

Studies of neural network architectures in the search for di-Higgs events in the context of NMSSM in the $\tau\tau$ +bb final state

Ralf Schmieder

1

NMSSM phenomenology

- Decays of a heavy Higgs boson into two lighter bosons: Motivated e.g. by the next-to-minimal-supersymmetric standard model (NMSSM)
- Light Higgs boson h_s assumed to have significant admixture of the singlet field S
- In this case $H \rightarrow hh_s$ is the dominant production process for h_s
- $H \rightarrow h(\tau \tau)h_s(bb)$ combines high branching ratio through bb decay with the lower bkg from the $\tau \tau$ decay

Analysis strategy in a nutshell

- In $\mathbf{H} \rightarrow \mathbf{hh}_{s}$ m(H) and m(h_s) are unknown
- A grid of 420 mass hypotheses are simulated with up to 500k events each between m(H) = 240 GeV and 3000 GeV
- Event categorization with the help of neural network (NN) multiclassification
- Grouping of mass hypotheses in individual trainings (color code on right figure) → resulting in 68 trainings per ττ final state
- Depending on the *rr* final state, ~45-95% of backgrounds estimated from data

Event Categorisation

- Multiclassification based on neural networks (NNs) with one signal and four background categories
 - NN returns probability-like score for each category. The event is assigned to the category with the highest NN score
 - NN score used as final discriminator for signal extraction
- Mass hypotheses have different kinematic properties → NN training in 68 groups of signals

Example distribution of NN score

- Training group comprising the signal samples with m(H)=500 GeV, m(h_s)=[110, 120, 130, 150] GeV
- Signal with m(H)=500 GeV, m(h_s)=150 GeV indicated by red unstacked histogram
- Total of 45 such histograms enter 420 combined maximum likelihood fits, one for each mass hypothesis, for signal extraction

Analysis of the invariant bb mass as input to the NN

- Best possible setup: individual training per mass hypothesis
- Study of possible loss of sensitivity due to the grouping of hypotheses
 - Most groups contain four signal hypotheses
- Compare the results of individual training and grouped training
- Study of impact of mass estimator of di-b-system to the NN categorization

Analysis of the invariant bb mass as input to the NN

- Two informations from bb mass estimator:
 - Signal is peaking
 - Signal peak is fixed
- Hypothesis:

In groups of 4 or more hypothesis this character is washed out

NN - Taylor coefficient analysis

Designed to get a hint on the impact of the input features x (Tau p_T, m_{ττ}, ...) on the NN output function f(x)

Study impact of the input feature m_{bb}

- Expand f(x) in its input features x_i up to the second order
- For each event **a** with input feature values a_i , $f(\mathbf{x})$ is expanded around **a**
- Taylor coefficients t_i

 $f(\mathbf{x}) \approx f(\mathbf{a}) + (x_1 - a_1)t_{x_1} + (x_2 - a_2)t_{x_2} + (x_1 - a_1)^2 t_{x_1x_1} + (x_1 - a_1)(x_2 - a_2)t_{x_1x_2} + \dots$

NN - Taylor coefficient analysis

Single mass hypothesis

Four mass hypotheses

Single mass hypothesis m $\tau\tau$ m_{bb} 2016 2018 m_vis variable ptvis bpt_bReg_2 pt_bb_highCSV_bReg pt_1 bpt_bReg_1 pt_2 jpt_1 dijetpt jdeta jpt_2 nbtag njets mjj 0.02 0.06 0.08 0.10 0.12 0.14 0.16 0.00 0.04 Impact

Four mass hypotheses

- Investigate inverse trends of impact of m_{bb} and $m_{\tau\tau}$
- vary number of signal hypotheses that form signal class
- Impact normalized to the impact with 4 signal hypotheses

Impact of m_{bb} increases with the number of signals

Impact of $m_{\tau\tau}$ stagnates after 4 signals

Analysis of the invariant bb mass as input to the NN

- No signal excess -> result is an exclusion limit
- Compare two results -> compare two exclusion limits
- Ratio plot:
 - Expected limits normalized to the limits of the base analysis
 - Boxes represent the 1σ band of the base analysis
 - Whiskers represent the 2σ band of the base analysis

Analysis of the invariant bb mass as input to the NN

Grouping of four different but similar signal signatures to a signal class has no significant effect to the limits

- Goal: replace 68 trainings per final state with a single training
- Idea: expand the input vector by parameters \rightarrow m(H), m(h_s)
- Replace the NNs for different masspoints by a single NN, which trains on the same samples but has the parameters m(H), m(h_s) as input

....

- Goal: replace 68 trainings per final state with a single training
- Idea: expand the input vector by parameters \rightarrow m(H), m(h_s)
- Replace the NNs for different masspoints by a single NN, which trains on the same samples but has the parameters m(H), m(h_s) as input

- First test: fix heavy Higgs boson mass m(H) to m(H)=1000 GeV and pass only m(h_s)
- Pass random value to backgrounds and true value to signal event
- Compare exclusion limits with the limits of the presented analysis

- First test: fix heavy Higgs boson mass m(H) to m(H)=1000 GeV and pass only m(h_s) as an input parameter
- 27 mass hypotheses tested in a single NN
 - \rightarrow replace 7 individual NN

- Ratio plot:
 - Expected limits normalized to the limits of the base analysis
 - \circ Boxes represent the 1 σ band of the base analysis
 - Whiskers represent the 2σ band of the base analysis

All tested mass hypotheses are within the 1σ band of the base analysis (HIG-20-014)

Parameterized NN - Taylor coefficient analysis

Signal class

Parameterized NN with sub NNs

• Goal: single NN with a several sub NNs

- First test: pick two batches from the 68, implement a functional NN and compare the limits with the base analysis
 - \circ m(H) = 280 GeV, batch 2
 - \circ m(H) = 700 GeV, batch 4

Parameterized NN with sub NNs

- Build a single NN with multiple input and multiple output tensors, each for one batch
- Each sub NN has the same architecture as the base analysis
- Sub NNs are independent → no shared layers

Parameterized NN with sub NNs

- Build a single NN with multiple input and multiple output tensors, each for one batch
- Each sub NN has the same architecture as the base analysis
- Sub NNs are independent → no shared layers

Summary

- Base analysis: search for $H \rightarrow hh_s$ decays in the context of the NMSSM
- No significant loss of discrimination power with grouping signals hypotheses
- PNN as a single NN to replace 68 individual NNs
- PNN reaches same sensitivity as base analysis setup in tested parameter space and is able to interpolate between mass hypotheses
- PNN with sub NNs leads to the same exclusion limits as base analysis