

Development of a new generation of silicon detectors for particle physics experiment

Ekaterina Trifonova

Outline

- Introduction to silicon detectors
	- **Working principles**
	- Sensor technologies
	- Recent developments
- Motivation for the research
	- Requirements of future pixelated detectors
- Latest development in silicon sensors
	- **Low Gain Avalanche Diodes (LGADs)**
	- **Monolithic sensors**

Introduction to silicon detectors

Silicon detectors

- **Tracking detectors provide necessary** information on the position and time of traversing particles
- \blacksquare The quality of the track reconstruction is crucial
- A widely used type of inner tracking detectors is a solid-state detector
- Silicon is today's material of choice for high-precision detectors and offers a high grade of engineering possibilities

But how does silicon detector work?

Experiment at the LHC CERN Data recorded: 2017-Oct-29 19:22:01.746752 GMT Run / Event / LS: 305840 / 1047490792 / 575

* Illustration from CERN Document Server

The ALICE detector, CERN

Detection mechanism of silicon sensor

- Depletion region of p-n-junction works as detection region
- The traversing ionizing particle generates in the depleted bulk electron hole pairs which are then separated by the applied bias voltage
- Number of free charge carriers created by charge particle should be sufficient in order to create a detectable signal
- **To get a more efficient detector reverse-bias** is used

penetrated by minimum ionising particle

+

Silicon sensor technologies

Hybrid sensor where sensor and readout chip (ROC) are separated

- Allows to develop sensor and (ROC) separately
- Interconnection is done using bump-bonding or wire-bonding technics
- Challenge is to create reliable interconnection \rightarrow expensive assembly

- Monolithic sensor where read-out functionality is integrated into the sensor die
- Can be produced in large volumes in short production time
- A lot of different technologies, such as HV-CMOS, MAPS, DEPFET, SOI etc.

Recent silicon developments

9th KSETA Plenary Workshop 2022, 14 - 16 March E.Trifonova IPE **7**

Motivation for the research

■ Small pixels with extremely high position accuracy \rightarrow Monolithic pixel sensors

Small pixels with extremely high position accuracy \rightarrow Monolithic pixel sensors

Low power consumption \rightarrow Monolithic pixel sensors

Small pixels with extremely high position accuracy \rightarrow Monolithic pixel sensors

- Low power consumption \rightarrow Monolithic pixel sensors
- \blacksquare High time resolution \rightarrow Hybrid pixel

Small pixels with extremely high position accuracy \rightarrow Monolithic pixel sensors

- Low power consumption \rightarrow Monolithic pixel sensors
- \blacksquare High time resolution \rightarrow Hybrid pixel
- \blacksquare High radiation tolerance \rightarrow Hybrid pixel

High-accuracy 4D particle trackers with Resistive Silicon Detectors (AC-LGADs) Roberta Arcidiacono, TWEPP 2021

Small pixels with extremely high position accuracy \rightarrow Monolithic pixel sensors

- Low power consumption \rightarrow Monolithic pixel sensors
- **High time resolution** \rightarrow **Hybrid pixel**
- \blacksquare High radiation tolerance \rightarrow Hybrid pixel

What can be next?

High-accuracy 4D particle trackers with Resistive Silicon Detectors (AC-LGADs) Roberta Arcidiacono, TWEPP 2021

Latest development in silicon sensors

Low Gain Avalanche Diode (LGAD)

- Thin ($5 \mu m$) and highly doped (10¹⁶ cm⁻³) multiplication (gain) layer
- \blacksquare High electric field in the multiplication layer
- **LGADs have intrinsic modest internal gain** (10-50)
- Time resolution < 30 ps
- Junction Termination Extension (JTE) is used between pixels to prevent premature breakdown and high electric field
- **P**-stop used as isolation between pixels
- Several LGAD-based sensors are under development

LGAD technologies overview

"Deep Junction" LGAD (DJ-LGAD)

- \blacksquare Main idea is to bury the P-N junction
- Electric field is lower at the surface
	- \rightarrow conventional granularity
	- \rightarrow maintaining modest gain
	- \rightarrow breakdown voltage
	- over 300 V
- But only simulation

