
Institut für Technik der Informationsverarbeitung (ITIV)

www.kit.eduKIT – Universität des Landes Baden-Württem ber g und
nationales Forschungszentrum in der Helmholtz-Gemeinschaft

FPGA-based High-speed Signal 
Processing
Shalina Percy Delicia Figuli, M.Tech

Institutsleitung
Prof. Dr.-Ing. Dr. h. c. J. Becker

Prof. Dr.-Ing. Eric Sax
Prof. Dr. rer. nat. W. Stork

Institut für Technik der 
Informationsverarbeitung



Institut für Technik der Informationsverarbeitung (ITIV)

Motivation

G. Shalina Percy Delicia2 17.02.17

Software Defined Ratio

Digital electronics

ADC

DAC

Analog 
electronics

Data 
in

Data 
out

FPGA



Institut für Technik der Informationsverarbeitung (ITIV)

Motivation

G. Shalina Percy Delicia3 17.02.17

Software Defined Ratio
Frequency wall

FPGAs < 1 GHz



Institut für Technik der Informationsverarbeitung (ITIV)

Contents

Motivation
Channelization

Combined FFT

Transmission Chain
Frequency-domain

Performance optimization
Modulator
Forward Error Correction (FEC)

Summary

G. Shalina Percy Delicia4 17.02.17



Institut für Technik der Informationsverarbeitung (ITIV)

Metallic Magnetic Calorimeter (MMC)

massive particle absorber

paramagnetic or superconducting
temperature sensor

operation at low temperatures

no power dissipation in the sensor

no galvanic contact to the readout
circuit

• small heat capacity
• low thermal noise
• large temperature change

energetic particle
x-ray photon

magnetometer

Sebastian Kempf - Kirchhoff-Institute for Physics, 
Heidelberg University
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Frequency Domain Multiplexing
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Channelization

MMCs :
5 SQUIDs with excitation frequency :                                              
15 MHz, 80 MHz, 119 MHz, 147 MHz and 150 MHz
Spacing of the frequency bins : 10 KHz

ADCs : 
Sampled at 500 MSPS (fs)
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Channelization

MMCs :
5 SQUIDs with excitation frequency :                                              
15 MHz, 80 MHz, 119 MHz, 147 MHz and 150 MHz
Spacing of the frequency bins : 10 KHz

ADCs : 
Sampled at 500 MSPS (fs)

Time domain
Digital down conversion
Poly-phase filter banks

Frequency domain
Fast Fourier Transform (FFT)
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How many FFT points are needed
to identify the 5 frequencies from
500,000,000 points?
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Combined FFT: Simplified Block Diagram
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Combined FFT : Simulation
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Standard Transmission Chain

Standard Transmission Chain

Optimization
Time domain
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Filter Optimization - Frequency Domain

Filter
Nyquist criteria avoids ISI
Pulse Shaping Filter to limit the transmission band
FIR filter: linear phase, inherent stability, no feedback
Matched filter improves SNR (if only stochastic noises)
Good compromise: SRRC filter
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Properties

FIR filters are preferred in this work over the other filter class (the IIR filters) because of their
numerous advantages.

First of all, in the case of a FIR filter, the same rounding error appears in every iteration because
of the absence of feedback. Therefore, the total error doesn’t sum up over each cycle. Secondly, the
output of a FIR filter is a sum of a finite number of finite multiples of the input and by consequences,
cannot be grater than a fixed multiple of the input value. This ensure the filter stability. And, finally,
the last advantageous property of FIR filters is their ability to be designed with linear phase and
therefore, they delay the input signal but don’t distort its phase.

For completeness, it has to me mentioned that the main drawback of FIR filters respect to IIR
filters is the considerable amount of computation power required to realized a FIR filter with similar
characteristics to an IIR.

Fourier Analysis

The filtering operation in time-domain is given below,

y[n] = x[n]> h[n] (18)

Accordingly to Eq.(7) of section 3.2.1, this operation can be transposed in the frequency domain
using the convolution-multiplication symmetry and simply becomes:

Y [k] = X[k] ·H[k] (19)

where X, Y and H are the Fourier transform of the input, output and filter coe�cients, respectively.

The major interest of a mixed domain transmitter is now evident. Implementing Eq.(19) is much
simpler than Eq.(18) and, most importantly, Eq.(19) is parallelizable, which the other is not.

3.3.2 Fourier Transform - Squared Raised Root Cosine Filter

Matched filters are the optimal linear filter that maximize the SNR in the presence of additive
stochastic noise. It works by correlating the received signal with a template (the expected version
of the received signal). Therefore, this kind of filters is used to detect an expected signal and
distinguish him from background noise, which is exactly our objective.

More specifically, the chosen matched filter implemented in this paper is the Squared Raised Root
Cosine (SRRC) Filter because it is a good compromise between high spectral e�ciency and low ISI.
Its main goal is to limit the transmitted signal into a defined part of the channel in order to prevent
interferences with adjacent channels.

