

Development of a new generation of silicon detectors for particle physics experiment

Ekaterina Trifonova

www.kit.edu

Outline

- Introduction to silicon detectors
 - Working principles
 - Sensor technologies
 - Recent developments
- Motivation for the research
 - Requirements of future pixelated detectors
- Latest development in silicon sensors
 - Low Gain Avalanche Diodes (LGADs)
 - Monolithic sensors

Introduction to silicon detectors

Silicon detectors

- Tracking detectors provide necessary information on the position and time of traversing particles
- The quality of the track reconstruction is crucial
- A widely used type of inner tracking detectors is a solid-state detector
- Silicon is today's material of choice for high-precision detectors and offers a high grade of engineering possibilities

But how does silicon detector work?

* Illustration from CERN Document Server

The ALICE detector, CERN

CMS Experiment at the LHC, CERN Data recorded: 2017-Oct-29 19:22:01.746752 GMT Run / Event / LS: 305840 / 1047490792 / 575

Detection mechanism of silicon sensor

- Depletion region of p-n-junction works as detection region
- The traversing ionizing particle generates in the depleted bulk electron hole pairs which are then separated by the applied bias voltage
- Number of free charge carriers created by charge particle should be sufficient in order to create a detectable signal
- To get a more efficient detector reverse-bias is used

penetrated by minimum ionising particle

+

V

Silicon sensor technologies

Hybrid sensor where sensor and readout chip (ROC) are separated

- Allows to develop sensor and (ROC) separately
- Interconnection is done using bump-bonding or wire-bonding technics
- Challenge is to create reliable interconnection \rightarrow expensive assembly

- Monolithic sensor where read-out functionality is integrated into the sensor die
- Can be produced in large volumes in short production time
- A lot of different technologies, such as HV-CMOS, MAPS, DEPFET, SOI etc.

Recent silicon developments

7 9th KSETA Plenary Workshop 2022, 14 - 16 March

E. Trifonova

Motivation for the research

Facility	FCC-ee	ILC	CLIC
Spatial resolution [µm]	~5	<3	<3
Thickness of tracker material [µm]	~100	~100	~100
Hit rate [10 ⁶ s ⁻¹ cm ⁻²]	~20	~0.2	1
Power dissipation [W/cm ²]	0.1-0.2	0.1	0.1
Pixel size [µm ²]	25 x 25	25 x 25	25 x 25
Time resolution [ps]	<50	<50	<50

Facility	FCC-ee	ILC	CLIC
Spatial resolution [µm]	~5	<3	<3
Thickness of tracker material [µm]	~100	~100	~100
Hit rate [10 ⁶ s ⁻¹ cm ⁻²]	~20	~0.2	1
Power dissipation [W/cm ²]	0.1-0.2	0.1	0.1
Pixel size [µm ²]	25 x 25	25 x 25	25 x 25
Time resolution [ps]	<50	<50	<50

Small pixels with extremely high position accuracy \rightarrow Monolithic pixel sensors

Facility	FCC-ee	ILC	CLIC
Spatial resolution [µm]	~5	<3	<3
Thickness of tracker material [µm]	~100	~100	~100
Hit rate [10 ⁶ s ⁻¹ cm ⁻²]	~20	~0.2	1
Power dissipation [W/cm ²]	0.1-0.2	0.1	0.1
Pixel size [µm ²]	25 x 25	25 x 25	25 x 25
Time resolution [ps]	<50	<50	<50

Small pixels with extremely high position accuracy \rightarrow Monolithic pixel sensors

• Low power consumption \rightarrow Monolithic pixel sensors

Facility	FCC-ee	ILC	CLIC
Spatial resolution [µm]	~5	<3	<3
Thickness of tracker material [µm]	~100	~100	~100
Hit rate [10 ⁶ s ⁻¹ cm ⁻²]	~20	~0.2	1
Power dissipation [W/cm ²]	0.1-0.2	0.1	0.1
Pixel size [µm ²]	25 x 25	25 x 25	25 x 25
Time resolution [ps]	<50	<50	<50

Small pixels with extremely high position accuracy \rightarrow Monolithic pixel sensors

- Low power consumption \rightarrow Monolithic pixel sensors
- **High time resolution** \rightarrow Hybrid pixel

Facility	FCC-ee	ILC	CLIC
Spatial resolution [µm]	~5	<3	<3
Thickness of tracker material [µm]	~100	~100	~100
Hit rate [10 ⁶ s ⁻¹ cm ⁻²]	~20	~0.2	1
Power dissipation [W/cm ²]	0.1-0.2	0.1	0.1
Pixel size [µm ²]	25 x 25	25 x 25	25 x 25
Time resolution [ps]	<50	<50	<50

Small pixels with extremely high position accuracy \rightarrow Monolithic pixel sensors