- Main idea is to reverse position of the gain layer to decrease dead area and increase granularity
- Requires double-side diffusion, which is expensive and technologically difficult process
- Main idea is to create multiplying junction using a resistive n+ layer

oxide

gain layer

No segmentation by inner structure, but by AC-coupled pads

- **Main idea is to replace** JTE and p-stop by a insolation trench
- Increasing of fill-factor, close to 100%

Dr. Simone M. Mazza - University of California Santa Cruz; 15° Trento Workshop (2020, Wien)

M. Centis Vignali, Technology Development of LGADs at FBK,18/02/2020

IEEE ELECTRON DEVICE LETTERS, VOL. 40, NO. 11, NOVEMBER 2019

M. G. Paternoster et al. Novel Strategies for Fine-Segmented LGA's; HSTD12, Hiroshima, Japan.

LGAD technologies overview

p⁻ substrate

"Deep Junction" LGAD (DJ-LGAD)

- \blacksquare Main idea is to bury the P-N junction
- Electric field is lower at the surface
	- \rightarrow conventional granularity
	- \rightarrow maintaining modest gain
	- \rightarrow breakdown voltage
	- over 300 V
- But only simulation

Dr. Simone M. Mazza - University of California Santa Cruz; 15° Trento Workshop (2020, Wien)

Main idea is to reverse position of the gain layer to decrease dead area and increase granularity

Double Sided LGAD (DS-LGAD) or

Requires double-side diffusion, which is expensive and technologically difficult process

M. Centis Vignali, Technology Development of LGADs at

Main idea is to create multiplying junction using a resistive n+ layer

Resistive AC coupling (RSD-LGAD)

resistive n+

AC pads

 $\,=\,$

oxide

gain layer

No segmentation by inner structure, but by AC-coupled pads

- Main idea is to replace JTE and p-stop by a insolation trench
- Increasing of fill-factor, close to 100%

Produced at FBK, designed and studied at KIT

M. G. Paternoster et al. Novel Strategies for Fine-Segmented LGA's; HSTD12, Hiroshima, Japan.

FBK,18/02/2020

IEEE ELECTRON DEVICE LETTERS, VOL. 40, NO. 11, NOVEMBER 2019

Characterization of Ti-LGAD at IPE

- **First Ti-LGAD produced by FBK has been** delivered and characterized at KIT
- **ODesigned sensors with different pixel pitches** (50 µm and 100 µm), different numbers of tranches (one or two). Also types of gain doping, trenches and contacts varied
- **Equipment of ETP was used to perform IV and** CV measurements
- **Example First PCB was created to improve grounding** of microstrips
- **Excellent result: low leakage current is bellow** 10 pA, low capacitance and gain activation is already around 30 V
- New PCB for TCT characterization was developed and currently is in a production

First PCB

This work was done by Johannes Deutsch as part of Master Thesis

Probing with needs at EKP

Monolithic SiGe BiCMOS

- Proposed by Dr. Michele Caselle, design belongs to Monolithic Active Pixel Sensor (MAPS)
- Produced by The Leibniz Institute for High Performance Microelectronics (IHP) in IHP SG13G2 technology
- Readout electronic was developed by Alexander **Elsenhans**
- The main feature of the design was to dramatically reduce the size of collection node (10 µm by 10 µm) and pixel pitch of the sensor to 100 µm
	- **n** reduce the time collection
	- \blacksquare test charge sharing effect
- Another sensor with 230 µm pixel pitch and 198 µm collection node was developed by Prof. Ivan Peric

metal contact

 $t = 0$ ns

Beam simulation was done using TCAD Heavy Ion Model

Bais voltage is - 100 V

Totel current and charge collection

Based on simulation results the structures have been submitted to IHP for the production

 $t = 1$ ns

- Beam simulation was done using TCAD Heavy Ion Model
- Bais voltage is 100 V
- **Beam parameters were approximated** to MIP at 1 ns

Based on simulation results the structures have been submitted to IHP for the production

 $t = 2$ ns

- **Beam simulation was done using** TCAD Heavy Ion Model
- Bais voltage is 100 V
- **Beam parameters were approximated** to MIP at 1 ns
- Visible charge sharing at 2 ns

