
1

GPU Acceleration Benefits

for Scientific Applications

Axel Koehler
Sr. Solution Architect HPC

2

GPUs: GeForce, Quadro, Tesla

ARM SoCs: Tegra

NVIDIA: Parallel Computing Company

R8 Ray Tracing.wmv

3

Continued Demand for Compute Power

Comprehensive

Earth System

Model

Coupled simulation

of entire cells

Simulation of

combustion for new

high-efficiency, low-

emision engines.

Predictive

calculations for

supernovae 1982 1996 2008 2020

Exaflop

Petaflop

Teraflop

Gigaflop

25 MW

850 KW

60 KW

And the Power Crisis in

(Super) Computing

4

CPUs: designed to

run a few tasks

quickly.

GPUs: designed

to run many tasks

efficiently.

Accelerated Computing

Add GPUs: Accelerate Applications

5

Fixed function hardware

Transistors are primarily devoted to data processing

Less leaky cache

SIMT thread execution

Groups of threads formed into warps which always executing

same instruction

Some threads become inactive when code path diverges

Cooperative sharing of units with SIMT

eg. fetch instruction on behalf of several threads or read

memory location and broadcast to several registers

Lack of speculation reduces overhead

Minimal Overhead

Hardware managed parallel thread execution and handling of

divergence

D
R

A
M

 I
/F

H

o
s

t
I/

F

G
ig

a
 T

h
re

a
d

D

R
A

M
 I

/F
 D

R
A

M
 I/F

D

R
A

M
 I/F

D

R
A

M
 I/F

D

R
A

M
 I/F

L2

Energy efficient GPU
Performance = Throughput

6

Overarching Goals for GPU Computing

Ease of

Programming

And Portability

Application

Space

Coverage

Power

Efficiency

7

Power Efficiency

8

KEPLER

SMX

Hyper-Q

Dynamic Parallelism

(programmability and

application coverage)

(power efficiency)

9

Kepler GK110 SMX vs Fermi SM

Ground up redesign for perf/W

6x the SP FP units

4x the DP FP units

Significantly slower FU clocks

3x sustained perf/W

Processors are getting wider, not faster

10

Better Utilization with Hyper-Q

FERMI
1 Work Queue

KEPLER
32 Concurrent Work Queues

Grid Management Unit selects most

appropriate task from up to 32

hardware queues (CUDA streams)

Improves scheduling of concurrently

executed grids

Particularly interesting for MPI

applications when combined with Multi

Process Server, but not limited to MPI

applications

11

Hyper-Q with Multiple MPI Ranks

Hyper-Q with multiple MPI

ranks leads to 2.5X speedup

over single MPI rank using the

GPU

Blog post by Peter Messmer of

NVIDIA

http://blogs.nvidia.com/2012/08/unleash-legacy-mpi-codes-with-keplers-hyper-q/

12

2012 2014 2008 2010

D
P
 G

F
L
O

P
S
 p

e
r

W
a
tt

Kepler

Tesla

Fermi

Maxwell

Volta
Stacked DRAM

Unified Virtual Memory

Dynamic Parallelism

FP64

CUDA

32

16

8

4

2

1

0.5

Focus on Power Efficiency

13

CUDA 5 | OpenGL 4.3

Kick starts ARM + CUDA Ecosystem

NAMD Ported in 2 Days

Kayla Development Platform

Quad ARM + Kepler GPU

Quad ARM + Any CUDA GPU

https://developer.nvidia.com/kayla-platform

https://developer.nvidia.com/kayla-platform
https://developer.nvidia.com/kayla-platform
https://developer.nvidia.com/kayla-platform

14

Ease of Programming

and Portability

15

Parallel Computing Platform

GPUDirect SMX DynamicParallelism HyperQ

Enables compiling new languages to CUDA

platform, and CUDA languages to other

architectures

Parallel Nsight IDE
Linux, Mac and Windows

GPU Debugging and Profiling

CUDA-GDB debugger

NVIDIA Visual Profiler

Third Party Tools

DDT, TotalView,

Vampir, …

Libraries
Programming

Languages
OpenACC

Directives

“Drop-in” Acceleration Maximum Flexibility Easily Accelerate Applications

Multiple Programming

Approaches

Development

Environment

Compiler

Hardware

Capabilities

Open Compiler Tools OpenACC Compiler

16

GPU Accelerated Libraries
“Drop-in” Acceleration for your Applications

Linear Algebra
FFT, BLAS,

SPARSE, Matrix

Numerical & Math
RAND, Statistics

Data Struct. & AI
Sort, Scan, Zero Sum

Visual Processing
Image & Video

NVIDIA

cuFFT,

cuBLAS,

cuSPARSE

NVIDIA

Math Lib NVIDIA cuRAND

NVIDIA

NPP

NVIDIA

Video

Encode

GPU AI –

Board

Games

GPU AI –

Path Finding

17

Dynamic Parallelism
Simpler Code, More General, Higher Performance

CPU Kepler GPU

Too coarse Just right Too fine

Better load balancing for dynamic workloads

• when work-per-block is data-dependent

(e.g. Adaptive Mesh CFD)

