4th KSETA Plenary Workshop 2017

Tracking detectors in modern particle physics experiments^(*)

Norbert Wermes University of Bonn

(*) = mostly LHC, but not only

Outline

□ Tracking in the LHC -> HL-LHC environment

Some basic elements of tracking and tracking detectors

Tracking with Semiconductors

Pixels: from Hybrid to Monolithic detectors

Picosecond timing with silicon?

Conclusions

Where are we? ... or ... "from chips to Higgs and back"

spatial precision rate capability radiation tolerance high detection efficiency (in-time) timing accuracy

track reconstruction in boosted jets
 space vectors augmenting simple "hits"

ATLAS Pixel Detector in operation

Number of Pixel hits

Tasks of Tracking Detectors

- provide precise space points or space point clusters (vectors) originating from ionizing charged particles
 - particle track finding from patterns of measured hits (at large background & pile-up)
 - momentum (B-field) and angle measurement
 - measurement of primary and secondary vertices
 - multi-track separation and vertex-ID in the core of (boosted) jets
 - for low momentum tracks: measurement of the specific ionization (dE/dx)
- keep the material influencing the paths of particles to a minimum to avoid scattering in the material and secondary interactions

Good tracking ... p_T and IP measurement as example universitätbon

$$\sigma_{d_0} = \frac{\sigma_{\text{meas}}}{\sqrt{N}} \sqrt{1 + \frac{r^2}{(N+1)}} + \frac{r^4}{(N-2)(N+1)(N+2)}} + \frac{30N^2}{(N-2)(N+2)} \otimes \frac{\sigma_{MS}}{(N-2)(N+2)} + \frac{r^2}{(N-2)(N+2)}}$$

 $r = x_0/L = extrapolation parameter$

- optimize omeas until other effects dominate (e.g. MS)
- 1/L² : the longer L the better
- place first plane as near as possible to the prod. point
- p_T resol. linearly better with B-field strength ...
 but more confusion if many tracks
- Increasing N improves the resolution, but only as 1/VN

Technology most often used: Si - detectors **PRO** – high resolution $\sigma_{meas} \sim 10 \ \mu m$

- **CON** expensive
 - small N
 - small L

- small
$$X_0 =>$$
 large mult. scatt.

PRO – high rate capability

Gas-filled versus semiconductor detectors

++	material	-
+ Iow	N _{meas} cost	 high
 100 μm	rate/speed resolution	++ 10 μn

26 eV needed (Ar) per e/ion pair 94 e/ion pairs per cm intrinsic amplification typ. 10⁵ typ. noise: > 3000 e- (ENC)

3.65 eV (Si) needed per e/h pair **~10⁶ e/h pairs per cm** (20 000/250μm) no intrinsic amplification typ. noise: 100 e- (pixels) to 1000 e- (strips)

Some basics: How the signal is generated in a detector ...

how does a moving charge couple to an electrode ?

• respect Gauss' law and find

Shockley- Ramo theorem (Shockley: J Appl.Phys 1938, Ramo: 1939)

induction (weighting) potential

they determine how charge movement couples to a specific electrode

weighting field

Normal Field and Weighting Field

Recipe: To compute the weighting field of a readout electrode i, set voltage of electrode i to 1 and all other electrodes to 0.

Examples

parallel plates with space charge (i.e. Si)

14

Examples

parallel plates with space charge (i.e. Si)

$$v_e = \dot{x}_e = -\mu_e E(x) = +\mu_e(a - bx)$$
$$\dot{x}_h = -\mu_h(a - bx)$$

dangerous e.g. in CdTe

transient current

Current pulse measurements: TCT technique

Signal development in a wire configuration

17

Structured electrodes

signals are induced on BOTH (ALL) electrodes => exploit for second coordinate readout

double sided silicon strip detector

D particle rates ($\mathcal{L} = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$)

note: heavy ions: $\mathcal{L} = 10^{27} \text{ cm}^{-2} \text{ s}^{-1}$

- bunch crossing every 25 ns
- $N_{trk} = \sigma \mathcal{L} = 100 \text{ mb} \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} \times 120 \approx 10^{11} \text{ tracks/s}$ in $4\pi = 10^6 \times \text{LEP}$
- @ r = 5cm => 9.5 tracks/cm²/25 ns, but only 10⁻⁴ per pixel (100x100 μm²)

radiation level (@ r = 5cm, per detector lifetime)

- total ionizing dose (TID) = energy/mass (J/kg) = 100 Mrad -> 1 Grad
- non ionizing fluence (NIEL, breaks the lattice) = 10¹⁵ particles per cm² -> 10¹⁶ cm⁻²
- effects: ageing on wires, lattice damage, glue brittle, electronics, ...

