

Phenomenology of Flavoured Dark Matter in Dark Minimal Flavour Violation

KSETA Plenary Workshop, Durbach Monika Blanke, **Simon Kast** | Feb 13, 2017

KARLSRUHE INSTITUTE OF TECHNOLOGY

Outline

[Introduction](#page-2-0)

- **[Dark Matter Evidence](#page-2-0)**
- **[Flavoured Dark Matter](#page-7-0)**
- **[Dark Minimal Flavour Violation](#page-10-0)**

[Phenomenology](#page-11-0)

- [Constraints from Colliders](#page-12-0)
- **[Constraints from Flavour Precision Data](#page-13-0)**
- [Constraints from Relic Abundance of Dark Matter](#page-14-0)
- [Constraints from Direct Detection Experiments](#page-18-0)
- [Results of Combined Analysis](#page-21-0)

3 [Summary and Outlook](#page-23-0)

■ 1933: Virial theorem $2T = -U$ applied to coma cluster.

Figure : Coma cluster. **Figure :** Fritz Zwicky.

[Introduction](#page-2-0) [Phenomenology](#page-11-0) [Summary and Outlook](#page-23-0) Monika Blanke. **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 5/21

Figure : Vera Rubin.

DISTRIBUTION OF DARK MATTER IN NGC 3198

Figure : Rotation curve data vs. predictions.

- After recombination baryonic structure formation profits from preexisting dense DM regions
	- \Rightarrow galaxy formation possible in age of the Universe.

Figure : History of the Universe.

[Introduction](#page-2-0) [Phenomenology](#page-11-0) Phenomenology [Summary and Outlook](#page-23-0) Summary and Outlook 00000000 00000000 Monika Blanke. **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 5/21

Gravitational lensing effects \rightarrow Bullet Cluster. Misalignment of visible and gravitational mass distribution.

Figure : Bullet cluster. Visible matter distribution (red) and dark matter distribution (blue).

Figure : CMB power spectrum (Planck 2013).

Figure : Temperature fluctuations in CMB (Planck 2013).

Approaches to identify Dark Matter

- Extension of SM motivated by a new idea solving several problems (e.g. SUSY, Axions).
- Study of all kind of higher dimensional effective SM-DM interactions in Effective Field Theory (EFT).
- **Simplified models**: Study phenomenology of specific interactions with limited number of parameters.

Figure : Energy distribution of the Universe (Planck 2015).

The Flavour Gate to Dark Matter

 $\sqrt{ }$ $\overline{1}$

χ*u* χ*c* χ*t*

 \setminus \cdot

Assume an analogy to the SM fermions \rightarrow dark flavour triplet

The Flavour Gate to Dark Matter

Assume an analogy to the SM fermions \rightarrow dark flavour triplet

Flavoured Dark Matter coupling to SM right-handed up-quark triplet:

- DM flavour triplet χ*^j* , Dirac fermion, SM gauge singlet.
- **Heavy scalar mediator** ϕ , carrying colour and hypercharge.
- **Lagrangian has unbroken** \mathbb{Z}_3 symmetry and hence yields stability of DM χ (for $m_{\phi} > m_{\chi}$).

Figure : New physics interaction (basic vertex).

 $\sqrt{ }$ $\overline{1}$

χ*u* χ*c* χ*t*

 \setminus \cdot

Dark Minimal Flavour Violation (DMFV)

[Agrawal, Blanke, Gemmler '14]

Minimal Flavour Violation:

- Standard approach.
- Structure of λ_{ii} simple and completely determined by SM Yukawa couplings.
- **Limited number of free** parameters left in model.
- Easier to analyze limited phenomenology.

Dark Minimal Flavour Violation:

- Novel approach.
- Structure of λ_{ii} left general and as a new source of flavour and CP violating effects.
- **Extended number of free** parameters from coupling: 3 "couplings" *D*λ,*ii*, 3 "mixing angles" θ_{ij} , 3 "phases" δ_{ij} .
- More complicated but also more interesting phenomenology.

How to Detect Flavoured Dark Matter?

