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	Tracking	detectors		
	in		

									modern	par2cle	physics	experiments(*)		

(*)	=	mostly	LHC,	but	not	only	
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q Tracking	in	the	LHC	->	HL-LHC	environment	

q Some	basic	elements	of	tracking	and	tracking	detectors	

q Tracking	with	Semiconductors	

q Pixels:	from	Hybrid	to	Monolithic	detectors	

q Picosecond	2ming	with	silicon?		

q Conclusions	

Outline	
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Where	are	we?	...	or	...	“from	chips	to	Higgs	and	back”	
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ATLAS	

pp	–	collisions	

Run	1	(2010-12)		

Run	2	(2015-18):	Run	1	x	5	
	
2018	+		...	Run	1	x	10	?	
	
2026	+	...	Run	1	x	10	–	20	?	

LHC	≅	106	x	LEP	in	track	rate	!	
detector	development		

ATLAS	pixel	detector	installa2on	
precise	tracking		

pixel	detector	module	
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q  spa2al	precision	
q  rate	capability	
q  radia2on	tolerance	
q  high	detec2on	

efficiency	(in-2me)	
q  2ming	accuracy		

q 	track	reconstruc2on	in	boosted	jets	
q 	space	vectors	augmen2ng	simple	“hits”	



ATLAS	Pixel	Detector	in	operaRon	

N.	Wermes,	Desy	Kolloquium	2016	 6	

Cosmic	

4-hit	pixel	system!	
important	for	b-quark	tagging	

low	luminosity,	2	interac2ons	

layer	2	
layer	1	
B-layer	
IBL	



																											pp	->	WH	->	νl	+	bb	
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ν 
e	

22	collisions	
piling	up	

7	
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CMS	(Run	1)	 78	pile-up	events	

200	pile-up	events	

τ	

τ	

jet	

jet	

~9	cm	(2σ)		



Tasks	of	Tracking	Detectors	
q  provide	precise	space	points	or	space	point	

clusters	(vectors)	origina2ng	from	ionizing	
charged	par2cles	
	
§  par2cle	track	finding	from	pakerns	of	

measured	hits	(at	large	background	&	pile-up)	
§  momentum	(B-field)	and	angle	measurement	
§  measurement	of	primary	and	secondary	

ver2ces	
§  mul2-track	separa2on	and	vertex-ID	in	the	

core	of	(boosted)	jets	
§  for	low	momentum	tracks:	measurement	of	

the	specific	ioniza2on	(dE/dx)	
	
	

q  keep	the	material	influencing	the	paths	of	
par2cles	to	a	minimum	to	avoid	scakering	
in	the	material	and	secondary	interac2ons	

~10	µm	
~16	µm	

~170	µm	

ATLAS	



L y	

x	

Good	tracking		...		pT	and	IP	measurement	as	example	
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d0	

r	=	x0/L	=	extrapola2on	parameter	

x0	

approximate	helix	by	a	linearized	circle	
and	perform	a	least	square	fit	

Gluckstern	NIM	24	(1963)	381	
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§  op2mize	σmeas		un2l	other	effects	dominate	(e.g.	MS)	
§  1/L2		:	the	longer	L	the	beker 
§  place	first	plane	as	near	as	possible	to	the	prod.	point	
§  pT		resol.	linearly	beker	with	B-field	strength	…		

but	more	confusion	if	many	tracks	
§  Increasing	N	improves	the	resolu2on,	but	only	as	1/√N	

Technology	most	osen	used:	Si	-	detectors		
PRO		–	high	resolu2on	σmeas	~ 10	µm 
CON		–	expensive	
		 			–	small	N 
						 			–	small	L 

 		–	small	X0 => large mult. scatt. 
  PRO		–		high	rate	capability	



Gas-filled	versus	semiconductor	detectors	
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CDF	 H1	++ 				material	 	-	
+ 				Nmeas 		 	--	
low 				cost 																	high	
-- 				rate/speed 	++	
100	µm 				resolu2on										10	µm	

26	eV	needed	(Ar)	per	e/ion	pair		
94	e/ion	pairs	per	cm	
intrinsic	amplifica2on	typ.	105	
typ.	noise:	>	3000	e-	(ENC)		

