

A Novel Implementation of the Goertzel Filters Bank for Multitonal Signals Channelization in Experimental Physics Luciano Ferreyro

INSTITUTE FOR DATA PROCESSING AND ELECTRONICS (IPE) IN DETECTION TECHNOLOGIES AND ASTROPARTICLES (ITeDA)

KIT – The Research University in the Helmholtz Association

Outlook

Introduction:

– LTDs: Low Temperature Detectors

Hardware R&D:

- Proposed Read-Out Electronics
- Hardware Prototyping Platforms

Digital Backend

Preliminary Results

Summary

The QUBIC Telescope at the "Integration Lab." in Salta Province, Argentina.

QUBIC Telescope's (one) focal plane sensor array

2/31 Mar. 14 – Mar. 16, 2022 Mar. 16, 2022 Mar. 16, 2002 Mar. 16, 2001 Mar. 16, 2002 Mar. 16, 2002 Mar. 16, 2002 Mar. 16, 2008 Mar. 16,

- **MKID**: Microwave Kinetic Inductance Detector, can be used as calorimeters or bolometers,
- **MMC**: Metallic Magnetic Calorimeter,
- **TES:** Transition Edge Sensor, can be used as bolometers or calorimeters.

Can be read in two different ways: **T**ime-**D**omain **M**ultiplexing (**TDM**) scheme or in **F**requency-**D**omain **M**ultiplexing (**FDM**)

- (1) Yates et al., arXiv: 1107.4330
- (2) Kempf et al., AIP Advances, 2017
- (3) Marnieros, S. et al., J Low Temp. Phys, 2020

How to read them?

How to read them? \rightarrow Microwave SQUID Multiplexers⁽¹⁾

- Sensors coupled to a resonance circuit $→$ FDM is possible,
- Resonance at some defined *f*.

(1) Kempf et al., AIP Advances, 2017

How to read them? \rightarrow Microwave SQUID Multiplexers⁽¹⁾

- Sensors coupled to a resonance circuit \rightarrow FDM is possible,
- Resonance at some defined *f*.

… we need to introduce a signal component in the resonator frequency and read it back!.

(1) Kempf et al., AIP Advances, 2017

How to read them? \rightarrow Microwave SQUID Multiplexers⁽¹⁾

- We generate some multitonal signal (comb signal) with frequencies at each resonator to be read,
- And then we read them back and process the data.

(1) Kempf et al., AIP Advances, 2017

Read-Out Electronics

QUBIC requirements:

- Nº of Ch. (sensors): 1024 (per focal plane),
- Channel spacing: 4 MHz,
- Signal bandwidth: $<$ 200 kHz.

ECHo requirements:

- N° of Ch.: 6000.
- Channel spacing: 10 MHz,
- Signal bandwidth: -1.6 MHz

Using commercial instruments:

• R&S FSW, 5 GHz BW Spectrum Analyzer → Price: ~ 200.000 euros, (and then we need to solve the storage of 5 GHz acquisition, develop scripts, software, and even though it's not *real-time processing*).

Radio Frequency Front-End (RF-FE)

Main goal:

- perform the up-conversion (from $\sim 0 -$ 4 GHz to -4 GHz -8 GHz) and downconversion (the way back), maintaining a high signal-to-noise ratio (SNR) in both ways adapting the signals to and from the cryostat.
- Merge/split the spectrum from each mixing stage (which come from and goes towards to, the conversion chips: ADCs and DACs)

UNSAM

- Converters board: AD-DAQ2FMC (from Analog Devices):
	- ADC: AD9680 @ 1 GSPS (14 bits)
	- DAC: AD9144 @ 2.8 GSPS (16 bits)
- Xilinx ZCU102:
	- Zynq UltraScale+ MPSoC (9eg)

AD-DAQ2FMC board

- ADCs decimation capabilities: x4
	- From 1 GSPS \rightarrow 4 channels @ 250 MSPS
- Final design:
	- $-$ 4 channels x 5 ADCs = 20 channels $@$ 250 MSPS

100 $200\,$ $-100\,$ Ω -200 Frequency [MHz] • Generated multitonal signal (I/Q modulated) with equally spaced (4 MHz) components from -250 MHz to 0 Hz

Local Oscillator

-60

x_{out_I}

Digital Electronics Back-End (DE-BE)

PL Side

• Implemented 8 DDCs to cover the whole input

Frequency [MHz]

I/Q modulation - After FPGA DDC (2nd decimation stage) - All Channels Input: comb signal

● The Goertzel Filter(1)(2) allows as to calculate one *desired* **bin** of the Discrete Fourier Transform (DFT)

(1) "An Algorithm for the Evaluation of Finite Trigonometric Series", Goertzel G., 1958, AMM, 65(1): 34-35.