[Introduction](#page-2-0) **[Phenomenology](#page-11-0) Phenomenology** [Summary and Outlook](#page-23-0) Summary and Outlook 00000000

00000000

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 11/21

Constraints from Colliders

- Study the process $p p \to \phi \phi^{\dagger} \to q \bar{q} \chi \bar{\chi}.$
- Depending on decay product of ϕ we detect either a top-signature or a jet $(+E_T)$.
- Inspiration from SUSY searches at LHC [ATLAS collaboration '14]. \Rightarrow Upper bounds on CS of both $t\bar{t}$ and dijet signals.
- Those constraints translate to lower bound on mediator mass and upper bound on "couplings".

Figure : Studied LHC DM production processes.

Constraints from Flavour Precision Data

- No mesons with top-quark are possible, the only constraints come from D-mesons. ⇒ not too strong
- **The NP contribution has to be** smaller than experimental bounds [UTfit collaboration '14].
- Mixing angles are associated with CP violation phases. \Rightarrow get constrained

Assume DM abundance as a thermal relic.

⇒ SM matter and DM used to be in thermal equilibrium in early universe.

 \Rightarrow Same order of magnitude for energy content.

Freeze-out: annihilation rate VS expansion.

 \Rightarrow Remaining relic DM depends on speed of annihilation, i.e. on the cross section

Figure : Annihilation of DM flavours.

Annihilation cross section needs to have just the right value (in tolerance interval) [Steigman, Dasgupta, Beacom '12] to produce the observed relic DM.

$$
\langle \sigma v \rangle_{\text{eff}} \approx \approx \approx \sqrt{4} \frac{m_{\chi}^2}{m_{\phi}^4}
$$

$$
\langle \sigma \mathbf{v} \rangle_{\rm eff} \approx \approx \approx \lambda^4 \frac{m_\chi^2}{m_\phi^4}
$$

$$
\langle \sigma v \rangle_{\rm eff} \approx \approx \approx \lambda^4 \frac{m_\chi^2}{m_\phi^4}
$$

Actual form of CS more complicated and dependent on several criteria.

[Introduction](#page-2-0) **[Phenomenology](#page-11-0) Phenomenology Phenomenology** [Summary and Outlook](#page-23-0) 00000000 000000000 Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 16/21

• Foremost liquid Xenon experiments. **Current best bounds from**

- LUX data [LUX collaboration '16].
- Several future experiments in pursuit.

Figure : Xenon chamber of LUX experiment.

Figure : Bounds of current and future direct detection experiments.

 10^{-4} 10^{-4} 10^{-4} Cross Section [cm²] 10 10 $10²$ $10⁻⁴$ 10^{-4} 200 WIMP mass [GeV/c²]

Constraints from Direct Detection Experiments

Many contributions to total WIMPnucleon cross section:

$$
\sigma_n^{SI}=\frac{\mu_n^2}{\pi A^2}|Zf_p+(A-Z)f_n|^2.
$$

Constraints from Direct Detection Experiments

Figure : Cancellation of tree-level and neutron Z-penguin contributions (symbolic).

- Cancellation forces mixing angle.
- Xenon has several stable isotopes.
	- ⇒ Simultaneous suppression.
- **Future bounds exclude high couplings.**

Results of Combined Analysis

- Interplay of different constraints.
- For given m_x and $m_φ$ relic abundance constraints will determine coupling strength.
- **Upper bound of possible** coupling strength from direct detection constraints

⇒ Lower bound on DM mass from the combination (in dependence of mediator mass)

Figure : Valid regions for different strengths of direct detection constraints.

 00000000

Results of Combined Analysis

- Interplay of different constraints.
- For given m_x and $m_φ$ relic abundance constraints will determine coupling strength.
- **Upper bound of possible** coupling strength from direct detection constraints

⇒ Lower bound on DM mass from the combination (in dependence of mediator mass)

Figure : Valid regions for different strengths of direct detection constraints.

Many more interesting details and other effects.

 00000000

Summary and Outlook

Simplified model of flavoured dark matter.