- Low power consumption \rightarrow Monolithic pixel sensors
- **High time resolution** \rightarrow Hybrid pixel
- **High radiation tolerance** \rightarrow Hybrid pixel

High-accuracy 4D particle trackers with Resistive Silicon Detectors (AC-LGADs) Roberta Arcidiacono, TWEPP 2021

Facility	FCC-ee	ILC	CLIC
Spatial resolution [µm]	~5	<3	<3
Thickness of tracker material [µm]	~100	~100	~100
Hit rate [10 ⁶ s ⁻¹ cm ⁻²]	~20	~0.2	1
Power dissipation [W/cm ²]	0.1-0.2	0.1	0.1
Pixel size [µm ²]	25 x 25	25 x 25	25 x 25
Time resolution [ps]	<50	<50	<50

Small pixels with extremely high position accuracy \rightarrow Monolithic pixel sensors

- Low power consumption \rightarrow Monolithic pixel sensors
- **High time resolution** \rightarrow Hybrid pixel
- **High radiation tolerance** \rightarrow Hybrid pixel

What can be next?

High-accuracy 4D particle trackers with Resistive Silicon Detectors (AC-LGADs) Roberta Arcidiacono, TWEPP 2021

Latest development in silicon sensors

Low Gain Avalanche Diode (LGAD)

- Thin (<5 μm) and highly doped (10¹⁶ cm⁻³) multiplication (gain) layer
- High electric field in the multiplication layer
- LGADs have intrinsic modest internal gain (10-50)
- Time resolution < 30 ps</p>
- Junction Termination Extension (JTE) is used between pixels to prevent premature breakdown and high electric field
- P-stop used as isolation between pixels
- Several LGAD-based sensors are under development

LGAD technologies overview

p⁻ substrate

"Deep Junction" LGAD (DJ-LGAD)

- Main idea is to bury the P-N junction
- Electric field is lower at the surface
 - \rightarrow conventional granularity
 - \rightarrow maintaining modest gain
 - \rightarrow breakdown voltage over 300 V
- But only simulation

Dr. Simone M. Mazza - University of California Santa Cruz; 15° Trento Workshop (2020, Wien) Main idea is to reverse position of the gain layer to decrease dead area and increase granularity

Double Sided LGAD (DS-LGAD) or

Inverted LGAD (i-LGAD)

Requires double-side diffusion, which is expensive and technologically difficult process

M. Centis Vignali, Technology Development of LGADs at FBK, 18/02/2020

Main idea is to create multiplying junction using a resistive n+layer

Resistive AC coupling (RSD-

LGAD)

No segmentation by inner structure, but by AC-coupled pads Trench-Isolated LGADs (TI-LGAD)

- Main idea is to replace JTE and p-stop by a insolation trench
- Increasing of fill-factor, close to 100%

IEEE ELECTRON DEVICE LETTERS, VOL. 40, NO. 11, NOVEMBER 2019 M. G. Paternoster et al. Novel Strategies for Fine-Segmented LGA's; HSTD12, Hiroshima, Japan.

AC pads

±

LGAD technologies overview

p⁻ substrate

"Deep Junction" LGAD (DJ-LGAD)

- Main idea is to bury the P-N junction
- Electric field is lower at the surface
 - \rightarrow conventional granularity
 - \rightarrow maintaining modest gain
 - \rightarrow breakdown voltage over 300 V
- But only simulation

Dr. Simone M. Mazza - University of California Santa Cruz; 15° Trento Workshop (2020, Wien) Main idea is to reverse position of the gain layer to decrease dead area and increase granularity

Double Sided LGAD (DS-LGAD) or

Inverted LGAD (i-LGAD)

Requires double-side diffusion, which is expensive and technologically difficult process

M. Centis Vignali, Technology Development of LGADs at FBK, 18/02/2020

Main idea is to create multiplying junction using a resistive n+layer

Resistive AC coupling (RSD-

LGAD)

No segmentation by inner structure, but by AC-coupled pads

IEEE ELECTRON DEVICE LETTERS, VOL. 40, NO. 11,

- Main idea is to replace JTE and p-stop by a insolation trench
- Increasing of fill-factor, close to 100%

Produced at FBK, designed and studied at KIT

M. G. Paternoster et al. Novel Strategies for Fine-Segmented LGA's; HSTD12, Hiroshima, Japan.

en)

NOVEMBER 2019

AC pads

+

Characterization of Ti-LGAD at IPE

- First Ti-LGAD produced by FBK has been delivered and characterized at KIT
- Designed sensors with different pixel pitches (50 µm and 100 µm), different numbers of tranches (one or two). Also types of gain doping, trenches and contacts varied
- Equipment of ETP was used to perform IV and CV measurements
- First PCB was created to improve grounding of microstrips
- Excellent result: low leakage current is bellow 10 pA, low capacitance and gain activation is already around 30 V
- New PCB for TCT characterization was developed and currently is in a production