3.65	eV	(Si)	needed	per	e/h	pair	
~106	e/h	pairs	per	cm	(20	000/250µm)	
no	intrinsic	amplifica2on	
typ.	noise:	100	e-	(pixels)	to	1000	e-	(strips)	

field	near	wire	
E(r)	~	1/r	
	
	
	
	
⇒ gas	amplifica2on	

E	linear	
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			Some	basics:	How	the	signal	is	generated	in	a	detector	...		

how	does	a	moving	charge	
couple	to	an	electrode	?	
• 	respect	Gauss’	law	and	find	
		
	

Shockley-	Ramo	theorem	
(Shockley:	J	Appl.Phys	1938,	Ramo:	1939)		
	

weigh2ng	field	

induc2on	(weigh2ng)	poten2al	

iS = �dQ

dt
= q ~Ew~v

dQ = q~r�wd~r they	determine	how	charge	movement		
couples	to	a	specific	electrode	



Normal	Field	and	WeighRng	Field	
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readout		
electrode	

readout		
electrode	

iS = �dQ

dt
= q ~Ew~v

Recipe:	To	compute	the	weigh2ng	field	of	a	readout	electrode	i,	set	voltage	of	
electrode	i	to	1	and	all	other	electrodes	to	0.		

Kolanoski,	Wermes	2015	



Examples	
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												velocity	(v=µE)	almost	const.		

t(ns)	

parallel	plate	detector	(gas	filled)	 parallel	plates	with	space	charge	(i.e.	Si)	

~E
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ẋh = = �µh(a� bx)



Examples	
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												velocity	(v=µE)	almost	const.		

parallel	plate	detector	(gas	filled)	 parallel	plates	with	space	charge	(i.e.	Si)	

~E
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d
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Q
tot

=

Z
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+
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0
i(t)dt = Q+

s

+Q�
s

= ±e

50%	
signal	

almost		
no	signal	

dangerous	e.g.	in	CdTe	

ve = ẋe = �µeE(x) = +µe(a� bx)
ẋh = = �µh(a� bx)



Current	pulse	measurements:	TCT	technique	
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1mm	pn	–	Diode	silicon	
-  same	weigh2ng	field	
-  different	electric	field	

single	crystal	diamond	
is	like	a	parallel	plate		
detector	filled	with	a		
dielectric	w/o	space		
charge	

diamond 

Si 

e	 h	

=>	

measurement	of	E-field	

transient	current	

e	

		Fink,	Lodomez,	Krüger,	Pernegger,	Weilhammer,	NW,		
NIM	A	565	(2006),	227	

cu
rr
en

t	



•  E(r)	~	1/r	=>	gas	amplifica2on	=>	“signal”	current	starts	only	close	to	the	wire	
		
•  Shockley-Ramo-recipe:	
	
	
					

Signal	development	in	a	wire	configuraRon	
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(*)	

which	fulfills	(*)	
																									far	away	from	wire	

~EW (r) =
1

r

1

ln b
a

~er �W (r) = � ln r/b

ln b
a

near	wire	wire	chamber	signals	are	governed	by	away	moving	ions	

(a=10	µm,	b=10	mm)		



Structured	electrodes			
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signals	are	induced	on	BOTH	(ALL)	electrodes	=>	exploit	for	second	coordinate	readout	

y 

x 

V=1	 V=0	V=0	wire	chamber	with	cathode	R/O	

double	sided	silicon	strip	detector	

Q	

Q	

Q	



How	to	meet	the	LHC	rate	and	radiaRon	challenges	...	

N.	Wermes,	Desy	Kolloquium	2016	 19	

	
q par2cle	rates		(L	=	1034	cm-2	s-1)							 	 	note:	heavy	ions:	L	=	1027	cm-2	s-1	
	

§  bunch	crossing	every	25	ns		
§  Ntrk	=	σ	L	=	100	mb	×	1034	cm-2s-1	×	120		≈	1011	tracks/s	in	4π	=	106	×	LEP	
§  @	r	=	5cm	=>	9.5	tracks/cm2/25	ns,	but	only	10-4	per	pixel	(100x100	µm2)	

	
	
	
q radia2on	level	(@	r	=	5cm,	per	detector	life2me)	
	