- **Leave coupling general (Dark Minimal Flavour Violation).**
- Demanding phenomenologically interesting DM mass in combination with constraints also has impact on other parameters.
- Interesting interplay of constraints.
- Future direct detection experiments have large impact on parameter-space.

The End

Thank you!

[Introduction](#page-2-0) **[Summary and Outlook](#page-23-0)**
 Introduction Summary and Outlook
 [Phenomenology](#page-11-0) Summary and Outlook
 Phenomenology Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 21/21

The End

Thank you!

Questions?

[Introduction](#page-2-0) [Phenomenology](#page-11-0) [Summary and Outlook](#page-23-0) Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 **Feb 13, 2017** 21/21

References I

F

- Georges Aad et al. "Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using [√] *s* = 8 TeV proton–proton collision data". In: *JHEP* 09 (2014), p. 176. DOI: [10.1007/JHEP09\(2014\)176](http://dx.doi.org/10.1007/JHEP09(2014)176). arXiv: [1405.7875 \[hep-ex\]](http://arxiv.org/abs/1405.7875).
- \mathbf{r} Georges Aad et al. "Search for top squark pair production in final states with one isolated lepton, jets, and missing transverse states with one isolated lepton, jets, and missing transverse
momentum in $\sqrt{s} = 8$ TeV *pp* collisions with the ATLAS detector". In: *JHEP* 11 (2014), p. 118. DOI: [10.1007/JHEP11\(2014\)118](http://dx.doi.org/10.1007/JHEP11(2014)118). arXiv: [1407.0583 \[hep-ex\]](http://arxiv.org/abs/1407.0583).
- \equiv

R Aaij et al. "Precision measurement of D meson mass differences". In: *JHEP* 1306 (2013), p. 065. DOI: [10.1007/JHEP06\(2013\)065](http://dx.doi.org/10.1007/JHEP06(2013)065). arXiv: [1304.6865 \[hep-ex\]](http://arxiv.org/abs/1304.6865).

References II

- F Prateek Agrawal, Monika Blanke, and Katrin Gemmler. "Flavored dark matter beyond Minimal Flavor Violation". In: *JHEP* 1410 (2014), p. 72. DOI: [10.1007/JHEP10\(2014\)072](http://dx.doi.org/10.1007/JHEP10(2014)072). arXiv: [1405.6709 \[hep-ph\]](http://arxiv.org/abs/1405.6709).
	- D. S. Akerib et al. "Improved WIMP scattering limits from the LUX experiment". In: (2015). arXiv: [1512.03506 \[astro-ph.CO\]](http://arxiv.org/abs/1512.03506).
- \exists Sinya Aoki et al. "Review of lattice results concerning low-energy particle physics". In: *Eur.Phys.J.* C74 (2014), p. 2890. DOI: [10.1140/epjc/s10052-014-2890-7](http://dx.doi.org/10.1140/epjc/s10052-014-2890-7). arXiv: [1310.8555](http://arxiv.org/abs/1310.8555) [\[hep-lat\]](http://arxiv.org/abs/1310.8555).
- \blacksquare

 \equiv

A.J. Bevan et al. "The UTfit collaboration average of D meson mixing data: Winter 2014". In: *JHEP* 1403 (2014), p. 123. DOI: [10.1007/JHEP03\(2014\)123](http://dx.doi.org/10.1007/JHEP03(2014)123). arXiv: [1402.1664 \[hep-ph\]](http://arxiv.org/abs/1402.1664).

References III

- \equiv Monika Blanke et al. "FCNC Processes in the Littlest Higgs Model with T-Parity: a 2009 Look". In: *Acta Phys.Polon.* B41 (2010), pp. 657–683. arXiv: [0906.5454 \[hep-ph\]](http://arxiv.org/abs/0906.5454).
- \mathbf{r} N. Carrasco et al. "*D*⁰−*D*⁰ mixing in the standard model and beyond from *N^f* =2 twisted mass QCD". In: *Phys.Rev.* D90.1 (2014), p. 014502. DOI: [10.1103/PhysRevD.90.014502](http://dx.doi.org/10.1103/PhysRevD.90.014502). arXiv: [1403.7302 \[hep-lat\]](http://arxiv.org/abs/1403.7302).
- 量 Carlos A. Chavez, Ray F. Cowan, and W.S. Lockman. "Charm meson mixing: An experimental review". In: *Int.J.Mod.Phys.* A27 (2012), p. 1230019. DOI: [10.1142/S0217751X12300190](http://dx.doi.org/10.1142/S0217751X12300190). arXiv: [1209.5806 \[hep-ex\]](http://arxiv.org/abs/1209.5806).

