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GPUs: GeForce, Quadro, Tesla
 

ARM SoCs: Tegra
 

NVIDIA: Parallel Computing Company 
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Continued Demand for Compute Power 

Comprehensive 

Earth System 

Model 

Coupled simulation 

of entire cells 

Simulation of 

combustion for new 

high-efficiency, low-

emision engines. 

Predictive 

calculations for 

supernovae 1982 1996 2008 2020 

Exaflop 

Petaflop 

Teraflop 

Gigaflop 

25 MW 

850 KW 

60 KW 

And the Power Crisis in  

(Super) Computing 
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CPUs: designed to 

run a few tasks 

quickly. 

GPUs: designed 

to run many tasks 

efficiently. 

Accelerated Computing 

Add GPUs: Accelerate Applications 



5 

Fixed function hardware 

Transistors are primarily devoted to data processing 

Less leaky cache 

SIMT thread execution 

Groups of threads formed into warps which always executing 

same instruction 

Some threads become inactive when code path diverges  

Cooperative sharing of units with SIMT 

eg. fetch instruction on behalf of several threads or read 

memory location and broadcast to several registers 

Lack of speculation reduces overhead 

Minimal Overhead 

Hardware managed parallel thread execution and handling of 

divergence 
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Energy efficient GPU 
Performance = Throughput 
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Overarching Goals for GPU Computing 

Ease of 

Programming 

And Portability 

Application 

Space 

Coverage 

Power 

Efficiency 
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Power Efficiency 
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KEPLER 
 

SMX 

Hyper-Q 

Dynamic Parallelism 

(programmability and 

application coverage) 

(power efficiency) 
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Kepler GK110 SMX vs Fermi SM 

Ground up redesign for perf/W 

6x the SP FP units 

4x the DP FP units 

Significantly slower FU clocks 

3x sustained perf/W 

Processors are getting wider, not faster 
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Better Utilization with Hyper-Q 
 

FERMI 
1 Work Queue 

KEPLER 
32 Concurrent Work Queues 

Grid Management Unit selects most 

appropriate task from up to 32 

hardware queues (CUDA streams) 

 

Improves scheduling of concurrently 

executed grids 

 

Particularly interesting for MPI 

applications when combined with Multi 

Process Server, but not limited to MPI 

applications 
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Hyper-Q with Multiple MPI Ranks 

Hyper-Q with multiple MPI 

ranks leads to 2.5X speedup 

over single MPI rank using the 

GPU 

 

Blog post by Peter Messmer of 

NVIDIA  

http://blogs.nvidia.com/2012/08/unleash-legacy-mpi-codes-with-keplers-hyper-q/ 
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Kepler 

Tesla 

Fermi 

Maxwell 

Volta 
Stacked DRAM 

Unified Virtual Memory 

Dynamic Parallelism 

FP64 

CUDA 

32 

16 

8 

4 

2 

1 

0.5 

Focus on Power Efficiency 
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CUDA 5 | OpenGL 4.3 

 

Kick starts ARM + CUDA Ecosystem 

 

NAMD Ported in 2 Days 

Kayla Development Platform 

Quad ARM + Kepler GPU 

Quad ARM + Any CUDA GPU 

https://developer.nvidia.com/kayla-platform 

https://developer.nvidia.com/kayla-platform
https://developer.nvidia.com/kayla-platform
https://developer.nvidia.com/kayla-platform
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Ease of Programming 

and Portability 
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Parallel Computing Platform 

GPUDirect SMX  DynamicParallelism HyperQ 

Enables compiling new languages to CUDA 

platform, and CUDA languages to other 

architectures 

Parallel Nsight IDE 
Linux, Mac and Windows 

GPU Debugging and Profiling 

CUDA-GDB debugger 

NVIDIA Visual Profiler 

Third Party Tools 

DDT, TotalView,  

Vampir, … 

Libraries 
Programming 

Languages 
OpenACC 

Directives 

“Drop-in” Acceleration Maximum Flexibility Easily Accelerate Applications 

Multiple Programming  

Approaches 

Development  

Environment 

Compiler  

Hardware  

Capabilities 

Open Compiler Tools OpenACC Compiler  
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GPU Accelerated Libraries 
“Drop-in” Acceleration for your Applications 