§  total	ionizing	dose	(TID)	=	energy/mass	(J/kg)	=	100	Mrad	->	1	Grad	
§  non	ionizing	fluence	(NIEL,	breaks	the	la�ce)	=	1015	par2cles	per	cm2	->	1016	cm-2		

§  effects:	ageing	on	wires,	la�ce	damage,	glue	brikle,	electronics,	…	
	

	

	



q way	out	
	

§  gas-filled	detectors	with		
small	cells			

	
§  2ming	precision	≪	25	ns	

§  solid	state	detectors		
-  micro	structuring		

	=>	finest	granularity	
-  but:	sensi2ve	to	radia2on		
	

	

How	to	meet	the	LHC	rate	and	radiaRon	challenges	...	
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ATLAS	TRT	

CMS	Tracker	
(200	m2)	



“avalanche”	<->	“streamer”	
					vdrij																<->		photon	emission	
			105	m/s						<->							106	m/s	

Example	for	“Rming”:	RPCs	(resisRve	plate	chambers)	
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q  target:	high	Rming	precision	(trigger	and	2ming	chambers,	e.g.	ATLAS	Muon	Spectrometer)	

q  gas	filled	chambers	w/	large	signals				
§  operated	in	avalanche	mode	(≥10	kV/cm)	

or	in	streamer	mode	(~100kV/cm)		

q  gas	with	high	ionisa2on	density	and	high	
quenching	efficiency		
e.g.	94.7%	C2H2F4	+	5%	iC4H10	+	0.3%	SF6	

Kolanoski,	Wermes	2015	

Trigger	RPC	 Timing	RPC	

el.	Feld	 20-50	kV/cm	 ~100	kV/cm	

op.	mode	 avalanche	 streamer	

signal	 <	10pC	 <	100pC	

quench	2mes	 shorter	 longer	

σt	 1	ns	 50	ps	

efficiency	 98%	 75%	



...	“special”	at	the	LHC:	the	radiaRon	environment	
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threshold	energy	to	remove	an	atom:		
Si:		25	eV,		diamond:	43	eV	

10	MeV	p	 24	GeV	p	 1	MeV	n	

charged		
defects	

genera2on	
recombina2on		
	

trapping	
center	

conduc2on	band	

valence	band	

transverse	(nm)	

lo
ng
itu

di
na
l	(
nm

)	



Much	progress	in	understanding	radiated	Si-sensors	
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uncharged @ RT +/- charged @ RT
e- trap
positive space charge
higher conc. after proton
than neutron irradiation
depends on oxygen content E(30K)

+

point defects extended defects (cluster)

BD

0.2

0.4

0.6

0.8

1.0

1.12

B

+/++

BD
A

0/++ BD=bistable donor (e- traps)
positive space charge
strongly produced 
in oxygen rich DOFZ material 

I
P
0/-

V2O complex (?)
negative space charge
and leakage current
strongly produced in oxygen lean STFZ

H(152K)
0/-

H(140K)
0/-

H(116K)
0/-

extended acceptor defects
negative space charge
-> reverse annealing, linear fluence
dependence

VO-/0

V2
-/0

CiOi
+/0

E4-

E5-- triple vacancy
negative space charge
-> high leakage current

I
P
+/0

E(eV)

         valence band

conduction band

	
	
		

e-	trap	
posiRve	space	charge	
higher	conc.	aser	proton	
than	neutron	irradia2on	
depends	on	oxygen	content	

BD=bistable	donor	(e-	trap)	
posiRve	space	charge	
strongly	produced		
in	oxygen	rich	DOFZ	material	

triple	vacancy,	small	cluster	
negaRve	space	charge	
->	high	leakage	current	

V2O	complex	(?)	
negaRve	space	charge	
causes	leakage	current,		
strongly	produced	in	oxygen	lean	STFZ	

extended	acceptor	defects		
produced	equally	by	n,p	
negaRve	space	charge	
->	reverse	annealing	

moves	
with	
changes	
to	Neff	

EF	

§  most	defects	show	linear	fluence	dependence	
§  cooling	helps	to	keep	Ileak	and	rev.	annealing	

smaller	
§  Neff	changes		

N.	Wermes,	Desy	Kolloquium	2016	

Radu	et	al.,	J.	Appl.	Phys.	117,	164503	(2015)	
RD50,	M.	Moll	et	al.,	PoS	(Vertex	2013)	(2013)	026			