The filter is design to optmize achieve a fast decay of sidelobes in the pulse response, narrow
transition band, great minimum stopband attenuation, e�cient bandwidth utilization and low cost.
Unfortunately, improving one of these characteristics will degrade the other one. The specific design
of the filter is then realized by balancing the above features by properly choosing the following
parameters: oversampling factor, roll-o↵ factor, truncation length [1].

14 June 12, 2015

• Convolution: difficultly parallelizable
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Filter Optimization - Frequency Domain
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Mixed-Domain Approach
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Performance optimization – QAM Modulator

QAM Mapper
M-QAM formats (M=8, 16, 32, etc.)
Clusterization in log2(M) bits
Gray code for hamming distance of 1
Rectangular constellation is considered
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Performance optimization – FEC
Forward Error Correction

Convolutional Encoder and Viterbi Decoder

Code rate
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          No. of modulo-2 adders: 2
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Performance optimization – FEC
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Pareto Optimal Solutions
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Pareto Optimal Solutions
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Performance optimization – FPGA
Throughput with 16-parallel I/Os
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Summary

G. Shalina Percy Delicia27 17.02.17
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Thank you for your attention!

Any questions?



Institut für Technik der Informationsverarbeitung (ITIV)

Combined FFT : Virtex-7
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LUTs 7%

Registers 6%

Memory 6%

DSPs 24%

Latency 133576 ns

Clk 10.164 ns

Acheivable frequency 98.38 MHz
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Filter Optimization – Time Domain
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PARALLEL FIR FILTERS

Xilinx • 77

This structure implements the general FIR filter equation of a summation of products as defined 
in Equation 5-1.

Equation 5-1

In Equation 5-1, a set of N coefficients is multiplied by N respective data samples. The results are 
summed together to form an individual result. The values of the coefficients determine the 
characteristics of the filter (e.g., a low-pass filter).

The history of data is stored in the individual registers chained together across the top of the 
architecture. Each clock cycle yields a new complete result and all multiplication and arithmetic 
required occurs simultaneously. In sequential FIR filter architectures, the data buffer is created using 
Virtex-4 dedicated block RAMs or distributed RAMs. This demonstrates a trend; as algorithms 
become faster, the memory requirement is reduced. However, the memory bandwidth increases 
dramatically since all N coefficients must be processed at the same time.

The performance of the Parallel FIR filter is calculated in Equation 5-2.

Max imum  I n p u t  S amp l e  R a t e  =  C l o c k  S peed Equation 5-2

The bit growth through the filter is the same for all FIR filters and is explained in the section “Bit 
Growth” in Chapter 4.

Transposed FIR Filter
The DSP48 arithmetic units are designed to be easily and efficiently chained together using dedicated 
routing between slices. The Direct Form Type I uses an adder tree structure. This makes it difficult to 
chain the blocks together. The Transposed FIR filter structure (Figure 5-3) is more optimal for use 
with the DSP48 Slice. 

The input data is broadcast across all the multipliers simultaneously, and the coefficients are 
ordered from right to left with the first coefficient, h0, on the right. These results are fed into the 
pipelined adder chain acting as a data buffer to store previously calculated inner products in the adder 
chain. The rearranged structure yields identical results to the Direct Form structure, but gains from 
the use of an adder chain. This different structure is easily mapped to the DSP48 slice without 

Figure 5-3: Transposed FIR Filter
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PARALLEL FIR FILTERS

Xilinx • 79

Systolic FIR Filter
The systolic FIR filter is considered an optimal solution for parallel filter architectures. The systolic 
FIR filter also uses adder chains to fully utilize the DSP48 slice architecture (Figure 5-5).

The input data is fed into a cascade of registers acting as a data buffer. Each register delivers a 
sample to a multiplier where it is multiplied by the respective coefficient. In contrast to the 
Transposed FIR filter, the coefficients are aligned from left to right with the first coefficients on the 
left side of the structure. The adder chain stores the gradually combined inner products to form the 
final result. As with the Transposed FIR filter, no external logic is required to support the filter and 
the structure is extendable to support any number of coefficients. 

The configuration of the DSP48 slice for each segment of the Systolic FIR filter is shown in 
Figure 5-6. Apart from the very first segment, all processing elements are to be configured as shown 
in Figure 5-6. OPMODE is set to multiply mode with the adder combining the results from the 
multiplier and from the previous DSP48 slice through the dedicated cascade input (PCIN). OPMODE 
is set to binary 0010101. The dedicated cascade input (BCIN) and dedicated cascade output 
(BCOUT) are used to create the necessary input data buffer cascade.