Linear Algebra 
FFT, BLAS,  

SPARSE, Matrix 

Numerical & Math 
RAND, Statistics 

Data Struct. & AI 
Sort, Scan, Zero Sum 

Visual Processing 
Image & Video 

NVIDIA 

cuFFT,  

cuBLAS,  

cuSPARSE 

NVIDIA 

Math Lib NVIDIA cuRAND 

NVIDIA 

NPP 

NVIDIA 

Video 

Encode 

GPU AI – 

Board 

Games 

GPU AI – 

Path Finding 
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Dynamic Parallelism 
Simpler Code, More General, Higher Performance 

CPU Kepler GPU 

Too coarse Just right Too fine 

Better load balancing for dynamic workloads  

• when work-per-block is data-dependent                 

( e.g. Adaptive Mesh CFD ) 

Launch new kernels from the GPU 

Dynamically - based on run-time data 

Simultaneously - from multiple threads at once 

Independently - each thread can launch a 

different grid 
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Network 

Kepler Enables Full NVIDIA GPUDirect™ RDMA 

Server 1 

GPU1 GPU2 CPU 

GDDR5 
Memory 

GDDR5 
Memory 

Network 
Card 

System  
Memory 

PCI-e 

Server 2 

GPU1 GPU2 CPU 

GDDR5 
Memory 

GDDR5 
Memory 

Network 
Card 

System  
Memory 

PCI-e 
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True RDMA support  for  GPU memory 
NIC performs DMA (GPU DMA engines remain available for CUDA use) 

No hardware changes in NIC 

System BIOS should support Large BARs  

GPU and NIC have to be installed on the same IO Hub (QPI doesn’t 

support it) 

GPUDirect ™ RDMA  for communication with other PCI devices (eg. 

Flash memory devices) 
Requires adopting GPUDirect-Interop API in vendor software stack 

Documentation “Developing a Linux Kernel Module using RDMA for GPUDirect” is 

available at http://docs.nvidia.com/cuda/gpudirect-rdma/index.html 

GPUDirect ™ RDMA support available on Tesla and Quadro Kepler 

class hardware with CUDA 5 and later 

 

 

 

NVIDIA GPUDirect™ RDMA 

http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
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Alpha release of  Mellanox  GPUDirect (GDR) MLNX_OFED  driver 

is available  

Alpha release works with  CUDA 5.0 or CUDA 5.5 

Final release will be based on CUDA 6.0 (Beta later in 2013) 

Supported on any ConnectX adapter that use the MLX4 driver 

MVAPICH2-GDR (based on MVAPICH2 1.9) release can be used 

with this IB driver release  (see later slides) 

Request Mellanox GDR driver and MVAPICH2-GDR via email to 

hpc@mellanox.com 

 

 

 

Mellanox Infiniband with GPUDirect™ RDMA  
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MPI support for GPUDirect™ RDMA 

MVAPICH2-GDR (based on MVAPICH2  1.9) supports 

GPUDirect™ RDMA 

Hybrid design takes advantage of GPU Direct ™ RDMA  

Uses host based buffered design in current MVAPICH2 for reads 

(Alleviates Sandybridge chipset bottleneck) 

MVAPICH2 team is working on multiple enhancements 

(collectives, datatypes, one-sided) to exploit the advantages of 

GPUDirect™ RDMA 

As Mellanox GDR driver matures, successive versions of 

MVAPICH2-GDR with enhancements will be made available to the 

community 
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MVAPICH2 Performance with GPUDirect™ RDMA 

Bi-Directional Bandwidth 

Slides courtesy of DK Panda 

Latency 
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CUDA Compiler Contributed to Open Source LLVM 

Developers want to build  

front-ends for 

Java, Python, R, DSLs 

 