…	and	cures	(defect	engineering	...	examples)	
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	 A.	Junkes,	PoS	Vertex	2011	(2011)	035	

I.	Pin2lie	et	al.,	Nucl.Instrum.Meth.	A611	(2009)	52-68	
		

N.	Wermes,	Desy	Kolloquium	2016	

radia2on	induced	vacancy	
(mobile	even	below	RT)	

harmless	
VOi	defect	

harmful	
removes	donor	(P)	
decreases	Neff	

[O]	≫[P]	

	
" 	low	temperature	(-10	oC)	opera2on		
" 	oxygenated	silicon	
" 	start	with	n-implant	(e-	collec2on)	in	p-substrate	material		(not	available	~1998)	
															

	
" 	for	chip	electronics	(TID)	use	thin	oxides	and	special	designs	



Typical	tracker	arrangements	for	the	HL-LHC	Upgrade	...	

N.	Wermes,	Desy	Kolloquium	2016	 25	

strips	

outer	
pixel	

depl.	CMOS	pixels	

inner	
pixel	

innermost	
pixel	
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	d
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	d
riv

en
	

n+	in	p	
strip	modules	

large	modules		
planar	n+	in	n	(or	p)	pixels	/	CMOS?		

3D	silicon	
dedicated	
rad.-hard	
detectors	

	
1.0	
	
	
	
	
	
	
0.5	
	
	
	
	
	
	
	
0.0	

R	
(m

)	



Pedestal	

d	

p	

K	
π	

The	typical	S/N	situaRon		(	...	here	ATLAS)	
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Signal	of	a	mip	in	250µm	Si	≙	19500	e-	à	<10000	e-	aser	irradia2on	
Charge	on	more	than	1	pixel	=>	S/N		>	30		à		S/N	~	10	
q 	Discriminator	thresholds	=	3500	e,	~40	e	spread,	~170	e	noise	
q 	99.8%	data	taking	efficiency	
q 	95.9%	of	detector	opera2onal			
q 	ca.	10	µm	x	100	µm	resolu2on	(track	angle	dependent)		
q 12%	dE/dx	resolu2on	

19500	e	

Threshold	
	

3500	e	

C.	Gemme	et	al.,	ATLAS-CONF-2011-016	N.	Wermes,	Desy	Kolloquium	2016	
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New	Developments	(Pixels)	
			...	for	LHC	and	others	



Is	there	life	ajer	“hybrid	pixels”?	...	monolithic?	
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Hybrid	Pixels		
	

Depleted	(fully)	Monolithic	
AcRve	Pixel	Sensors	(DMAPS)		

Planar	Pixel	Sensor	

N.	Wermes,	ITk	week,	09/16	

CMOS	

(commercial	CMOS	Technology)
		Peric	et	al.,	NIM	A582	(2007)	876-885	&	NIM	A765	(2014)	172-176	

Ma�azzo,	Snoeys	et	al.,	NIM	A718	(2013)	288-291	
Havranek,	Hemperek,	Krüger,	NW	et	al.	JINST	10	(2015)	02,	P02013	



STAR	 Belle	II	 ALICE-LHC	
heavy	ion	

ILC	 LHC	
pp	

HL-LHC-pp	
Outer	 Inner	

BX-2me		(ns)	 110	 2	 20	000	 350	 25	 25	 25	

Par2cle	Rate	
(kHz/mm2)	 4	 400	 10	 250	 1	000	 1	000	 10	000	

Φ	(neq/cm2)	 few	1012	 3	x	1012	 >	1013	 1012	 2x1015	 1015	 2x1016	

TID		(Mrad)*	 0.2	 20	 0.7	 0.4	 80	 50	 >	1000	

Rate	and	RadiaRon	Levels	
STAR	 ALICE-(HL)-LHC	 ILC	

ATLAS	

Numbers	for	innermost	layers	(r	≈	5cm,	)	->	scale	by	1/10	for	typical	strip	layers	(r	>	25	cm)		

Belle	II	

*per	(assumed)	lise2me	
LHC,	HL-LHC:	7	years	
ILC:	10	years	
others:	5	years	

CMS	

in	need	for		
§  much	less	material	
§  higher	resolu2on	
§  thinner	strips	&	monolithic	pixels	