 $t = 3$ ns

- **Beam simulation was done using** TCAD Heavy Ion Model
- Bais voltage is 100 V
- **Beam parameters were approximated** to MIP at 1 ns
- Visible charge sharing at 2 ns

 $t = 4$ ns

- **Beam simulation was done using** TCAD Heavy Ion Model
- Bais voltage is 100 V
- **Beam parameters were approximated** to MIP at 1 ns
- Visible charge sharing at 2 ns

 $t = 5$ ns

- **Beam simulation was done using** TCAD Heavy Ion Model
- Bais voltage is 100 V
- **Beam parameters were approximated** to MIP at 1 ns
- Visible charge sharing at 2 ns
- Charge collection \leq 5 ns

Based on simulation results the structures have been submitted to IHP for the production

 $t = 8$ ns

- **Beam simulation was done using** TCAD Heavy Ion Model
- Bais voltage is 100 V
- **Beam parameters were approximated** to MIP at 1 ns
- Visible charge sharing at 2 ns
- Charge collection \leq 5 ns

Based on simulation results the structures have been submitted to IHP for the production

"ABC-SiGe" ASIC layout

- Total size of chip is 1µm x 1µm
- Matrix consists of 4 x 4 pixels
- Pixels are surrounded by n-well guarding ring which is grounded and electronics are placed within
- Then there are 2 additional guarding rings, both connected to individual pads
- \blacksquare The pads for the negative HV for the substrate are placed in the corners
- The charge collection node is surrounded by two poly-rings and a p stop
- **N** Waiting for delivery
- **Plan to study charge sharing and impact** angle of particle

Chip layout

One pixel layout

Development within Tangerine project

- Main goal is to establish availability of sensors with high spatial (20µm) and time resolution (20 ps) for charged particles
- We are targeting:
	- pixel pitch $25 \times 25 \mu m^2$
	- time resolution < 30 ps
	- **Charge sharing** \rightarrow **to improve the spatial resolution over the binary** resolution, but also to improve the time resolution
	- possibility to detect the impact angle of the track on the sensor
- **Main concept can be presented in 3 steps**
	- 1 to design sensor with internal gain \rightarrow wafer with gain layer is needed
	- 2 to implement analog part of electronic on sensor \rightarrow SiGe technology electronic at IHP
	- 3 to connect it to digital part of readout \rightarrow AC-coupled sensor with high density CMOS technology, FDSOI 22 nm or 28 nm TSMC

Development of LGADs in HVCMOS technology

Cross-section of LGAD in HVCMOS

Electric field of LGAD in HVCMOS

- Using standard HVCMOS dopings and substrates in TSI technology
- Investigation of gain layer placement and doping concentration
- Next step is beam investigation

Work performs together with Prof. Ivan Peric

Conclusion

- Silicon is today's material of choice for high-precision detectors and offers a high grade of engineering possibilities
- Increasing requirements push sensors development for searching for new technologies
- **Low Gain Avalanche Diode is the promising candidate for High Energy Physics, where Ti-**LGAD already shows remarkable results
- **One of the most attractive sensor technology is Monolithic**
- Future for the silicon sensors is develop Monolithic LGAD

Thank you for attention

Backup slides

The working principle of a detector based on silicon is adapted from creating a p-n- junction

The working principle of a detector based on silicon is adapted from creating a p-n- junction

The working principle of a detector based on silicon is adapted from creating a p-n- junction

The working principle of a detector based on silicon is adapted from creating a p-n- junction The described p-n-junction or more precisely the depleted region at the

junction now already can serve as a particle detector.

- **The working principle of a** detector based on silicon is adapted from creating a p-njunction
- The described p-n-junction or more precisely the depleted region at the junction now already can serve as a particle detector.
- To get a more efficient detector, an outer voltage Vbias can be applied to the p-n-junction leading to a non-equilibrium state.

"Deep Junction" LGAD (DJ-LGAD)

Main idea is to bury the P-N junction so that fields are low at the surface, allowing conventional granularity + to avoid high field near the electrodes while maintaining modest gain.

