underbrace{\sum_{i} \frac{f_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}}_{i} + \underbrace{\sum_{i} \frac{f_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)}}_{i} + .$$

- Currently implemented: only dim-6 or dim-8
- aQGC: dim-8

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{L}_{S,0},\mathcal{L}_{S,1}$	Х	Х	Х	0	0	0	0	0	0
$\mathcal{L}_{M,0},\mathcal{L}_{M,1},\!\mathcal{L}_{M,6},\!\mathcal{L}_{M,7}$	Х	Х	Х	Х	Х	Х	Х	0	0
$\mathcal{L}_{M,2}$, $\mathcal{L}_{M,3}$, $\mathcal{L}_{M,4}$, $\mathcal{L}_{M,5}$	0	Х	Х	Х	Х	Х	Х	0	0
$\mathcal{L}_{T,0}$, $\mathcal{L}_{T,1}$, $\mathcal{L}_{T,2}$	Х	Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,5}$, $\mathcal{L}_{T,6}$, $\mathcal{L}_{T,7}$	0	Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,9}$, $\mathcal{L}_{T,9}$	0	0	Х	0	0	Х	Х	Х	Х

[O. Éboli et al.]

Effective Field Theory approach

$$\mathcal{L} = \mathcal{L}_{SM} + \underbrace{\sum_{i} \frac{f_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}}_{i} + \underbrace{\sum_{i} \frac{f_{i}^{(8)}}{\Lambda^{6}} \mathcal{O}_{i}^{(8)}}_{i} + \underbrace{\sum_{i} \frac{f_{i}^{(8)}}{\Lambda^{6}} \mathcal{O}_{i}^{(8)}}_{i}$$

- aTGC: mostly dim-6
- Recent study suggests 15 dim-6 operators for VBS [VBSCAN-PUB-05-21] $Q_{Hl}^{(1)} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)^{(1)}$
- For now: focus on 3 operators, that only affect vector bosons
- Warsaw basis

$$\begin{split} Q_{Hl}^{(1)} &= (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{l}_{p}\gamma^{\mu}l_{p}) & Q_{Hl}^{(3)} &= (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{l}_{p}\sigma^{i}\gamma^{\mu}l_{p}) \\ Q_{Hq}^{(1)} &= (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{q}_{p}\gamma^{\mu}q_{p}) & Q_{Hq}^{(3)} &= (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{q}_{p}\sigma^{i}\gamma^{\mu}q_{p}) \\ Q_{ll}^{(1)} &= (\bar{l}_{p}\gamma_{\mu}l_{p})(\bar{l}_{r}\gamma^{\mu}l_{r}) & Q_{ll}^{(3)} &= (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{q}_{p}\sigma^{i}\gamma^{\mu}q_{p}) \\ Q_{qq}^{(1)} &= (\bar{q}_{p}\gamma_{\mu}q_{p})(\bar{q}_{r}\gamma^{\mu}q_{r}) & Q_{qq}^{(1)} &= (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{r}\gamma^{\mu}q_{p}) \\ Q_{qq}^{(3)} &= (\bar{q}_{p}\gamma_{\mu}\sigma^{i}q_{p})(\bar{q}_{r}\gamma^{\mu}\sigma^{i}q_{r}) & Q_{qq}^{(3,1)} &= (\bar{q}_{p}\gamma_{\mu}\sigma^{i}q_{r})(\bar{q}_{r}\gamma^{\mu}\sigma^{i}q_{p}) \\ Q_{HD} &= (H^{\dagger}D_{\mu}H)(H^{\dagger}D^{\mu}H) & Q_{HU} &= (H^{\dagger}H)\Box(H^{\dagger}H) \\ Q_{HWB} &= (H^{\dagger}\sigma^{i}H)W_{\mu\nu}^{i}B^{\mu\nu} & Q_{HW} &= (H^{\dagger}H)W_{\mu\nu}^{i}W^{i\mu\nu} \end{split}$$