§  large	area	strips	
§  hybrid	pixels	

state	of	the	art	 §  even	larger	area	
§  radhard	sensors		
§  higher	rates	R/O		



total	area	
0.014	m2	

(Semi)-Monolithic	Pixel	Detectors	
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current 
baseline 

STAR	/	RHIC	

ALICE		
–	Upgrade	

		

ILC		

operated	2014-2015		

under	development	
target:	2018	N.	Wermes,	Desy	Kolloquium	2016	

MAPS	

MAPS	 MAPS	

(Belle	II)	

DEPFET	pixels	

total	area	
0.16	m2	

total	area	
~10	m2	

total	area	
?	m2	

in	produc2on		
for	2017		
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How	does	a	DEPFET	work?	

A charge q in the internal gate is – via the 
capacitance to the channel – a voltage which 
“steers” the channel current Id  together with the 
external gate voltage, which hence effectively 
changes by: ΔV = α q / (Cox W L).  
α < 1 due to stray capacitances 

N.	Wermes,	SSI	2016,	Tracking	Detectors	

Source Drain 

P-channel 
Gate 

Gate-oxide; C=Cox W L 

L 

W 

d 

Internal 
gate 

q	

Kemmer,	J.,	G.	Lutz	et	al.,	Nucl.	Inst.	and	Meth.	A	288	(1990)	92	

features:	
§  gq~ 700	pA/e-	
§  small	intrinsic	noise		
§  sensi2ve	off-state,	w/o	power	used	



BELLE	II	DEPFET	Pixel	Detector		

2-layer	pixel	vertex	detector	(PXD)	
total	area	
0.014	m2	

DEPFET	sensor	

switcher	chips	

current		
digi2zer	chips	

data	processing	
chips	

2	layers	
50x75µm2	pixels	
0.21%	X0	

4	layers	
strips	

N.	Wermes,	SSI	2016,	Tracking	Detectors	 32	

7.1	cm	
8.4	cm	

C.	Marinas	et	al.,		JINST	10	(2015)	11,	C11002	
C.	Kiesling	et	al.,	PoS	EPS-HEP2011	(2011)	203	

L.	Andricek,	
IEEE	Trans.Nucl.Sci.	51	(2004)	1117-1120	



total	area	
0.014	m2	

(Semi)-Monolithic	Pixel	Detectors	
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current 
baseline 

STAR	/	RHIC	

ALICE		
–	Upgrade	

		

ILC		

operated	2014-2015		

under	development	
target:	2018	N.	Wermes,	Desy	Kolloquium	2016	

MAPS	

MAPS	 MAPS	

(Belle	II)	

DEPFET	pixels	

total	area	
0.16	m2	

total	area	
~10	m2	

total	area	
?	m2	

in	produc2on		
for	2017		



(Semi)-Monolithic	Pixel	Detectors	
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current 
baseline 

STAR	/	RHIC	

ILC		

operated	2014-2015		

N.	Wermes,	Desy	Kolloquium	2016	

MAPS	

MAPS	

total	area	
0.16	m2	

total	area	
?	m2	

radia2on	tolerant	to	1/1500	of	HL-LHC-pp	

total	area	
0.014	m2	

(Belle	II)	

DEPFET	pixels	

in	produc2on		
for	2017		

J.P.	Crooks,	…,	R.	Turcheka	et	al.	IEEE	TNS	2007	&	Sensors	(2008),	ISSN	1424-8820	
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Electronics	outside	charge	collec2on	well	
	
§  small	fill	factor	

->	very	small	sensor	capacitance	(~5	fF)	
à	noise	low,	speed	high,	power	low	

	
	
§  on	average	longer	dris	distances	and		

low	field	regions	
à	not	radhard	?	or	??	

	

	

p-substrate	(depletable)	

Deep	n-well	

P+	 									p-well	

Charge	signal	
Electronics	(full	CMOS)	

P+	nw	

-	 p-substrate	(depletable)	

n+	 												p-well	

Charge	signal	
Electronics	(full	CMOS)	

n+	nw	

deep	p-well	

-	

Large	S/N	versus	radiaRon	hardness	...		