Launch new kernels from the GPU

Dynamically - based on run-time data

Simultaneously - from multiple threads at once

Independently - each thread can launch a

different grid

18

Network

Kepler Enables Full NVIDIA GPUDirect™ RDMA

Server 1

GPU1 GPU2 CPU

GDDR5
Memory

GDDR5
Memory

Network
Card

System
Memory

PCI-e

Server 2

GPU1 GPU2 CPU

GDDR5
Memory

GDDR5
Memory

Network
Card

System
Memory

PCI-e

19

True RDMA support for GPU memory
NIC performs DMA (GPU DMA engines remain available for CUDA use)

No hardware changes in NIC

System BIOS should support Large BARs

GPU and NIC have to be installed on the same IO Hub (QPI doesn’t

support it)

GPUDirect ™ RDMA for communication with other PCI devices (eg.

Flash memory devices)
Requires adopting GPUDirect-Interop API in vendor software stack

Documentation “Developing a Linux Kernel Module using RDMA for GPUDirect” is

available at http://docs.nvidia.com/cuda/gpudirect-rdma/index.html

GPUDirect ™ RDMA support available on Tesla and Quadro Kepler

class hardware with CUDA 5 and later

NVIDIA GPUDirect™ RDMA

http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html

20

Alpha release of Mellanox GPUDirect (GDR) MLNX_OFED driver

is available

Alpha release works with CUDA 5.0 or CUDA 5.5

Final release will be based on CUDA 6.0 (Beta later in 2013)

Supported on any ConnectX adapter that use the MLX4 driver

MVAPICH2-GDR (based on MVAPICH2 1.9) release can be used

with this IB driver release (see later slides)

Request Mellanox GDR driver and MVAPICH2-GDR via email to

hpc@mellanox.com

Mellanox Infiniband with GPUDirect™ RDMA

21

MPI support for GPUDirect™ RDMA

MVAPICH2-GDR (based on MVAPICH2 1.9) supports

GPUDirect™ RDMA

Hybrid design takes advantage of GPU Direct ™ RDMA

Uses host based buffered design in current MVAPICH2 for reads

(Alleviates Sandybridge chipset bottleneck)

MVAPICH2 team is working on multiple enhancements

(collectives, datatypes, one-sided) to exploit the advantages of

GPUDirect™ RDMA

As Mellanox GDR driver matures, successive versions of

MVAPICH2-GDR with enhancements will be made available to the

community

22

MVAPICH2 Performance with GPUDirect™ RDMA

Bi-Directional Bandwidth

Slides courtesy of DK Panda

Latency

23

CUDA Compiler Contributed to Open Source LLVM

Developers want to build

front-ends for

Java, Python, R, DSLs

Target other processors like

ARM, FPGA, GPUs, x86

CUDA
C, C++, Fortran

LLVM Compiler
For CUDA

NVIDIA
GPUs

x86
CPUs

New Language
Support

New Processor
Support

24

Enabling More Programming Languages

@cuda.jit(restype=uint8, argtypes=[f8, f8, uint32], device=True)

def mandel(x, y, max_iters):

 zr, zi = 0.0, 0.0

 for i in range(max_iters):

 newzr = (zr*zr-zi*zi)+x

 zi = 2*zr*zi+y

 zr = newzr

 if (zr*zr+zi*zi) >= 4:

 return i

 return 255

@cuda.jit(argtypes=[uint8[:,:], f8, f8, f8, f8, uint32])

def mandel_kernel(img, xmin, xmax ymin, ymax, iters):

 x, y = cuda.grid(2)

 if x < img.shape[0] and y < img.shape[1]:

 img[y, x] = mandel(min_x+x*((max_x-min_x)/img.shape[0]),

 min_y+y*((max_y-min_y)/img.shape[1]), iters)

gimage = np.zeros((1024, 1024), dtype = np.uint8)

d_image = cuda.to_device(gimage)

mandel_kernel[(32,32), (32,32)](d_image, -2.0, 1.0, -1.0, 1.0, 20)

d_image.to_host()

CUDA Programming,

Python Syntax

CUDA Python

25

Domain-specific Languages

MATLAB

Liszt
A DSL for solving

mesh-based PDEs

R Statistical

Computing Language

26

 OpenACC Directives

Program myscience

 ... serial code ...

!$acc region

 do k = 1,n1

 do i = 1,n2

 ... parallel code ...

 enddo

 enddo

!$acc end region

 ...