(2) Sysel, P., Rajmic, P. Goertzel algorithm generalized to non-integer multiples of fundamental frequency. EURASIP J. Adv. Signal Process. 2012, 56 (2012)

- The Goertzel Filter(1)(2) allows as to calculate one *desired* **bin** of the Discrete Fourier Transform (DFT),
- It's conformed of the last 3 marked modules

- (1) "An Algorithm for the Evaluation of Finite Trigonometric Series", Goertzel G., 1958, AMM, 65(1): 34-35.
- (2) Sysel, P., Rajmic, P. Goertzel algorithm generalized to non-integer multiples of fundamental frequency. EURASIP J. Adv. Signal Process. 2012, 56 (2012)

Goertzel Mag.& DDC JESD204B Window Filter **ADC** Phase $(\downarrow \text{R8})$ Rx Function Engine Processor

PL Side

- The Goertzel Filter(1)(2) allows as to calculate one *desired* **bin** of the Discrete Fourier Transform (DFT),
- It's conformed of the last 3 marked modules

- (1) "An Algorithm for the Evaluation of Finite Trigonometric Series", Goertzel G., 1958, AMM, 65(1): 34-35.
	- (2) Sysel, P., Rajmic, P. Goertzel algorithm generalized to non-integer multiples of fundamental frequency. EURASIP J. Adv. Signal Process. 2012, 56 (2012)

- The Goertzel Filter(1)(2) allows as to calculate one *desired* **bin** of the Discrete Fourier Transform (DFT),
- It's conformed of the last 3 marked modules

UNSAM

• Flux-Ramp Modulation method

(Mates, J.A.B. et al, J Low Temp. Phys 167, 2012)

- (1) "An Algorithm for the Evaluation of Finite Trigonometric Series", Goertzel G., 1958, AMM, 65(1): 34-35.
- (2) Sysel, P., Rajmic, P. Goertzel algorithm generalized to non-integer multiples of fundamental frequency. EURASIP J. Adv. Signal Process. 2012, 56 (2012)

F

Digital Electronics Back-End (DE-BE)

Mag.& Goertzel DDC JESD204B Window Filter **ADC** Phase $(\downarrow \text{R8})$ Rx Function Engine Processor

PL Side

- The Goertzel Filter(1)(2) allows as to calculate one *desired* **bin** of the Discrete Fourier Transform (DFT),
- It's conformed of the last 3 marked modules

 $GF₁$

 $GF₃$ GF_N

(2) Sysel, P., Rajmic, P. Goertzel algorithm generalized to non-integer multiples of fundamental frequency. EURASIP J. Adv. Signal Process. 2012, 56 (2012)

 0.0

2.5

Amplitude [dB]

 -100

Goertzel Filter Channelizer

Flat-Top window

7.5

Frequency [MHz]

 5.0

10.0

12.5

15.0

Amplitude [dB]

 -100

 0.0

2.5

Digital Electronics Back-End (DE-BE)

- The Goertzel Filter(1)(2) allows as to calculate one *desired* **bin** of the Discrete Fourier Transform (DFT),
- It's conformed of the last 3 marked modules,

Goertzel Filter Channelizer

Dolph-Chebyshev window

7.5

Frequency [MHz]

 5.0

 10.0

12.5

15.0

• Window functions allows as to improve or modify the way we retrieve (or *see*) the spectrum, in particular for **channelization procedures**: isolation between channels and flatness within bandwidth of interest.

Preliminary Results

Resource consumption of main modules

Current benchmark:

- logic@250 MHz \rightarrow ~1 DSP Slice / channel (tone)
- logic@500 MHz \rightarrow ~0.5 DSP Slice / channel (tone) (will be investigated)

Preliminary Results

Goertzel Filter Channelizer

Perfomance with different window functions:

- Implemented firmware: 4 DDCs with 1 G.F. module \rightarrow 4 tones to be processed in parallel,
- Frequency sweep: -61 MHz to 61 MHz $(step = 0.05 MHz)$,
- 2 window functions:
	- Dolph-Chebyshev,
	- Flat-Top.
- 2 different window sizes:
	- 256 samples,
	- 128 samples.

Preliminary Results

Summary

The combination of the two previous points implement a **highly flexible and**

the storage afterwards,

Current prototypes showed very good preliminary results

Control software based on ServiceHub⁽¹⁾ is under development,

● Proof of principle **successfully built** and now is under **testing**,

 \rightarrow will considerably reduce DSP Slices.

scalable approach, that also allows to double (or more) the density in one or any desired band without the necessity of **re-synthesis and re-implement** the design (a task that for large design usually takes several hours).

● The combination of two levels of DDC stages allows the approach to give a **first level** of flexibility in order to attack the regions where the *information really is*,

● Adding the Goertzel Filter (bank) adds a **second level** of flexibility in order to only retrieve the desired components from the input signal, reducing the requirements in

"Versatile Configuration and Control Framework for Real time Data Acquisition Systems", N. Karcher et al, IEEE Transactions on Nuclear Science, 2021

– Update the DE-BE design to work at 500 MHz in critical parts (FIR and GF)

Vielen Dank :)