Electronics	inside	charge	collec2on	well	
	
§  large	fill	factor		

à	no	low	field	regions		
à	on	average	short(er)	drij	distances	
à	less	trapping	->	radiaRon	hard	

	
§  Larger	(100	fF)	sensor	capacitance		
§  addiRonal	well-well	capacitance	(~100	fF) 		

à	noise	&	speed/power	penal2es	
à	x-talk	easier	(from	digital	to	sensor)	
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Goal-1	...	S/N	≈	20,	i.e.	N	≲	200e-				=>			S	=	4000e-		(≜50µm)		
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•  radiaRon	hardness	

Bias voltage (V)
0 20 40 60 80 100 120 140 160 180 200

m
)

µ
FW

H
M

 (

0

20

40

60

80

100

120

Width of charge collection region at 50% max
-3 0.2)e13 cm± = (1.0 eff = 0, NΦ

-3 0.1)e13 cm± = (1.3 eff = 1e14, NΦ
-3 0.4)e13 cm± = (3.7 eff = 5e14, NΦ
-3 3.2)e13 cm± = (6.7 eff = 1e15, NΦ
-3 1.3)e13 cm± = (9.7 eff = 2e15, NΦ

-3 0.1)e13 cm± = (18.8 eff = 5e15, NΦ

Full symb. no BP
Empty symb. BP

Preliminary!

I.	Mandic		

edge-TCT	measurements	
5	×	1015neq/cm2	LFoundry	

1.5e15neq/cm2	

99.7%!
(time integrated)"

Bias [V]"

1x1015	 AMS180	

gain	

noise	

TID	100	Mrad	

Timing [25ns bins]"

AMS180	aser	1	x	1015		neq/cm2	

with	jiker	reduc2on	

w/o	jiker	
reduc2on	

•  efficiency	

•  Rming	

LFoundry	
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4D	with	LGADs?	
				Low	Gain	Avalanche	Detectors	

	
30	ps	2ming	precision?	



New:	How	to	obtain	fast	Rming	with	Si	detectors?	
q  10	-	30	ps	with	(structured)	Si	detectors	??	
q  =>	exploit	“in-silicon”	charge	amplifica2on	

§  in	“Geiger	Mode”	fashion	(like	in	gas	RPCs)	à	σt	governed	by	avalanche	fluctua2ons	
	

H.	Sadrozinski	et	al.,	NIM	A730	(2013)	226-231	
N.	Car2glia	et	al.,	JINST	9	(2014)	C02001	
A.	Seiden	et	al,	Vertex2015,	Proceedings	

OR	....	in	“linear	mode”	fashion	(lower	E-fields,	lower	shot	noise,	no	dark	counts)		
->	Low	Gain	Avalanche	Detectors		
	

�2
t =

✓
Vth

dV/dt

����
rms

◆2

| {z }
+

✓
Noise

dV/dt

◆2

| {z }
+

✓
TDCbinp

12

◆2

| {z }
noise	2me	
jiker	

signal	2me	walk	 TDC	binning	
can	be	made	negligible	

iS = q ~Ew · ~v

q  Ul2mate	Goal:	simultaneous	space	(~10µm)		
																											and	2me	resolu2on	(<	50	ps)	

q  Op2ons	for	ATLAS	(HighGranularityTimingDetector;	Forward)	->	pile-up	killer		
													and	CMS-TOTEM	(in	Roman	Pots)		

“slew	rate”	



TDC	binning	
can	be	made	negligible	

New:	How	to	obtain	fast	Rming	with	Si	detectors?	
q  10	-	30	ps	with	(structured)	Si	detectors	??	
q  =>	exploit	“in-silicon”	charge	amplifica2on	

§  in	“Geiger	Mode”	fashion	(like	in	gas	RPCs)	à	σt	governed	by	avalanche	fluctua2ons	
	

H.	Sadrozinski	et	al.,	NIM	A730	(2013)	226-231	
N.	Car2glia	et	al.,	JINST	9	(2014)	C02001	
A.	Seiden	et	al,	Vertex2015,	Proceedings	

