Neutrinotelescopes and Neutrinoastronomy

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Content

- Motivation for neutrino astronomy
- Working principle of a neutrino telescope
- Results from running neutrino telescopes
- Next generation of neutrino telescopes

Astronomical Observations

B General Method: Source _____ Light _____ Earth

Cosmic Messengers

• photons

radio - infrared - visibile - X-ray - gamma-rays

- charged particles electrons, protons, nuclei
- neutrinos
- gravitational waves

Cosmic Messengers

• photons

Cosmic Messengers – cosmic rays

Kinetic energy of a single cosmic ray proton

=

Kinetic energy of a tennis ball =

10²⁶ times kinetic energy of a single proton in the tennis ball

Cosmic messengers

7

Research with high energy neutrinos

- cosmic accelerators
- dark matter annihilation
- atmospheric neutrinos and oscillations

Possible Sources of high energy cosmic rays

 \Box Vb1 dk1ENb \Box y cg

au Gui Ni INBC.

 $0\k6u$ 2 E11 k y Tb0k ok k QHTk

•bRRb⊡Vo-G

0\k6u 12 11 y y 10HN91HVb.uHd

Shock acceleration

Collisionless shock: Particles do not scatter → No energy loss

Charged particle deflected by magnetic fields → energy gain due to reflection from moving mirrors

Possible Sources of high energy cosmic rays

Cosmic particle accelerators ? Binary system

X-ray image of Mira B (white dwarf) and A (red giant) credit: Chandra

Possible Sources of high energy cosmic rays

supermassive black hole with accretion disc (AGN)

 \rightarrow highly relativistic outflow

Artists view; NASA

Cygnus A radio galaxy NRAO/AUI/VLA

Gamma Ray Burst

Possible Sources of high energy cosmic neutrinos

Photon distribution from electron sources

leptonic scenario with synchrotron (red) and inverse Compton emission (blue)

Protons, Photons and Neutrinos

- High energetic protons and nuclei interact with protons, nuclei, photons
 → production of pions π⁰, π⁺, π⁻
- $\pi^0 \rightarrow$ photons $\pi^{\pm} \rightarrow$ neutrinos
- Photons can be produced as well by electrons (Compton), not so neutrinos!
- Neutrinos are the smoking gun signature for hadron acceleration!

Cosmic Neutrinos

Working principle of a neutrino telescope

□\k6u ⊡y ETk\SbR uHSbd6k

0HGx □□□)d

⊡Vk6u ⊡y ETk\SbR uHSbd6k

k Na 0. VHd (fin VHR) v_k ud. k V60. uHd \Box

Ve Electron Electron neutrino shower REHd (Th/HR v_{μ} vd.k/b0.uHd \Box

muon (from v_{μ} interaction)

energy: 600 MeV

electron (from v_e interaction) energy: 500 MeV

Diamond: track crosses wall; crosses: projection of reconstructed vertex on the walls; credit: Superkamiokande

REHd⊡⊡∙ka .\b0SNd8.C⊡R

⊡\k6u ⊡y ETk\SbR uHSbd6k

⊡\k6u ⊡y ETk\SbR uHSbd6k

Cosmic Neutinos

Neutrino telescope concept

- Telescope for higher energies cross section increases: σ ≈ E flux decreases: Φ ≈ E^{-3±1} event size increases
- Large detector volume

ice or water as detector medium natural abundance overburden for shielding

• IceCube and ANTARES/KM3NeT and Baikal

Neutrino telescope specification

- Flux sensitivity \rightarrow large volume
 - we need $n \ge 1$ events (!!!)
- Event quality:
 - direction resolution
 - energy resolution
 - neutrino flavor identification
 - background suppression
- Optimisation (statistical and systematical):
 - current telescopes: statistics dominating (very few events) future telescopes: systematics dominating

Detection of neutrinos in ice or water

Example: $\nu_{\mu} + A \rightarrow \mu + X$

 μ -track reconstruction from time and position of detected Cherenkov light \rightarrow neutrino direction

observed light and light densitiy → neutrino energy

> ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Credit: ANTARES

Event classes in the detector

Simulated Cerenkov Photons from electrons/hadrons in water

Credit: KM3NeT

Electron neutrino charged-current event

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Simulated v_e^{CC} event with $E_v = 10 \text{ GeV}$ and y=0.5

Simulated Cherenkov Photons from muon track in ice

 $\nu_{\mu} + A \rightarrow \mu + X \rightarrow \text{muon track}$

Simulated Cherenkov Photons from a shower in ice

 $v_e + A \rightarrow e + X \rightarrow electromagnetic shower$

The same shower event in water

 $v_e + A \rightarrow e + X \rightarrow electromagnetic shower$

Properties of ice and water

• Absorption length

should be as long as possible determines distance between optical sensors

• Scattering length

should be as long as possible

- \rightarrow direction resolution
- \rightarrow energy resolution
- \rightarrow neutrino flavor identification
- \rightarrow background suppression