First PCB

This work was done by Johannes Deutsch as part of Master Thesis

Probing with needs at EKP

Monolithic SiGe BiCMOS

- Proposed by Dr. Michele Caselle, design belongs to Monolithic Active Pixel Sensor (MAPS)
- Produced by The Leibniz Institute for High Performance Microelectronics (IHP) in IHP SG13G2 technology
- Readout electronic was developed by Alexander Elsenhans
- The main feature of the design was to dramatically reduce the size of collection node (10 µm by 10 µm) and pixel pitch of the sensor to 100 µm
 - reduce the time collection
 - test charge sharing effect
- Another sensor with 230 µm pixel pitch and 198 µm collection node was developed by Prof. Ivan Peric

metal contact

Cross-section of "small" SiGe sensor

t = 0 ns

Beam simulation was done using TCAD Heavy Ion Model

Bais voltage is - 100 V

Totel current and charge collection

Based on simulation results the structures have been submitted to IHP for the production

t = 1 ns

- Beam simulation was done using TCAD Heavy Ion Model
- Bais voltage is 100 V
- Beam parameters were approximated to MIP at 1 ns

Based on simulation results the structures have been submitted to IHP for the production

t = 2 ns

- Beam simulation was done using TCAD Heavy Ion Model
- Bais voltage is 100 V
- Beam parameters were approximated to MIP at 1 ns
- Visible charge sharing at 2 ns

t = 3 ns

- Beam simulation was done using TCAD Heavy Ion Model
- Bais voltage is 100 V
- Beam parameters were approximated to MIP at 1 ns
- Visible charge sharing at 2 ns

t = 4 ns

- Beam simulation was done using TCAD Heavy Ion Model
- Bais voltage is 100 V
- Beam parameters were approximated to MIP at 1 ns
- Visible charge sharing at 2 ns

t = 5 ns

- Beam simulation was done using TCAD Heavy Ion Model
- Bais voltage is 100 V
- Beam parameters were approximated to MIP at 1 ns
- Visible charge sharing at 2 ns
- Charge collection < 5 ns</p>

Based on simulation results the structures have been submitted to IHP for the production

t = 8 ns

- Beam simulation was done using TCAD Heavy Ion Model
- Bais voltage is 100 V
- Beam parameters were approximated to MIP at 1 ns
- Visible charge sharing at 2 ns
- Charge collection < 5 ns</p>

Based on simulation results the structures have been submitted to IHP for the production

"ABC-SiGe" ASIC layout

- Total size of chip is 1µm x 1µm
- Matrix consists of 4 x 4 pixels
- Pixels are surrounded by n-well guarding ring which is grounded and electronics are placed within
- Then there are 2 additional guarding rings, both connected to individual pads
- The pads for the negative HV for the substrate are placed in the corners
- The charge collection node is surrounded by two poly-rings and a p stop
- Waiting for delivery
- Plan to study charge sharing and impact angle of particle

Chip layout

One pixel layout

Development within Tangerine project

- Main goal is to establish availability of sensors with high spatial (20µm) and time resolution (20 ps) for charged particles
- We are targeting:
 - pixel pitch 25 x 25 µm²
 - time resolution < 30 ps
 - Charge sharing → to improve the spatial resolution over the binary resolution, but also to improve the time resolution
 - possibility to detect the impact angle of the track on the sensor
- Main concept can be presented in 3 steps
 - \blacksquare 1 to design sensor with internal gain \rightarrow wafer with gain layer is needed
 - 2 to implement analog part of electronic on sensor → SiGe technology electronic at IHP
 - 3 to connect it to digital part of readout → AC-coupled sensor with high density CMOS technology, FDSOI 22 nm or 28 nm TSMC

Development of LGADs in HVCMOS technology

Cross-section of LGAD in HVCMOS

Electric field of LGAD in HVCMOS

- Using standard HVCMOS dopings and substrates in TSI technology
- Investigation of gain layer placement and doping concentration
- Next step is beam investigation

Work performs together with Prof. Ivan Peric

Conclusion

- Silicon is today's material of choice for high-precision detectors and offers a high grade of engineering possibilities
- Increasing requirements push sensors development for searching for new technologies
- Low Gain Avalanche Diode is the promising candidate for High Energy Physics, where Ti-LGAD already shows remarkable results
- One of the most attractive sensor technology is Monolithic
- Future for the silicon sensors is develop Monolithic LGAD

Thank you for attention

Backup slides

The working principle of a detector based on silicon is adapted from creating a p-n-junction

The working principle of a detector based on silicon is adapted from creating a p-n- junction

The working principle of a detector based on silicon is adapted from creating a p-n- junction

The working principle of a detector based on silicon is adapted from creating a p-n- junction
 The described p-n-junction or more

precisely the depleted region at the junction now already can serve as a particle detector.