OR	....	in	“linear	mode”	fashion	(lower	E-fields,	lower	shot	noise,	no	dark	counts)		
->	Low	Gain	Avalanche	Detectors		
	

iS = q ~Ew · ~v

q  Ul2mate	Goal:	simultaneous	space	(~10µm)		
																											and	2me	resolu2on	(<	50	ps)	

q  Op2ons	for	ATLAS	(HighGranularityTimingDetector;	Forward)	->	pile-up	killer		
													and	CMS-TOTEM	(in	Roman	Pots)		

“slew	rate”	



LGAD	–	starRng	with	PAD	detectors	
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CNM	LGADs	
G.	Pellegrini	et.	al,	NIM	A	765	(2014)	12–16.		

data	G=10	
5x5	mm2	

3x3	mm2	

weight-field-2	simula2on	data	G=5	
1x1	mm2	

data	G=15,	1.2	x	1.2	mm2	

q  high	voltage	(800	-	1000	V)		
-  high	field	->	fast	e-	

q  thin	(50	µm)	
- higher	field	for	given	voltage	
-  steeper	signal		
-  rad	harder	
-  smaller	Landau	spread		

q  gain	~10-20	
-  lower	E-fields		
-  lower	shot	noise,		
-  no/few	dark	counts	

	

s2ll	pad	detectors	



Conclusions		

q Tracking	Detectors	(gas-filled,	semiconductors,	fibres)	are	facing	
highest	challenges	with	HL-LHC	upgrades	and	also	generally.	

	
q This	will	advance	the	physics	poten2al	at	the	(almost	newly	built)		

HL-LHC	experiments.	
	
	
q As	usual	almost	certainly	spin-offs		

(bio-medical)	will	emerge.	
	

q “Detector	Physics”	has	become	a	field	of	its	own.	

2016	
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BACKUP	
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DEPFET	
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How	does	a	DEPFET	work?	

( )2
2 thGoxd VVC
L
WI −= µ

FET in saturation: 

Id: source-drain current 
Cox: sheet capacitance of gate oxide 
W,L: Gate width and length 
µ: mobility (p-channel: holes) 
Vg: gate voltage 
Vth: threshold voltage 

Transconductance: 

( )thGox
G

d
m VVC

L
W

dV
dIg −== µ

L
IWµC

g dox
m 2=

A charge q in the internal gate induces a 
mirror charge αq in the channel (α <1 due to 
stray capacitance). This mirror charge is 
compensated by a change of the gate 
voltage: ΔV = α q / C = α q / (Cox W L) 
which in turn changes the transistor current 
Id . 
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q αα ==

N.	Wermes,	SSI	2016,	Tracking	Detectors	

Source Drain 

P-channel 
Gate 

Gate-oxide; C=Cox W L 

L 

W 

d 

Internal 
gate 

q	
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Spa2al	Resolu2on	
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SpaRal	ResoluRon	in	segmented	electrode	configura2ons		

with	analog	informa2on	
and	spread	over	more	
than	one	electrode	 center	of	gravity	

perfect	resolu2on	
but	only	w/o	noise	

with	uncorrelated	noise		
(normalized	to	signal)	

width	of	charge	cloud	

Gaussian	signal	



Arbitrary	detector	response	(“data	driven	method”) 		
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typical	for	semiconductor	detectors		
and	pakerned	gaseous	detectors	
channels	have	different	gains	

2	electrodes	have	signal	over	
some	threshold		

η	=	response	func2on,	indep.	of	Q	
can	be	determined	from	signals	themselves	

Nelectrodes	=	2-3,	S/N	~	10	
	

•  assume	a	constant	hit	probability	density	
•  =>	can	build	inverse	of	η-func2on	(η	->	x)	
•  pick	best	es2mate	of	posi2on	from	a	measured	distribu2on	
•  algorithm	can	also	be	extended	to	three	–	electrode	situa2ons		