Figure 5-5: Systolic FIR Filter

Figure 5-6: Systolic Multiply-Add Processing Element
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Filter types
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Filter type Features Frequency (MHz)
Transposed Filter Non-symmetric 571.102 

Systolic Filter Symmetric 610.128 
Non-symmetric 663.129 

Transposed Filter
• Low latency
• High fanout of input signal – limits performance

Systolic Filter
• Higher performance
• Higher latency
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Parallelized Systolic Filter

Cascaded DSP48E1 slices
Pipelining
Novel filter architecture with parallel filter strips

Scalability through parameterizable generic design
N Filter taps 
P Parallel strips

Achievable performance
P*f_clk

Requires P times N DSP slices

G. Shalina Percy Delicia34 17.02.17
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Parallelized Systolic Filter
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Filter Optimization in Time Domain
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Filter type Features Frequency (MHz)
Transposed Filter Non-symmetric 571.10

Systolic Filter Symmetric 610.13 
Non-symmetric 663.123 

System Performance

Systolic Filter Optimized Systolic
Filter

Parallelized Systolic Filter
(Degree	of	parallelism:4)

Clk (ns) 1.51 1.44 1.16

Frequency 
(MHz)

663.13 695.10 4*865.05
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Outlook

Channelization
Poly-phase filter banks
Optimized time-domain techniques

Virtual FPGAs??

G. Shalina Percy Delicia37 17.02.17
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High-speed QAM: Throughput measurements
Throughput with 16-parallel I/Os

Throughput with 32-parallel I/Os
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Fig. 16. Resource Utilization of QAM Transmitter for N = 16 parallel inputs

Complex Multiplier v6.0 and multiplication is split between
DSP slices and LUTs in Multiplier v12.0. Table IV shows
the maximum clock frequency, the achievable throughput and
the resource utilization of all the supported QAM orders
for a carrier frequency of 100 Hz. When compared to N =
16 parallel inputs, the operation frequency has been reduced
notably, however higher parallelization of processing 32 inputs
concurrently enables the system to yield larger throughput. It
is also interesting to observe that the maximum clock fre-
quency follows an irregular trend-line. This may be due to the
heuristics employed in the place&route steps and their partially

TABLE III
ACHIEVABLE THROUGHPUT WITH FEC FOR 16 PARALLEL INPUTS

QAM Order Code
Rate

Max.Freq
(MHz)

Throughput
(Gb/s)

16 1/2 202.96 6.5
32 1/2 201.74 8.07
64 1/2 178.41 8.57
64 1/3 202.3 6.47
128 1/2 191.68 10.73
256 1/2 201.25 12.88

Fig. 17. Throughput comparison between ”with FEC” and ”without FEC”
([9]

random characteristics that can trap the system optimization
in local minima, missing the global minimum, thus leading to
sub-optimal results, especially in circuits of large complexity.

The relative module level resource utilization of QAM
transmitter for 16 parallel inputs is shown in Fig. 16. It is easy
to distinguish that most of the LUTs, flip-flops and DSP slices
are utilized by parallel DFT and IDFT. Therefore, the increase
in modulation order does not propose a significant threat on
resource overhead. Figs. 18, 19, 20, and 21 show the relative
resource utilization comparison between N = 16 and N = 32
for the modules convolution encoder, QAM mapper, filter and
modulator. DFT and IDFT are omitted in the comparison chart
for the purpose of detailed readability. From 64-QAM on-
wards, QAM mapper make uses of BRAMs rather than LUTs
and registers. This choice of decision is done automatically by
the tool as it follows its own optimization technique in order to
make an effective trade-off between area and speed. Thereby,
up to modulation order of 32, the tool exploits the available
LUTs and for orders greater than 32, it takes advantage of
BRAMs. Similarly, the modulator also employs BRAM cells
and exercises little usage of register blocks but for N = 32,
it prefers LUTs and registers over BRAMs. Even though the
modules filter and modulator engage almost 2% of DSP slices
when compared to 15% utilization by DFT and IDFT (see Fig.

TABLE IV
QAM TRANSMITTER WITH FEC FOR 32 PARALLEL INPUTS

QAM
Order

Max.Freq
(MHz)

Through-
put
(Gb/s)

LUTs Registers DSPs BRAM

16 168.55 10.79 121917 144613 6272 -
32 112.37 8.99 122073 145007 6272 -
64 134.39 12.90 121831 144799 6272 32
128 130.02 14.56 121864 144992 6272 32
256 146.16 18.71 121896 145184 6272 32
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Motivation

G. Shalina Percy Delicia39 17.02.17

Global Communication
Video on demand

Physics Experiments
Particle detectors

Current limitations 
Frequency wall
Clock frequencies < 1 GHz in current FPGAs

Counterclaim
Higher BW utilization
Efficient Modulation techniques
Exploiting the inherent parallelism and flexibility of FPGAs
Optimizations on architecture level
Providing guidelines for future FPGAs (or custom FPGAs) 
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Optimization techniques

Time domain
Filter types

Transposed FIR Filter
Systolic FIR Filter
Modified Systolic Filter

Implementation optimizations
Cascaded DSP48E1 slices
Pipelining
Different ways of sin/cos modulation

Mixed time-/frequency domain
Parts of processing chain in time domain, other parts in frequency 
domain

G. Shalina Percy Delicia40 17.02.17
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Future Scope

Integrate the parallelized filter into the QAM system
Implement and evaluate the ViSA-COM concept
Integrate into heterogeneous platform through shared
memory
Modeling of specialized hard macros for future
communication targeted FPGAs

G. Shalina Percy Delicia41 17.02.17
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