Summary of a previous study

100 - 37 - 41

- QCD Fit in control region, with transfer function: $(p_0/(x/\sqrt{s})^{p_1})$
- For dim-8 operators only: comparable limits with 2016 data

observed asymptotic 95% CL_s exclusion limits [1eV -]							
aQGC parameter	literature limits	VV					
f_{S0}/Λ^{-4}	(-2.7, 2.7)	-16, 18					
f_{S1}/Λ^{-4}	(-3.4, 3.4)	-30, 30					
f_{M0}/Λ^{-4}	(-0.69, 0.7)	-3, 3					
f_{M1}/Λ^{-4}	(-2.0, 2.1)	-3.7, 3.7					
$\int f_{M2}/\Lambda^{-4}$	(-8.2, 8.0)	-5, 5					
f_{M3}/Λ^{-4}	(-21, 21)	-8, 8					
f_{M4}/Λ^{-4}	(-15, 16)	-8, 8					
f_{M5}/Λ^{-4}	(-25, 24)	-13, 13					
f_{M6}/Λ^{-4}	(-1.3, 1.3)	-6, 6					
f_{M7}/Λ^{-4}	(-3.4, 3.4)	-6.4, 6.4					
f_{T0}/Λ^{-4}	(-0.12, 0.11)	-0.2, 0.2					
f_{T1}/Λ^{-4}	(-0.12, 0.13)	-0.18, 0.18					
f_{T2}/Λ^{-4}	(-0.28, 0.28)	-0.43, 0.43					
$\int f_{T5}/\Lambda^{-4}$	(-0.70, 0.74)	-0.7, 0.7					
f_{T6}/Λ^{-4}	(-1.6, 1.7)	-0.91, 0.91					
f_{T7}/Λ^{-4}	(-2.6, 2.8)	-1.5, 1.5					
f_{T8}/Λ^{-4}	(-0.47, 0.47)	-0.73, 0.73					
f_{T9}/Λ^{-4}	(-1.3, 1.3)	-1.6, 1.6					

Signal Topology

VV Selection: AK8

- $p_{_{T}} \ge 200 \text{ GeV}, |\eta| < 2.5$
- 60 GeV < m_v < 215 GeV</p>
- DNN based boosted jet tagger

VBS Selection: AK4

- $p_{T} \ge 50 \text{ GeV}$
- $\Delta \eta(j_1, j_2) > 3.0$
- $m(j_1, j_2) \ge 500 \text{ GeV}$

- Control Region: fail VBS Selection
- → Data taken in 2016 2018 ("full Run-2")

Backgrounds

Analysis strategy

à la CMS-B2G-18-002

Signal modeling

$$N \propto |A| = |A_{SM}|^{2} + \sum_{\alpha} \frac{C_{\alpha}}{\Lambda^{2}} \cdot 2 \Re (A_{SM} A_{Q_{\alpha}}^{\dagger}) + \sum_{\alpha\beta} \frac{C_{\alpha} C_{\beta}}{\Lambda^{4}} \cdot (A_{Q_{\alpha}} A_{Q_{\beta}}^{\dagger})$$

Interference SM-EFT Pure EFT (quadratic)

UFO models as input to MadGraph:

- Dim6: SMEFTsim Implements the Warsaw basis
- Dim8: "Eboli model" includes some operators
- SM yield is scaled with a 2nd degree polynomial
- Quadratic fit describes signal scaling perfectly
- Scaling is more dominant in higher mass bins arXiv:1709.06492 arXiv:2004.05174

ratio for m_{zz} in [1000, 1200) GeV

Signal parametrization

- Parametrize m_{v1}, m_{v2} with a **double-sided Crystal Ball** function
- For m_{yy} use the envelope of SM² + aQGC² + 2 * SM * aQGC

Modeling the QCD background

- Derive 3D templates from MC
- Take correlations (m_{V1.2} | m_{VV}) into account
- Calculate detector response for $m_{V1,2}$ and $m_{VV} \rightarrow$ scale and resolution
- Each event contributes with the 1D/2D gaussian kernel

Karlsruhe Institute of Technology

Nonresonant projections

- Projections of 3D template on each axis
- Similarly: conditional PDFs for resonant backgrounds
- Further major backgrounds are: V+jets, ttbar, single top and VV production