η	-	value	

Arbitrary	detector	response	
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Belau,	E.	et	al.:	NIM	214	(1983)	253–260	

resolu2on	
	

	noise	

�2
x

= 2�2
n

⌧
⌘2

⌘0 2

�
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Gas-Filled	Detectors	



MulR	Wire	ProporRonal	Chamber	
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•  mother	of	all	wire	chambers	(1960ies)	
•  break	through	in	tracking,	because	

tracks	became	electronically	recordable	
•  Nobel	Prize	1992	

1960ies	

Fabio	Sauli	

George	Charpak	
NP	1992	

cathodes	
osen	
pakerned	
for	2nd	coordinate	
	 satura2on	

sets	in	
typ.	s	=	2mm	
σ	=	2	/√12	

103-5	 105-8	100	 >108	



Time	ProjecRon	Chamber	
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invented	by	D.	Nygren	(1976)	

large	wire-less	volume	

~B k ~E

q  full	3-D	reconstruc2on	(voxels):	xy	from	wire/pad	geometry	at	the	end	flanges;	z	from	dris	2me	
q  3D	track	informa2on	recorded	->	good	momentum	resolu2on	
q  also	dE/dx	measurement	easy	->	par2cle	ID	(not	topic	of	this	lecture)	
q  large	field	cage	necessary	
q  typical	resolu2ons:	 													in	rϕ	=	150-400	μm													in	z	≈	mm		
q  challenges	

§  long	dris	2me	->	limited	rate	capability	
§  large	volume			->	geometrical	precision	
§  large	voltages		->	poten2al	discharges	

prevent	ion-feedback	by	ga2ng	grid	

pulsed	

long	dris	along	,	amplifica2on	at	end	of	long	dris			

transverse	diffusion	
reduced	



ALICE	TPC	
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2.5	m	

5m	

�
x,y,z

⇡ 1mm3



MICROMEGAS	(MICRO	MEsch	GASeous	Structure)		
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q  separa2on	of	dris	region	and	(short)	amplifica2on	
region	by	a	micro	grid	

q  R/O	of	induced	charges	by	pakerned	electrode	
q  fast	induced	signals	
q  need	precise	grid	alignment	
q  new	development:	INGRID	structure	obtained	

by	“post	processing”	of	grid	directly	on	R/O	chip		

INGRID	structure	
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Radia2on	Damage	



RadiaRon	damage	to	the	FE-electronics	…	and	cure		

N.	Wermes,	Desy	Kolloquium	2016	 55	

Effects:	genera2on	of	posi2ve	charges	in	the	SiO2	

									and	defects	in	Si	-	SiO2	interface	
	
1.	Threshold	shijs	of	transistors		

è  Deep	Submicron	CMOS	technologies	with	small	structure	
sizes	(≤	350	nm)	and	thin	gate	oxides	(dox	<	5	nm)	à	holes	
tunnel	out	

	
2.	Leakage	currents	under	the	field	oxide	

è  Layout	of	annular	transistors	with	annular	gate-electrodes	
+	guard-rings	

p-Substrat 

n+ n+ 

Drain Source 

Gate 
Gate-Oxid Feld-Oxid 

leakage  

Source 

Gate 

Drain 

p-Substrat 

n+ n+ 

Drain Source 

Gate Gate-Oxid 

+ + 
+ 

+ 

particle/radiation 

+ 
+ 

+ 
+ - 
- 

- 
- 

- 
- 

+ 
+ 

+ 
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Else	



Can	one	do	beser	than	“hybrid”?	
Hybrid	Pixel	Detectors		

q  PROs	
§  complex	signal	processing	already	in	pixel	cells	possible		
§  zero	suppression		
§  temporary	storage	of	hits	during	L1	latency	
§  radia2on	hard	to	>1015	neq/cm2		
§  high	rate	capability	(~MHz/mm2)	
§  spa2al	resolu2on	~	10	–	15	µm	

q  CONs	
§  rela2vely	large	material	budget:	~3%	X0	per	layer	(1%	X0	@	ALICE)	
§  sensor	+	chip	+	flex	kapton	+	passive	components		
§  support,	cooling	(-10oC	opera2on),	services	
§  resolu2on	could	be	beker	
§  complex	and	laborious	module	produc2on		
§  bump-bonding	/	flip-chip	
§  many	produc2on	steps		
§  expensive	

q  hence:	(Semi-)Monolithic	pixels	in	part	relying	on	
													commercial	CMOS	processes	have	come	in	focus		
	 	 	 	(at	first	outside	LHC-pp)	
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STAR	
MAPS	
2014	
0.16	m2	

ALICE	upgrade	
MAPS	
2018	
10	m2	

ILC	
DEPFET	
MAPS	
SOIPIX	
20??	

Belle	II	
DEPFET	
2017	
0.014	m2	