How to meet the LHC rate and radiation challenges ...

TRT

l way out

 gas-filled detectors with small cells

timing precision \ll 25 ns

- solid state detectors
 - micro structuring
 - => finest granularity
 - but: sensitive to radiation

N. Wermes, Desy Kolloquium 2016

Example for "timing": RPCs (resistive plate chambers) universitätbonn

□ target: high timing precision (trigger and timing chambers, e.g. ATLAS Muon Spectrometer)

□ gas filled chambers w/ large signals

 operated in avalanche mode (≥10 kV/cm) or in streamer mode (~100kV/cm)

□ gas with high ionisation density and high quenching efficiency e.g. 94.7% C₂H₂F₄ + 5% iC₄H₁₀ + 0.3% SF₆

	Trigger RPC	Timing RPC		
el. Feld	20-50 kV/cm	~100 kV/cm		
op. mode	avalanche	streamer		
signal	< 10pC	< 100pC		
quench times	shorter	longer		
σ _t	1 ns	50 ps		
efficiency	98%	75%		

N. Wermes, Desy Kolloquium 2016

... "special" at the LHC: the radiation environment

Much progress in understanding radiated Si-sensors

... and cures (defect engineering ... examples)

- Iow temperature (-10 °C) operation
- oxygenated silicon
- start with n-implant (e⁻ collection) in p-substrate material (not available ~1998)

A. Junkes, PoS Vertex 2011 (2011) 035 I. Pintilie et al., Nucl.Instrum.Meth. A611 (2009) 52-68 [O] ≫[P]

for chip electronics (TID) use thin oxides and special designs

N. Wermes, Desy Kolloquium 2016

Typical tracker arrangements for the HL-LHC Upgrade ...universitätbonn

N. Wermes, Desy Kolloquium 2016

The typical S/N situation (... here ATLAS)

- Signal of a mip in 250µm Si \doteq 19500 e⁻ \rightarrow <10000 e⁻ after irradiation Charge on more than 1 pixel => S/N > 30 \rightarrow S/N \sim 10
- Discriminator thresholds = 3500 e, ~40 e spread, ~170 e noise
- 99.8% data taking efficiency
- 95.9% of detector operational
- \Box ca. 10 µm x 100 µm resolution (track angle dependent)
- □ 12% dE/dx resolution

New Developments (Pixels) ... for LHC and others

Hybrid Pixels

Depleted (fully) Monolithic Active Pixel Sensors (DMAPS)

(commercial CMOS Technology)

Peric et al., NIM A582 (2007) 876-885 & NIM A765 (2014) 172-176 Mattiazzo, Snoeys et al., NIM A718 (2013) 288-291 Havranek, Hemperek, Krüger, NW et al. JINST 10 (2015) 02, P02013

CMOS

Rate and Radiation Levels

Numbers for innermost layers (r ≈ 5cm,) -> scale by 1/10 for typical strip layers (r > 25 cm)

	STAR	Belle II	ALICE-LHC	ILC	LHC	HL-LHC-pp	
			heavy ion		рр	Outer	Inner
BX-time (ns)	110	2	20 000	350	25	25	25
Particle Rate (kHz/mm ²)	4	400 11	nic Pixer	250	1 000	1 000	10 000
Φ (n _{eq} /cm²)	few 10 ¹²	N3 X 10 ¹²	> 10 ¹³	10 ¹²	2x10 ¹⁵	10-10-1	2x10 ¹⁶
TID (Mrad)*	0.2	20	0.7	0.4	80	50	> 1000
 *per (assumed) liftetime LHC, HL-LHC: 7 years ILC: 10 years others: 5 years in need for much less material higher resolution thinner strips & monolithic pixels 		 state of the art large area strips hybrid pixels even larger area radhard sensors higher rates R/O 					