Target other processors like 

ARM, FPGA, GPUs, x86 

CUDA  
C, C++, Fortran 

LLVM Compiler  
For CUDA 

NVIDIA 
GPUs 

x86 
CPUs 

New Language 
Support 

New Processor 
Support 
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Enabling More Programming Languages 

@cuda.jit(restype=uint8, argtypes=[f8, f8, uint32], device=True) 

def mandel(x, y, max_iters): 

  zr, zi = 0.0, 0.0 

  for i in range(max_iters): 

    newzr = (zr*zr-zi*zi)+x 

    zi = 2*zr*zi+y 

    zr = newzr 

    if (zr*zr+zi*zi) >= 4: 

       return i 

  return 255 

 

@cuda.jit(argtypes=[uint8[:,:], f8, f8, f8, f8, uint32]) 

def mandel_kernel(img, xmin, xmax ymin, ymax, iters): 

  x, y = cuda.grid(2) 

  if x < img.shape[0] and y < img.shape[1]: 

    img[y, x] = mandel(min_x+x*((max_x-min_x)/img.shape[0]), 

                       min_y+y*((max_y-min_y)/img.shape[1]), iters) 

 

gimage = np.zeros((1024, 1024), dtype = np.uint8) 

d_image = cuda.to_device(gimage) 

mandel_kernel[(32,32), (32,32)](d_image, -2.0, 1.0, -1.0, 1.0, 20)  

d_image.to_host() 

CUDA Programming, 

Python Syntax 

CUDA Python 
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Domain-specific Languages 

MATLAB 

Liszt 
A DSL for solving  

mesh-based PDEs 

R Statistical  

Computing Language 
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  OpenACC Directives  
  

Program myscience 

   ... serial code ... 

!$acc     region 

   do k = 1,n1 

      do i = 1,n2 

          ... parallel code ... 

      enddo 

    enddo 

!$acc     end region  

  ... 

End Program myscience 

CPU GPU 

Your original  

Fortran or C code 

Easy, Open, Powerful 

• Simple Compiler hints 

• Works on multicore CPUs & many core 

GPUs 

• Compiler Parallelizes code 

 

 

OpenACC

Compiler 

Hint 

http://www.openacc.org 

http://www.openacc-standard.org/
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Additions for OpenACC 2.0  
  

Procedure calls 

Separate compilation  

Nested parallelism  

Device-specific tuning, multiple devices 

Data management features and global data 

Multiple host thread support  

Loop directive additions  

Asynchronous behavior additions  

New API routines for target  platforms 

            (CUDA, OpenCL, Intel Coprocessor Offload Infrastructure) 

See http://www.openacc.org/sites/default/files/OpenACC-2.0-draft.pdf 
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Application Space  

Coverage 
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Wide Adoption of Tesla GPUs 

Finance Government Edu/Research Oil and gas Life Sciences Manufacturing 

 
 

Reverse Time 
Migration 

Kirchoff Time 
Migration 

Reservoir Sim 

 
 

Astrophysics 
Lattice QCD 
Molecular 
Dynamics 

Weather / Climate 
Modeling 

 
 

Signal Processing 
Satellite Imaging 
Video Analytics 

Synthetic Aperture 
Radar 

 
 

Bio-chemistry 
Bio-informatics 

Material Science 
Sequence Analysis 

Genomics 

 
 

Risk Analytics 
Monte Carlo 

Options Pricing 
Insurance 
modeling 

 
 

Structural 
Mechanics 

Computational 
Fluid Dynamics 
Machine Vision 

Electromagnetics 

http://www.nvidia.com/page/home.html
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http://www.nvidia.com/teslaapps/  

Catalog GPU-Accelerated Applications 

http://www.nvidia.com/teslaapps/
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Breakthrough in  
HIV research 

Fastest simulation for 
Silicon for Solar Cells 

Gordon Bell Prize 
Stronger, Lighter Metals 

Recent Scientific Breakthroughs using GPUs 

Discover the chemical 

structure of HIV's capsid to 

build more effective drugs 

 

Run at NCSA Blue Waters 

(3000 GPUs) 

More efficient & cost-effective 

solar cells 

 