- The working principle of a detector based on silicon is adapted from creating a p-n-junction
- The described p-n-junction or more precisely the depleted region at the junction now already can serve as a particle detector.
- To get a more efficient detector, an outer voltage Vbias can be applied to the p-n-junction leading to a non-equilibrium state.

"Deep Junction" LGAD (DJ-LGAD)

Main idea is to bury the P-N junction so that fields are low at the surface, allowing conventional granularity + to avoid high field near the electrodes while maintaining modest gain.

- High field region with multiplication ~5µm deep
- Velocity is saturated in the low field regions (P and N)
- Stable gain up to 15
- 8% gain variation over 30 µm pitch pads
- Fast rise time (100ps)
- Full charge collection within 1 ns
- Breakdown voltage over 300V

(TCAD simulation result)

Dr. Simone M. Mazza - University of California Santa Cruz; 15° Trento Workshop (2020, Wien)

Double Sided or Inverted LGAD

Main idea is to reverse position of the gain layer to decrease dead area and increase granularity.

- High field region with multiplication ~5µm deep
- Continuous gain area in the active region ⇒ 100% fill factor Double sided process
- Active thickness is the wafer thickness
- Readout side is ohmic
- Design not optimal for timing applications
- Readout side separated from LGAD side
 ⇒ no restrictions on channel dimensions

M. Centis Vignali, Technology Development of LGADs at FBK,18/02/2020 G.-F. Dalla Betta et al. / Nuclear Instruments and Methods in Physics Research A 796 (2015) 154–157156

Resistive AC coupling (RSD-LGAD)

- 100 % fill-factor: unsegmented gain layer, which spreads throughout all the sensor area
- AC coupling: the readout segmentation is obtained at the level of the AC metal pads
- High-granularity: no JTE and p-stop are present between pixels
- Excellent time resolution: gain layer provides signal multiplication
- Large signal and low noise: It provides larger signals while keep the same noise level like standard pixel sensor or avoiding at the same time the additional noise contribution

M. Mandurrino et al., "Demonstration of 200-, 100-, and 50- micron Pitch Resistive AC-Coupled Silicon Detectors (RSD) With 100% Fill-Factor for 4D Particle Tracking," in IEEE Electron Device Letters, vol. 40, no. 11, pp. 1780-1783, Nov. 2019.

Trench-Isolated LGADs

Main idea is to replace JTE and p-stop by a single trench.

- High field region with multiplication ~5µm deep
- Trenches act as a drift/diffusion barrier for electrons and isolate the pixels
- The trenches are a few microns deep and < 1µm wide
- Filled with Silicon Oxide
- The fabrication process of trenches is compatible with the standard LGAD process flow.

M. G. Paternoster et al. Novel Strategies for Fine-Segmented LGA's; HSTD12, Hiroshima, Japan.

"Small" and "big" SiGe

E. Trifonova

SiGe LGAD development

43 9th KSETA Plenary Workshop 2022, 14 - 16 March

E. Trifonova

SiGe LGAD. Gain investigation

Investigated structures have gain layers in a range from 10¹⁴ cm⁻³, to 10¹⁷ cm⁻³, and structure without gain

Structures with gain doping 10¹⁶ cm⁻³ and 10¹⁷ cm⁻³ ware not depleted before breakdown at - 320 V

SiGe LGAD. Gain investigation

Investigated structures have gain layers in a range from 10¹⁴ cm⁻³, to 10¹⁷ cm⁻³, and structure without gain

- Structures with gain doping 10¹⁶ cm⁻³ and 10¹⁷ cm⁻³ ware not depleted before breakdown at - 320 V
- More detailed investigation of structure with gain doping 10¹⁵ cm⁻³ due to non-zero electric field underneath gain layer

SiGe LGAD with gain layer doping 10¹⁵ cm⁻³

IV characteristic

Charge collection

Gain activation at "step" -30 V looks promising

Charge collection investigation using beam simulation
 Diode shows almost full charge collection of elections in 10 ns

SiGe LGAD with gain layer doping 10¹⁵ cm⁻³

IV characteristic

Charge collection

Gain activation at "step" -30 V looks promising

Charge collection investigation using beam simulation
 Diode shows almost full charge collection of elections in 10 ns

Result: no gain in charge collection

Temporal resolution and noise

The time resolution depends mostly on the amplifier performance

■ *Our solution*: High f_T , single transistor preamplifier SiGe HBT technology IHP SG13G2 130nm ■ Large g_m/I_D compared to CMOS technology → **low-noise** and potentially **low-power** consumption ■ **High** Transit frequency f_T = 800 GHz (in SG13G3) → fast rise time and small capacitance