(Semi)-Monolithic Pixel Detectors

STAR / RHIC MAPS

operated 2014-2015

 \triangleright

ILC

total area ? m²

current baseline

How does a DEPFET work?

q

A charge **q** in the internal gate is – via the capacitance to the channel - a voltage which "steers" the channel current I_d together with the external gate voltage, which hence effectively changes by: $\Delta V = \alpha q / (C_{ox} W L)$. α < 1 due to stray capacitances

Kemmer, J., G. Lutz et al., Nucl. Inst. and Meth. A 288 (1990) 92

features:

- - g_a~ 700 pA/e⁻
 - small intrinsic noise
 - sensitive off-state, w/o power used

BELLE II DEPFET Pixel Detector

N. Wermes, SSI 2016, Tracking Detectors

(Semi)-Monolithic Pixel Detectors

STAR / RHIC MAPS

operated 2014-2015

ILC

total area ? m²

current baseline

(Semi)-Monolithic Pixel Detectors

STAR / RHIC MAPS

operated 2014-2015

radiation tolerant to 1/1500 of HL-LHC-pp

ILC

total area ? m²

current baseline

Large S/N versus radiation hardness ...

Electronics **inside** charge collection well

- large fill factor
 - \rightarrow no low field regions
 - → on average **short(er) drift** distances
 - → less trapping -> radiation hard
- Larger (100 fF) sensor capacitance
- additional well-well capacitance (~100 fF)
 - \rightarrow noise & speed/power penalties
 - \rightarrow x-talk easier (from digital to sensor)

Electronics outside charge collection well

- small fill factor
 -> very small sensor capacitance (~5 fF)
 - \rightarrow noise low, speed high, power low

 on average longer drift distances and low field regions
 → not radhard ? or ??

Goal-1 ... S/N ≈ 20, i.e. N ≤ 200e⁻ => S = 4000e⁻ (≜50µm)_{univ}

4D with LGADs? Low Gain Avalanche Detectors

30 ps timing precision?

New: How to obtain fast timing with Si detectors?

- 10 30 ps with (structured) Si detectors ??
- □ => exploit "in-silicon" charge amplification
 - in "Geiger Mode" fashion (like in gas **RPCs**) $\rightarrow \sigma_t$ governed by avalanche fluctuations

New: How to obtain fast timing with Si detectors?

- 10 30 ps with (structured) Si detectors ??
- □ => exploit "in-silicon" charge amplification
 - in "Geiger Mode" fashion (like in gas **RPCs**) $\rightarrow \sigma_t$ governed by avalanche fluctuations

LGAD – starting with PAD detectors

□ high voltage (800 - 1000 V)

high field -> fast e⁻

L thin (50 μm)

- higher field for given voltage
- steeper signal
- rad harder
- smaller Landau spread

🖵 gain ~10-20

- lower E-fields
- lower shot noise,
- no/few dark counts

still pad detectors

G. Pellegrini et. al, NIM A 765 (2014) 12–16.

N. Wermes, Desy Kolloquium 2016

Conclusions

Tracking Detectors (gas-filled, semiconductors, fibres) are facing highest challenges with HL-LHC upgrades and also generally.

This will advance the physics potential at the (almost newly built) HL-LHC experiments.

As usual almost certainly spin-offs (bio-medical) will emerge.

"Detector Physics" has become a field of its own.

Teilchendetektoren

Grundlagen und Anwendungen

BACKUP

DEPFET

How does a DEPFET work?

A charge q in the internal gate induces a mirror charge α q in the channel (α <1 due to stray capacitance). This mirror charge is compensated by a change of the gate voltage: $\Delta V = \alpha q / C = \alpha q / (C_{ox} W L)$ which in turn changes the transistor current I_d . FET in saturation:

$$I_{d} = \frac{W}{2L} \mu C_{ox} \left(V_{G} + \frac{\alpha q_{s}}{C_{ox} WL} - V_{th} \right)^{2}$$