 

1.87 Petaflop / sec perf on 

7168 GPUs on Tianhe-1A, 

Lighter, Stronger Metals for 

More Fuel-Efficient Cars 

 

 

4224 GPUs at Tokyo Tech, 

Japan 
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GPUs for control systems 

GPUs are used in many experiments for controlling 

Examples: 

Triggering and tracking for CERN experiments 

Signal processing for Lofar  or Square Kilometre Array (SKA)   
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GPUs and Big Data Analytics 

GPUs Today  

Computational  acceleration  for  Big Data  

Visualization  

Accelerating  the Cloud + Mobile 

transformation  

GPUs Tomorrow  

Converged  architecture  for  Big  Data 

and  Compute  
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Integration of  Compute and Visualisation 

GPU Operation Mode “All_On” 

enables graphics capabilities for 

K20/K20X server GPUs 

nvidia-smi --gom=0  

NVIDIA indeX - Scalable Big Data 

Visualization 

Remote visualization tools like 

ParaView 
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The Future 
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DARPA Study Identifies Four Challenges for 

ExaScale Computing 

Report published September 28, 2008: 

Four Major Challenges 

Energy and Power challenge 

Memory and Storage challenge 

Concurrency and Locality challenge 

Resiliency challenge 

Number one issue is power 

Extrapolations of current architectures and  

technology indicate over 100MW for an Exaflop! 

Power also constrains what we can put on a chip 

 

Available at  

www.darpa.mil/ipto/personnel/docs/ExaScale_Study_Initial.pdf 
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Which Takes More Energy? 

Performing a 64-bit floating-point FMA: 

893,500.288914668 

                43.90230564772498 

=  39,226,722.78026233027699 

 

+                 2.02789331400154 

=  39,226,724.80815564 

Or moving the three 64-bit operands 20 

mm across the die: 

This one takes over 4.7x the energy today (40nm)! 

Loading the data from off chip takes >> 100x the energy. 

It’s getting worse: in10nm, relative cost will be 17x! 
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64-bit DP 
20pJ 26 pJ 256 pJ 

1 nJ 

500 pJ Efficient 
off-chip link 

256-bit buses 

16 nJ 
DRAM 
Rd/Wr 

256-bit access 
8 kB SRAM 50 pJ 

20mm 

Communication Takes  

More Energy Than Arithmetic 
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   What is important for the future? 

• Its not about the FLOPS 

• Its about data movements 

• Algorithms should be designed to perform more work per unit data 

movement 

• Programming systems should further optimize this data movement 

• Architectures should facilitate this by providing an exposed hierarchy 

and efficient communication 
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Echelon Compute Node & System 

System Interconnect 

NoC 

C0 C7 

SM0 

L
O

C
 0

 

L
O

C
 7

 
L20 

256KB 

L21023 

256KB 
MC NIC 

DRAM 

Stacks 

DRAM 

DIMMs 

NV 

RAM 

Node 0:  16 TF,  2 TB/s, 512+ GB 

Cabinet 0:  4 PF, 128 TB 
Cabinet N-1 

Echelon System (up to 1 EF) 

2018 Vision: Compute Node & System 

Key architectural features: 
 

 

• Malleable memory hierarchy 

• Hierarchical register files 

• Hierarchical thread scheduling 

• Place coherency/consistency 

• Temporal SIMT & scalarization 
 

• PGAS memory 

• HW accelerated queues 

• Active messages 

• AMOs everywhere 

• Collective engines 

• Streamlined LOC/TOC 

interaction 

 

 

Node 255 

SM255 
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Power is the main HPC constraint 

Vast majority of work must be done by cores designed for efficiency 

NVIDIA GPU’s are already designed for energy efficiency 

Data movement dominates the power 

Locality at all levels and reduction of overhead is necessary  

GPU computing has a sustainable model 

Aligned with technology trends, supported by consumer markets 

GPUs are the path to the tightly-coupled hybrid processor future 

 

Conclusion 
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Thank you.  
 

Axel Koehler 
akoehler@nvidia.com 