References IV

- \blacksquare
- Csaba Csaki, Adam Falkowski, and Andreas Weiler. "The Flavor of the Composite Pseudo-Goldstone Higgs". In: *JHEP* 0809 (2008), p. 008. DOI: [10.1088/1126-6708/2008/09/008](http://dx.doi.org/10.1088/1126-6708/2008/09/008). arXiv: [0804.1954 \[hep-ph\]](http://arxiv.org/abs/0804.1954).
- F Yuval Grossman, Yosef Nir, and Gilad Perez. "Testing New Indirect CP Violation". In: *Phys.Rev.Lett.* 103 (2009), p. 071602. DOI: [10.1103/PhysRevLett.103.071602](http://dx.doi.org/10.1103/PhysRevLett.103.071602). arXiv: [0904.0305](http://arxiv.org/abs/0904.0305) [\[hep-ph\]](http://arxiv.org/abs/0904.0305).
	- Alexander L. Kagan and Michael D. Sokoloff. "On Indirect CP Violation and Implications for D0 - anti-D0 and B(s) - anti-B(s) mixing". In: *Phys.Rev.* D80 (2009), p. 076008. DOI: [10.1103/PhysRevD.80.076008](http://dx.doi.org/10.1103/PhysRevD.80.076008). arXiv: [0907.3917](http://arxiv.org/abs/0907.3917) [\[hep-ph\]](http://arxiv.org/abs/0907.3917).

 \exists

References V

- \equiv Can Kilic, Matthew D. Klimek, and Jiang-Hao Yu. "Signatures of Top Flavored Dark Matter". In: *Phys.Rev.* D91.5 (2015), p. 054036. DOI: [10.1103/PhysRevD.91.054036](http://dx.doi.org/10.1103/PhysRevD.91.054036). arXiv: [1501.02202](http://arxiv.org/abs/1501.02202) [\[hep-ph\]](http://arxiv.org/abs/1501.02202).
- 量 Alexey A Petrov. "Long-distance effects in charm mixing". In: (2013). arXiv: [1312.5304 \[hep-ph\]](http://arxiv.org/abs/1312.5304).
- \mathbf{r} Gary Steigman, Basudeb Dasgupta, and John F. Beacom. "Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation". In: *Phys.Rev.* D86 (2012), p. 023506. DOI: [10.1103/PhysRevD.86.023506](http://dx.doi.org/10.1103/PhysRevD.86.023506). arXiv: [1204.3622](http://arxiv.org/abs/1204.3622) [\[hep-ph\]](http://arxiv.org/abs/1204.3622).

James D. Wells. "Annihilation cross-sections for relic densities in the low velocity limit". In: (1994). arXiv: [hep-ph/9404219](http://arxiv.org/abs/hep-ph/9404219) [\[hep-ph\]](http://arxiv.org/abs/hep-ph/9404219).

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 26/21

The Flavour Gate to Dark Matter

[Agrawal, Blanke, Gemmler '14]

Assume an analogy to the SM fermions \rightarrow dark flavour triplet $\chi_i.$

The Flavour Gate to Dark Matter

[Agrawal, Blanke, Gemmler '14]

Assume an analogy to the SM fermions \rightarrow dark flavour triplet $\chi_i.$

Flavoured Dark Matter coupling to SM right-handed up-quark triplet:

$$
\mathcal{L}_{NP, int} = -\lambda_{ij} \bar{u}_{Ri} \chi_j \phi + h.c.
$$

$$
\mathcal{L}_{\text{NP,mass}} = -m_{\phi} \phi^{\dagger} \phi - m_{\chi} \bar{\chi} \chi
$$

- DM flavour triplet χ_j , Dirac fermion, SM gauge singlet.
- Heavy scalar mediator ϕ , carrying colour and hypercharge.
- **Lagrangian has unbroken** \mathbb{Z}_3 symmetry and hence yields stability of DM χ (for $m_{\phi} > m_{\chi}$).