 $\begin{array}{ll} I_d: \mbox{ source-drain current} \\ C_{ox}: \mbox{ sheet capacitance of gate oxide} \\ W,L: \mbox{ Gate width and length} \\ \mu: \mbox{ mobility (p-channel: holes)} \\ V_g: \mbox{ gate voltage} \\ V_{th}: \mbox{ threshold voltage} \end{array}$

Conversion factor:

q

$$g_{q} = \frac{dI_{d}}{dq_{s}} = \frac{\alpha\mu}{L^{2}} \left(V_{G} + \frac{\alpha q_{s}}{C_{ox}WL} - V_{th} \right) = \alpha \sqrt{2 \frac{I_{d}\mu}{L^{3}WC_{ox}}}$$
$$g_{m} : g_{q} = \alpha \frac{g_{m}}{WLC_{ox}} = \alpha \frac{g_{m}}{C}$$

Spatial Resolution

Spatial Resolution in segmented electrode configuration Sniversität

Arbitrary detector response ("data driven method")

typical for semiconductor detectors and patterned gaseous detectors channels have different gains

2 electrodes have signal over some threshold

 $N_{electrodes}$ = 2-3, S/N ~ 10

$$S_L(x) = Q \eta(x)$$

$$S_R(x) = Q - S_L(x) = Q(1 - \eta(x))$$

η = response function, indep. of Qcan be determined from signals themselves

$$\eta = \frac{S_L}{S_L + S_R}$$

- assume a constant hit probability density
- => can build inverse of η -function (η -> x)
- pick best estimate of position from a <u>measured</u> distribution
- algorithm can also be extended to three electrode situations

$$x_{rec} = \eta^{-1} \left(\frac{S_L}{S_L + S_R} \right) = \frac{a}{N} \int_0^{\eta} \frac{dN}{d\eta'} d\eta'$$

Arbitrary detector response

Gas-Filled Detectors

Multi Wire Proportional Chamber

- mother of all wire chambers (1960ies)
- break through in tracking, because tracks became electronically recordable
- Nobel Prize 1992

50

Time Projection Chamber

universität**bonn**

- □ full 3-D reconstruction (voxels): xy from wire/pad geometry at the end flanges; z from drift time
- □ 3D track information recorded -> good momentum resolution
- □ also dE/dx measurement easy -> particle ID (not topic of this lecture)
- □ large field cage necessary
- typical resolutions:

in $r\phi = 150-400 \ \mu m$ in $z \approx mm$

- challenges
 - long drift time -> limited rate capability
 - large volume -> geometrical precision
 - large voltages -> potential discharges

ALICE TPC

MICROMEGAS (MICRO MEsch GASeous Structure)

- separation of drift region and (short) amplification region by a micro grid
- □ R/O of induced charges by patterned electrode
- □ fast induced signals
- need precise grid alignment
- new development: INGRID structure obtained by "post processing" of grid directly on R/O chip

INGRID structure

Radiation Damage

Radiation damage to the FE-electronics ... and cure

Effects: generation of positive charges in the SiO_2 and defects in Si - SiO_2 interface

1. Threshold shifts of transistors

→ Deep Submicron CMOS technologies with small structure sizes (≤ 350 nm) and thin gate oxides (d_{ox} < 5 nm) → holes tunnel out

2. Leakage currents under the field oxide

Layout of annular transistors with annular gate-electrodes
 + guard-rings

Else

Can one do better than "hybrid"?

Hybrid Pixel Detectors

- complex signal processing already in pixel cells possible
- zero suppression
- temporary storage of hits during L1 latency
- radiation hard to >10¹⁵ n_{eq}/cm²
- high rate capability (~MHz/mm²)
- spatial resolution ~ 10 15 μm

PROs

- relatively large material budget: ~3% X₀ per layer (1% X₀ @ ALICE)
- sensor + chip + flex kapton + passive components
- support, cooling (-10°C operation), services
- resolution could be better
- complex and laborious module production
- bump-bonding / flip-chip
- many production steps
- expensive

hence: (Semi-)Monolithic pixels in part relying on commercial CMOS processes have come in focus (at first outside LHC-pp)

STAR

MAPS

2014

Belle II

DEPFET

0.014 m²

ALICE upgrade

ILC

DEPFET

MAPS

SOIPIX

20??

MAPS Beam pipe

2018

10 m²

2017

0.16 m²