Resonant background

Max Neukum

Institute of Experimental Particle Physics, KIT

First fit results

- Expected CL limits for different values of the EFT parameter
- Shown are limits at 95% CL
- Values below the horizontal line can be excluded
- 95% CL limit on c_{HBox}: [-5.92, 5.83]
- Next steps:
 - repeat for other operators and expand to full Run2
 - Include all systematic uncertainties —

Summary

- Search for anomalous couplings in hadronic decay channel of VBS
- Large branching ratio but also large background
- Simultaneous Fit of backgrounds and signal in 3D
 - \rightarrow suppress large QCD background

Outlook

- Final Fit shows already comparable limits to existing analyses
- Include full Run2 (2016 2018) statistics
- Full systematics will be included
- 2D limits, Unitarity restoration

Backup

Institute of Experimental Particle Physics, KIT

CMS: production cross sections

EFT Operators

$$\mathcal{L}_{S,1} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \times \left[\left(D_{\nu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]$$
(6)

$$\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$
(8)
(9)

$$\mathcal{L}_{M,2} = [B_{\mu\nu}B^{\mu\nu}] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right]$$
(10)

$$\mathcal{L}_{M,3} = \begin{bmatrix} B_{\mu\nu}B^{\nu\beta} \end{bmatrix} \times \begin{bmatrix} (D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \end{bmatrix}$$
(11)

$$\mathcal{L}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} W_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu}$$
(12)

$$\mathcal{L}_{M,5} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu}$$
(13)

$$\mathcal{L}_{M,6} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right]$$
(14)

$$\mathcal{L}_{M,7} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$$
(15)

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$
(16)

$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] \times \operatorname{Tr} \left[W_{\mu\beta} W^{\alpha\nu} \right]$$
(17)

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$
(18)

$$\mathcal{L}_{T,5} = \operatorname{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right] \times B_{\alpha\beta}B^{\alpha\beta}$$
(19)

$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$
(20)

$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$
(21)

$$\mathcal{L}_{T,8} = B_{\mu\nu}B^{\mu\nu}B_{\alpha\beta}B^{\alpha\beta} \tag{22}$$

$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$
(23)

[O. Eboli et al]

Detector response: Gaussian kernels

- For each bin in generated p_T: derive jet mass scale and resolution as m_{jet}^{reco} / m_{jet}^{gen}
- Same for dijet mass
- Instead of an event, fill full 1D/2D gaussian kernel

$$\kappa(m_{jet}, m_{jj}) = \frac{w_i}{2\pi r_{m_{jet}, i} \cdot r_{m_{jj}, i}} \exp\left(-\frac{1}{2}\left(m_{jj}\frac{1 - s_{m_{jj}, i}}{r_{m_{jj}, i}}\right)^2 - \frac{1}{2}\left(m_{jet}\frac{1 - s_{m_{jet}, i}}{r_{m_{jet}, i}}\right)^2\right)$$

Central Jets and PS

In VBS reduced central jet activity

Signal modeling

$$N \propto |\mathcal{A}|^2 = |\mathcal{A}_{\rm SM}|^2 + \sum_{\alpha} \frac{c_{\alpha}}{\Lambda^2} \cdot 2\Re(\mathcal{A}_{\rm SM}\mathcal{A}_{Q_{\alpha}}^{\dagger}) + \sum_{\alpha,\beta} \frac{c_{\alpha}c_{\beta}}{\Lambda^4} \cdot (\mathcal{A}_{Q_{\alpha}}\mathcal{A}_{Q_{\beta}}^{\dagger})$$

Interference SM-EFT Pure EFT (quadratic)

- MadGraph5 + UFO model + reweighting
- SMEFTsim Implements the Warsaw basis in MadGraph
- SM yield is scaled with a 2nd degree polynomial in each m_{vv} bin
- Quadratic fit describes signal scaling perfectly
- Scaling is more dominant in higher mass bins

Signal modeling (II)

Signal modelling uses MadGraph LO Reweigthing

$$W^{new} = \frac{\left|M_{new}\right|^2}{\left|M_{orig}\right|^2} W_{orig}$$

- Start with f_i = 0 except one parameter. Starting with non-SM scenario enhances statistics
- Use MadGraph reweighting to apply a weight along f_i-axis for every event
- For 2D limits, this has to be a 2D-grid.