Dark Minimal Flavour Violation

[Agrawal, Blanke, Gemmler '14]

Flavour Symmetry

 $U(3)_u \times U(3)_d \times U(3)_q \times U(3)_x$

is only broken by SM Yukawa couplings and the DM-quark coupling λ_{ii} (Dark Minimal Flavour Violation).

 \Rightarrow Beyond Minimal Flavour Violation.

 \Rightarrow only DM mass splitting comes from RG running:

 $m_{ij} = m_\chi (1\!\!\!1 + \eta \lambda^\dagger \lambda + ...)_{ij} = m_\chi (1 + \eta (D_{\lambda, ii})^2 + ...) \delta_{ij}.$

 \blacksquare η depends on the full theory \rightarrow has to be a parameter of the simplified model.

- **flavour with lowest mass is our DM candidate.**
	- \rightarrow we choose the "top-flavour". [Kilic, Klimek, Yu '15]

Parametrization of DM-Quark Coupling Matrix

Dark Minimal Flavour Violation (DMFV): λ_{ii} is a general 3 \times 3 coupling matrix \rightarrow 9 real parameters and 9 complex phases.

Can be split up as (bilinear diagonalization):

$$
\lambda = U^{\lambda} D_{\lambda} V^{\lambda}
$$

with unitary matrices $\pmb{\nu}^{\lambda},\pmb{\nu}^{\lambda}$ and diagonal real matrix $\pmb{\mathit{D}}_{\lambda}.$

- Use redundancy to eliminate 3 phases in U^{λ} .
- Use flavour symmetry in dark sector $\mathcal{U}(3)_\chi$ to get rid of V^λ

After using all the symmetries at our disposal λ has 9 parameters left and can be parametrized as:

$$
\lambda = U^\lambda_{23} U^\lambda_{13} U^\lambda_{12} D_\lambda
$$

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 29/21

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 30/21

Constraints from SUSY Searches at LHC

[ATLAS collaboration '14]

- Study the process $pp \to \phi \phi^{\dagger} \to q\bar{q}\chi\bar{\chi}.$
- **Depending on decay product of** ϕ we detect either a top-signature or a jet $(+E_T)$.
- Inspiration from SUSY searches at LHC
	- \Rightarrow Upper bounds on CS of both $t\bar{t}$ and dijet signals.

Figure : Studied LHC DM production processes.

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 31/21

[References](#page-26-0)

Constraints from $t\bar{t}$ + E_{τ} Searches at LHC

- $D_{\lambda,33}$ increased \rightarrow BR of decay goes up.
- $D_{\lambda,11}$, $D_{\lambda,22}$ increased \rightarrow BR of decay goes down.
- **BUT**: For high $D_{\lambda,11} = D_{\lambda,22}$ we observe increasing excluded areas.

400

Figure : Exclusion plot for $t\bar{t}$ final state, mixing angles set to zero.

Constraints from SUSY Searches at LHC

Figure : Cross section of $t\bar{t}$ final state for $m_{\phi} = 850$ GeV and $m_{\chi} = 50$ GeV, mixing angles set to zero.

Explanation: NP production

- Major contribution to total production (for high *D*λ,11, $D_{\lambda,22}$
- This effect can make up for drop in BR
- $D_{\lambda,33}$ not relevant, since the protons do not contain top
- **•** Very high couplings can lead to serious exclusion areas.

[References](#page-26-0)

Constraints from dijet + E_T Searches at LHC

Figure : Exclusion plot for dijet final state, mixing angles set to zero.

- Stronger exclusion bounds on model.
- The phenomenologically interesting region is m_{γ} < 1 TeV.
- Too large couplings *D*λ,*ii* would exclude nearly all of parameter space.
- **Most serious constraints come from dijet** final state.