End Program myscience

CPU GPU

Your original

Fortran or C code

Easy, Open, Powerful

• Simple Compiler hints

• Works on multicore CPUs & many core

GPUs

• Compiler Parallelizes code

OpenACC

Compiler

Hint

http://www.openacc.org

http://www.openacc-standard.org/

27

Additions for OpenACC 2.0

Procedure calls

Separate compilation

Nested parallelism

Device-specific tuning, multiple devices

Data management features and global data

Multiple host thread support

Loop directive additions

Asynchronous behavior additions

New API routines for target platforms

 (CUDA, OpenCL, Intel Coprocessor Offload Infrastructure)

See http://www.openacc.org/sites/default/files/OpenACC-2.0-draft.pdf

28

Application Space

Coverage

29

Wide Adoption of Tesla GPUs

Finance Government Edu/Research Oil and gas Life Sciences Manufacturing

Reverse Time
Migration

Kirchoff Time
Migration

Reservoir Sim

Astrophysics
Lattice QCD
Molecular
Dynamics

Weather / Climate
Modeling

Signal Processing
Satellite Imaging
Video Analytics

Synthetic Aperture
Radar

Bio-chemistry
Bio-informatics

Material Science
Sequence Analysis

Genomics

Risk Analytics
Monte Carlo

Options Pricing
Insurance
modeling

Structural
Mechanics

Computational
Fluid Dynamics
Machine Vision

Electromagnetics

http://www.nvidia.com/page/home.html

30

http://www.nvidia.com/teslaapps/

Catalog GPU-Accelerated Applications

http://www.nvidia.com/teslaapps/

31

Breakthrough in
HIV research

Fastest simulation for
Silicon for Solar Cells

Gordon Bell Prize
Stronger, Lighter Metals

Recent Scientific Breakthroughs using GPUs

Discover the chemical

structure of HIV's capsid to

build more effective drugs

Run at NCSA Blue Waters

(3000 GPUs)

More efficient & cost-effective

solar cells

1.87 Petaflop / sec perf on

7168 GPUs on Tianhe-1A,

Lighter, Stronger Metals for

More Fuel-Efficient Cars

4224 GPUs at Tokyo Tech,

Japan

32

GPUs for control systems

GPUs are used in many experiments for controlling

Examples:

Triggering and tracking for CERN experiments

Signal processing for Lofar or Square Kilometre Array (SKA)

33

GPUs and Big Data Analytics

GPUs Today

Computational acceleration for Big Data

Visualization

Accelerating the Cloud + Mobile

transformation

GPUs Tomorrow

Converged architecture for Big Data

and Compute

34

Integration of Compute and Visualisation

GPU Operation Mode “All_On”

enables graphics capabilities for

K20/K20X server GPUs

nvidia-smi --gom=0

NVIDIA indeX - Scalable Big Data

Visualization

Remote visualization tools like

ParaView

35

The Future

36

DARPA Study Identifies Four Challenges for

ExaScale Computing

Report published September 28, 2008:

Four Major Challenges

Energy and Power challenge

Memory and Storage challenge

Concurrency and Locality challenge

Resiliency challenge

Number one issue is power

Extrapolations of current architectures and

technology indicate over 100MW for an Exaflop!

Power also constrains what we can put on a chip

Available at

www.darpa.mil/ipto/personnel/docs/ExaScale_Study_Initial.pdf

37

Which Takes More Energy?

Performing a 64-bit floating-point FMA:

893,500.288914668

 43.90230564772498

= 39,226,722.78026233027699

+ 2.02789331400154

= 39,226,724.80815564

Or moving the three 64-bit operands 20

mm across the die:

This one takes over 4.7x the energy today (40nm)!

Loading the data from off chip takes >> 100x the energy.

It’s getting worse: in10nm, relative cost will be 17x!

38

64-bit DP
20pJ 26 pJ 256 pJ

1 nJ

500 pJ Efficient
off-chip link

256-bit buses

16 nJ
DRAM
Rd/Wr

256-bit access
8 kB SRAM 50 pJ

20mm

Communication Takes

More Energy Than Arithmetic

39

 What is important for the future?

• Its not about the FLOPS

• Its about data movements

• Algorithms should be designed to perform more work per unit data

movement

• Programming systems should further optimize this data movement

• Architectures should facilitate this by providing an exposed hierarchy

and efficient communication

40

Echelon Compute Node & System

System Interconnect

NoC

C0 C7

SM0

L
O

C
 0

L
O

C
 7

L20

256KB

L21023

256KB
MC NIC

DRAM

Stacks

DRAM

DIMMs

NV

RAM

Node 0: 16 TF, 2 TB/s, 512+ GB

Cabinet 0: 4 PF, 128 TB
Cabinet N-1

Echelon System (up to 1 EF)

2018 Vision: Compute Node & System

Key architectural features:

• Malleable memory hierarchy

• Hierarchical register files

• Hierarchical thread scheduling

• Place coherency/consistency

• Temporal SIMT & scalarization

• PGAS memory

• HW accelerated queues

• Active messages

• AMOs everywhere

• Collective engines

• Streamlined LOC/TOC

interaction

Node 255

SM255

41

Power is the main HPC constraint

Vast majority of work must be done by cores designed for efficiency

NVIDIA GPU’s are already designed for energy efficiency

Data movement dominates the power

Locality at all levels and reduction of overhead is necessary

GPU computing has a sustainable model

Aligned with technology trends, supported by consumer markets

GPUs are the path to the tightly-coupled hybrid processor future

Conclusion

42

Thank you.

Axel Koehler
akoehler@nvidia.com