- High field region with multiplication ~5µm deep
- Velocity is saturated in the low field regions (P and N)
- Stable gain up to 15
- 8% gain variation over 30 µm pitch pads
- Fast rise time (100ps)
- Full charge collection within 1 ns
- Breakdown voltage over 300V

(TCAD simulation result)

Dr. Simone M. Mazza - University of California Santa Cruz; 15° Trento Workshop (2020, Wien)

Double Sided or Inverted LGAD

Main idea is to reverse position of the gain layer to decrease dead area and increase granularity.

- High field region with multiplication $\neg 5\mu m$ deep
- Continuous gain area in the active region \Rightarrow 100% fill factor Double sided process
- Active thickness is the wafer thickness
- Readout side is ohmic
- Design not optimal for timing applications
- Readout side separated from LGAD side \Rightarrow no restrictions on channel dimensions

M. Centis Vignali, Technology Development of LGADs at FBK,18/02/2020 G.-F. Dalla Betta et al. / Nuclear Instruments and Methods in Physics Research A 796 (2015) 154–157156

Resistive AC coupling (RSD-LGAD)

- 100 % fill-factor: unsegmented gain layer, which spreads throughout all the sensor area
- AC coupling: the readout segmentation is obtained at the level of the AC metal pads
- High-granularity: no JTE and p-stop are present between pixels
- Excellent time resolution: gain layer provides signal multiplication
- Large signal and low noise: It provides larger signals while keep the same noise level like standard pixel sensor or avoiding at the same time the additional noise contribution

M. Mandurrino et al., "Demonstration of 200-, 100-, and 50- micron Pitch Resistive AC-Coupled Silicon Detectors (RSD) With 100% Fill-Factor for 4D Particle Tracking," in IEEE Electron Device Letters, vol. 40, no. 11, pp. 1780-1783, Nov. 2019.

Trench-Isolated LGADs

Main idea is to replace JTE and p-stop by a single trench.

- **High field region with multiplication** \sim **5µm** deep
- Trenches act as a drift/diffusion barrier for electrons and isolate the pixels
- The trenches are a few microns deep and < 1µm wide
- Filled with Silicon Oxide
- The fabrication process of trenches is compatible with the standard LGAD process flow.

M. G. Paternoster et al. Novel Strategies for Fine-Segmented LGA's; HSTD12, Hiroshima, Japan.

"Small" and "big" SiGe

SiGe LGAD development

 Develop together with University of Genève

 Main idea is to place gain layer to the bottom of the structure to increase holes collection

- **No Very thin structure**
- Not inverted LGAD
- Gain layer investigation was made

SiGe LGAD. Gain investigation

 Investigated structures have gain layers in a range from 1014 cm-3, to 1017 cm-3, and structure without gain

 Structures with gain doping 1016 cm-3 and 1017 cm-3 ware not depleted before breakdown at - 320 V

No gain concentration 10¹⁴ cm⁻³

SiGe LGAD. Gain investigation

- Investigated structures have gain layers in a range from 1014 cm-3, to 1017 cm-3, and structure without gain
- Structures with gain doping 1016 cm-3 and 1017 cm-3 ware not depleted before breakdown at - 320 V
- **More detailed investigation of** structure with gain doping 1015 cm-3 due to non-zero electric field underneath gain layer

SiGe LGAD with gain layer doping 1015 cm-3

IV characteristic Charge collection

Gain activation at "step" -30 V looks promising

Charge collection investigation using beam simulation Diode shows almost full charge collection of elections in 10 ns

SiGe LGAD with gain layer doping 1015 cm-3

IV characteristic Charge collection **Charge collection**

Gain activation at "step" -30 V looks promising

Charge collection investigation using beam simulation Diode shows almost full charge collection of elections in 10 ns

Result: no gain in charge collection

Temporal resolution and noise

The time resolution depends mostly on the amplifier performance

Our solution: High f_r, single transistor preamplifier SiGe HBT technology IHP SG13G2 130nm Large g_m/I_D compared to CMOS technology \rightarrow **low-noise** and potentially **low-power** consumption **High** Transit frequency $f_T = 800$ GHz (in SG13G3) \rightarrow **fast rise** time and **small capacitance**