 \Rightarrow Safe parameter-space:

 $m_\phi \geq 850$ GeV $2.0 \ge D_{\lambda,33} \ge D_{\lambda,22}, D_{\lambda,11}$

[References](#page-26-0)

Influence of Mixing Angles on LHC production

- Mixing angles shift influences between couplings *D*λ,*ii*. \Rightarrow For big splitting in the couplings, mixing angles can cause big shifts in cross sections.
- For our choice of m_ϕ bounds from $t\bar{t}$ final state cause no constraints.
- **Norst allowed case for dijet final state, in our safe parameter-space,** \blacksquare is $D_{\lambda,11} = D_{\lambda,22} = D_{\lambda,33} = 2.0$ \Rightarrow Unchanged by mixing angles.

 \Rightarrow Mixing angles can cause no problem with this choice of safe parameter-space.

Flavour Constraints from Neutral Meson Mixing

[UTfit collaboration '14]

- No mesons with top-quark are possible, the only constraints come from D-mesons. ⇒ not too strong
- **The NP contribution has to be** smaller than experimental bounds.

Figure : NP contr. to neutral D-meson mixing.

$$
M_{12}^{D,NP} = \frac{1}{2m_D} \langle \bar{D}^0 | \mathcal{H}_{\text{eff}}^{\Delta C=2,\text{new}} | D^0 \rangle^*
$$

=
$$
\frac{1}{384\pi^2 m_\phi^2} \sum_{i,j} \lambda_{uj}^* \lambda_{cj} \lambda_{ui}^* \lambda_{ci} \cdot L(x_i, x_j) \cdot \eta_D \cdot m_D f_D^2 \hat{B}_D.
$$

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 36/21

Flavour Constraints from Neutral Meson Mixing

$$
\left((\lambda\lambda^{\dagger})_{cu}\right)^2=\left((U_{\lambda}D_{\lambda}D_{\lambda}^{\dagger}U_{\lambda}^{\dagger})_{cu}\right)^2
$$

- **For degeneracy** *D*_{λ,11} = *D*_{λ,22} = *D*_{λ,33} the mixing matrices $\mathit{U}^{\lambda}_{ij}$ will drop out.
- The higher the splitting $\Delta_{ii} = D_{\lambda,ii} - D_{\lambda,ii}$, the more we will see the constraints on the mixing angle θ*ij*.

coupling splittings. $m_{\phi} = 850$ GeV and $m_x = 250$ GeV.

⇒ Most significant constraints on θ_{12} , other mixings nearly unconstrained.

[References](#page-26-0)

DM Constraints from Observed Relic Abundance

[Steigman, Dasgupta, Beacom '12]

- Assume DM abundance as a thermal relic, $T_f \propto \frac{m_\chi}{20}$
- **Annihilation CS has to be just large** enough to produce the correct relic density (we allow for a 10% tolerance interval):

$$
\langle \sigma v \rangle_{\text{eff},\text{exp}} = 2.2 \times 10^{-26} \text{cm}^3/\text{s}.
$$

 \Rightarrow cuts out valid area for $D_{\lambda,ii}$ depending on m_{ϕ} and m_{γ}

Figure : Annihilation of DM flavours.

$$
\left\langle \sigma v\right\rangle_{\text{eff}}=\frac{1}{9}\times\frac{3}{256\pi}\sum_{i,j=1,2,3}\sum_{k,l=u,c,t}\lambda_{ki}\lambda_{ki}^*\lambda_{ij}\lambda_j^*\frac{\sqrt{\left(4m_{\chi}^2-(m_k-m_l)^2\right)\left(4m_{\chi}^2-(m_k+m_l)^2\right)}}{\left(m_{\phi}^2+m_{\chi}^2-\frac{m_{k}^2}{2}-\frac{m_{l}^2}{2}\right)^2}.
$$

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 38/21

DM Constraints from Observed Relic Abundance

Depending on the mass splitting of the different DM flavours several freeze-out scenarios are possible.

$$
m_{ij}=m_{\chi}(1+\eta(D_{\lambda,ii})^2+\ldots)\delta_{ij}.
$$

For a DM mass below the top-quark mass this decay channel drops out.

