

The path towards measuring Cosmic Ray Air Showers from Space

Francesca Bisconti

KSETA Workshop 2017

13-15 February 2017 - Durbach

Outline

- Motivation for a space-based project like JEM-EUSO
- Observation technique
- Telescope design
- Current experiments
 - EUSO-TA
 - EUSO-Balloon
- Future experiments
 - EUSO-Super Pressure Balloon with SiECA (SiPM camera prototype)
 - Mini-EUSO
 - K-EUSO
- Overview

Project motivation

JEM-EUSO

Extreme Universe Space Observatory onboard Japanese Experiment Module

Method:

Fluorescence detection (atmosphere as calorimeter)

Large field of view:

 $\pm~30^\circ\,$ by double sided spherical Fresnel lenses

At 400 km (ISS altitude): 2·10⁵ km² (nadir mode)

up to 10^6 km² (tilted mode)

No need for stereo: 400 km >> shower length

Exploratory scientific objectives

Astrophysics and Cosmology

- Main Science Objectives:
 - Identification of Ultra-High Energy Cosmic Rays (UHECRs) sources
 - Measurement of the energy spectra of individual sources
 - Measurement of the trans-GZK spectrum
- Exploratory objectives:
 - Discovery of UHE neutrinos
 - Discovery of UHE Gamma-rays
 - Study of the galactic and local extragalactic magnetic field

Atmospheric Science

- Nightglow
- The transient luminous events (red sprites, elves, blue jets)
- Slow events (meteors)

Earth Science

Animal and plant bioluminescence

A new window on the unknown

 Search for nuclearites made of Strange Quark Matter (SQM)

The path for measuring Cosmic Ray Air Showers from Space

The observation technique

The path for measuring Cosmic Ray Air Showers from Space

The observation technique

Nadir mode FOV Tilted mode FOV

The path for measuring Cosmic Ray Air Showers from Space

The focal surface detector

Hamamatsu R11265-113-M64 MOD2

Focal surface:

- prototypes of PDM available
- FOV of I PDM = $27 \times 27 \text{ km}^2$ from space

The path for measuring Cosmic Ray Air Showers from Space

Single PhOton Calibration stand at Kit (SPOCK)

- Uniform Lambertian light source
- Known output via NIST-Photodiode

Current experiments✓ EUSO-TA✓ EUSO-Balloon

EUSO-TA at Telescope Array (Utah)

Characteristics

- Focal surface: 1 PDM . (36 MAPMTs, 2304 pixels)
- **Optics: 2 Fresnel lenses** •
- FOV: $\pm 5.25^{\circ}$ •

The path for measuring Cosmic Ray Air Showers from Space

Francesca Bisconti - IKP francesca.bisconti@kit.edu

•

1 frame = $2.5 \,\mu s$ **EUSO-TA first measurements**

The path for measuring Cosmic Ray Air Showers from Space

Francesca Bisconti - IKP francesca.bisconti@kit.edu

32

40

X (pixels)

48

32

48

Counts 11

40

X (pixels)

13th May 2015 Telescope Array event reconstruction

The path for measuring Cosmic Ray Air Showers from Space

13th May 2015

Telescope Array reconstruction

- Zenith = 35°
- Azimuth = 7° (clockwise from North)
- Impact parameter Rp = 2.5 km
- Core = (14.8 km, -10.9 km) respect CLF
- $E = 10^{18} eV$

EUSO-TA configuration

• EUSO-TA elevation = 15°

The path for measuring Cosmic Ray Air Showers from Space

Detected and not detected events Simulation study

EUSO-Balloon JEM-EUSO prototype at 40km altitude

Characteristics:

- Focal surface: 1 PDM (36 MAPMT, 2304 pixels)
- Optics: 2 Fresnel lenses
- FOV: ±6°

Main purposes:

- Engineering tests
- UV-background measurement

Status: Successful first flight in August 2014!

The path for measuring Cosmic Ray Air Showers from Space

EUSO-Balloon

First flight from Timmins, Canada: 25th August 2014

EUSO-Balloon First flight from Timmins, Canada: 25th August 2014

The path for measuring Cosmic Ray Air Showers from Space

Cloud coverage and optical depth in the IR at 05:15:51 UTC

The path for measuring Cosmic Ray Air Showers from Space

Future experiments

- EUSO-SPB
- o Mini-EUSO
- K-EUSO

The path for measuring Cosmic Ray Air Showers from Space

MAPMTs vs SiPMs

SiPMs already used in fluorescence detectors (FACT / FAMOUS)

	РМТ	SiPM
PDE	20-45%	20-60%
Gain	10^{6}	10^{6}
TTS (Transit Time Spread)	~1 ns	~1 ns
Dynamic range	10^{6}	10^{3}
Dark noise rate	~kHz 🕚	~MHz 📛
Behavior in magnetic fields		
Operation Voltage	1000+ V 📛	50-70 V 🙂
Temperature sensitivity		
Robustness and compactness	-	

The path for measuring Cosmic Ray Air Showers from Space

SiECA tests in SPOCK

Voltage to LED: 3 V LED distance: 0 cm

20 cm

30 cm

40 cm

LED distance: 20 cm Voltage to LED: 3.1 V

William Painter, Alexander Menshikov (IPE)

The path for measuring Cosmic Ray Air Showers from Space

The long journey of SiECA

The path for measuring Cosmic Ray Air Showers from Space

Integration of SiECA in EUSO-SPB

Mechanical integration of SiECA in EUSO-SPB electronics box

(PDM covered with black paper, SiECA covered with silicon tape)

EUSO-Super Pressure Balloon (EUSO-SPB) On board the long-duration balloon flight (NASA)

Characteristics:

- Focal surface: 1 PDM (36 MAPMT, 2304 pixels)
- Optics: 2 Fresnel lenses
- SiECA (SiPM camera)
- Altitude: 40 km
- FOV: ±6°

Main purposes:

- First EAS measurements from Space!!
- Engineering tests
- UV-Background measurement
- Test SiPM focal surface with SiECA

Status: Sent to NASA, delivered to New Zealand Launch: Spring 2017

- NASA's first Super Pressure Balloon flight, March 2015, Wanaka, NZ
- Duration: 32 days, 5 hours, 51 minutes
- Flight altitude: ~33km

Mini-EUSO on the ISS

Characteristics:

- Focal surface: 1 PDM (36 MAPMT, 2304 pixels)
- Optics: 2 Fresnel lenses
- Altitude: 400 km
- FOV: ±19°

Scientific objectives:

- First map of the Earth in UV during night time
- Study of atmospheric phenomena and bioluminescence at Earth
- Study of meteors

Technological objectives:

- First use of Fresnel lenses in space
- Optimization of characteristics and performances of EUSO
- Raise the technological readiness level of the Hardware

Status: Operation approved Launch: October 2017

The path for measuring Cosmic Ray Air Showers from Space

Mini-EUSO on the ISS

Left: Light profile observed in the Mini-EUSO for an E = 10^{21} eV cosmic ray event. Right panel: number of photoelectrons vs time (1 GTU = 2.5 µs) for Sicily island (Italy) seen by Mini-EUSO (Simulation)

(Simulation)

the same event.

K-EUSO

JEM-EUSO mission currently suspended for funding problems

The foreseen space-based mission is K-EUSO joining the Russian project KLIPVE, smaller version with 52 PDMs and a mirror instead of lenses

Overview

The path for measuring Cosmic Ray Air Showers from Space