Properties of ice and water

- B Absorption length ice: 110 m water: 63 m
- **B** Scattering length
 - ice: 30 m
 - water: 250 m

b1G-MT.uHd 10Hkthud 10HE.C.THN 100k

GOb..kVal80Hkthval1GHE.CTHN 100k

Photon propagation parameters: water versus ice

Properties of ice and water – optical background

- Optical background in South Pole ice about 700 Hz per PMT
- Optical background in Mediterranean water K-40 in water: 40 kHz per PMT bioluminescence:
 - up to MHz per PMT bursts
 - seasonal variation

optical background almost negligible due to short event time

Event quality in ice and water

•	Tracks		ice	water	
	angular resolution	1 TeV	1.0 °	0.7°	
		100 TeV	0.5°	0.10	
	energy resolution	dE/E	1	1	
•	Showers		ice	water	
	angular resolution	1 TeV	15°		4°
		100 TeV	10°	2°	
	energy resolution	dE/E	0.5	0.5	
					ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

IceCube

- 86Lines; 5160 PMTs
- Completion 2010
- Instrumented volume: 1 km³

Credit: IceCube

South Pole

The IceCube Optical Module

IceCube

- 86Lines; 5160 PMTs
- Completion 2010
- Instrumented volume: 1 km³

Credit: IceCube

Particle background: atm. muons and neutrinos

B NEXTMAR 1b1HPk16HR udb.k61-1b.RHGTCk V0 REHdG

BckE.VadHikNiG0HTkGHT.uRuGk6 ...H1k ...GkdGuuPk...HakE.VadHGhUHR 1kNHv

Particle background: atm. muons and neutrinos

B NEXTMAR 1b1HPk16HR udb.k61-1b.RHGTCk VO IR EHdG

BckE.VadHikNiG0HTkGHT.uRuGk6 ...H1k ...GkdGuuPk...HadkE.VadHGhUHR 1kNHv

Sky coverage of neutrino telecopes

Antares

B ineudkGinnertoG B HRTNALHditb-inner B KaGVERkd.k6PHNERkinNinnerSR

□\k6u⊞co⊡g □y

 $\square R$

 $\square R$

ANTARES in the Mediterranean Sea

ebyk-dk CEVt kVk CdkbVoHENHd UVbd0k

ANTARES deployment

Credit: ANTARES

Results from running neutrino telescopes

IceCube Neutrino Skymap: ν_{μ} Neutrinos

IceCube Neutrino Skymap: v_{μ} Neutrinos

yHE.C dH.©C88dun00bd.□ THG.MoNT□□□□ □Pkd.G□□□□

Search for neutrino point sources

IceCube 6 years, Northern sky: p-value: 35% PeV-southern sky: 87%

ANTARES 4 years best p-value 2,6%

PHYSICS

Background: atmospheric neutrino flux

More selective neutrino searches....

IceCube highest energy events

🗆 🗆 🔤 r ka

Vetoing downgoing muons

High energy starting events

Most starting events are showers; Energy around a PeV

Shower events

High energy track events

IceCube Neutrino Skymap: Neutrinos E>100 TeV

Detection of diffuse cosmic neutrino flux

Astrophys. neutino spectrum E>100 TeV

Astrophysical Neutrinos

Point Sources: Find > 1 neutrinos from the same direction (source). **Diffuse Flux**: Superposition of many weak sources; Identification via neutrino energy

Search for correlated neutrino emission

• Steady sources:

Source stacking (SNR, AGN, Black holes...)

- Time coincident searches: GRBs, AGN flares
- Sending alerts:

highest energy ν_{μ}

No significant signal yet (p<5 σ)

Next generation of neutrino telescopes

KM3NeT

KM3NeT line production

KM3NeT launching vehicle

- rapid deployment
- autonomous unfurling
- recoverable

IceCube next Generation

K0k □ E1k • kd □ ud0\kbGk61PHN£R k □ □ SR □

Summary and Conclusion

- Very high energy hadronic particles are produced in the universe
- Charged particles at Earth do not point back to their sources
- Neutral particles point back to sources: Photons: "easy" to detect, but can be produced by electrons Neutrinos: very hard to detect, but clear hadronic origin
- Neutrino telescopes:

IceCube detects cosmic high energy neutrinos since 2013 Future telescopes: KM3NeT / IceCube Gen2

Thank you for your attention!