 \Rightarrow CS formula and hence impact on parameters can be quite different

Extreme example: only χ_t present at freeze-out with DM mass below \Box top mass threshold:

$$
\langle \sigma v \rangle_{\text{eff}} = \frac{3}{256\pi} \sum_{k,l=u,c} \lambda_{k3} \lambda_{k3}^* \lambda_{l3} \lambda_{l3}^* \frac{4m_\chi^2}{\left(m_\phi^2 + m_\chi^2\right)^2}.
$$

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 39/21

Quasi-Degenerate Freeze-Out (QDF) Szenario

- All DM flavours are present at the freeze-out.
- We require the mass splitting to be less than 1% (significantly smaller than *Tf*) for this to happen.
- n is free parameter \rightarrow choose it favourable: -0.01.
- This guarantees top-flavoured DM (see direct detection section for motivation).
- **n** Constraint cuts out valid area for *D*_{λ,*ii*} depending on m_{ϕ} and m_{χ} .
- **Lower bound on** m_x **due to upper limits** for $D_{\lambda,ji}$, depending on m_{ϕ} .

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 40/21

Single Flavour Freeze-Out (SFF) Szenario

- Only m_x present at freeze-out.
- We require the mass splitting to be more than 10% (significantly bigger than T_f) for this to happen.
- n is free parameter \rightarrow choose it favourable: -0.075.
- This guarantees top-flavoured DM (see direct detection section for motivation).
- Constraint cuts out valid area of parameters depending on m_{ϕ} and m_{γ} , with significant effect on mixing angles.
- In addition to lower bound, we also find an upper bound on m_x due to upper and lower (from mass splitting condition) limits for *D*λ,*ii*, depending on m_ϕ .

Figure : Valid regions in single flavour freeze-out scenario for $m_{\phi} = 850$ GeV and $m_{\chi} = 210$ GeV.

Figure : Mass bounds in single flavour freeze-out scenario.

[References](#page-26-0)

DM Bounds from Direct Detection Experiments

Many contributions to total WIMPnucleon cross section:

$$
\sigma_n^{SI}=\frac{\mu_n^2}{\pi A^2}|Zf_p+(A-Z)f_n|^2.
$$

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 42/21

DM Bounds from Direct Detection Experiments

$$
f_p^{\text{tree}} = 2f_n^{\text{tree}} = \frac{|\lambda_{ut}|^2}{4m_{\phi}^2}.
$$
\n
$$
f_p^{\text{box}} = 2f_n^{\text{box}} = \sum_{i,j} \frac{|\lambda_{ui}|^2 |\lambda_{jt}|^2}{32\pi^2 m_{\phi}^2} F\left(\frac{m_{q_i}^2}{m_{\phi}^2}, \frac{m_{\chi_j}^2}{m_{\phi}^2}\right).
$$
\n
$$
f_p^{\text{photon}} = -\sum_{i} \frac{|\lambda_{it}|^2 e^2}{48\pi^2 m_{\phi}^2} \left(\frac{3}{2} + \log\left(\frac{m_{q_i}^2}{m_{\phi}^2}\right)\right).
$$
\n
$$
f_p^Z = -\sum_{i} \frac{3|\lambda_{it}|^2 e^2 \left(\frac{1}{2} - 2\sin^2(\Theta_W)\right)}{32\pi^2 \sin^2(\Theta_W) \cos^2(\Theta_W) m_Z^2} \frac{m_{q_i}^2}{m_{\phi}^2} \left(1 + \log\left(\frac{m_{q_i}^2}{m_{\phi}^2}\right)\right).
$$
\n
$$
f_n^Z = -\sum_{i} \frac{3|\lambda_{it}|^2 e^2 \left(-\frac{1}{2}\right)}{32\pi^2 \sin^2(\Theta_W) \cos^2(\Theta_W) m_Z^2} \frac{m_{q_i}^2}{m_{\phi}^2} \left(1 + \log\left(\frac{m_{q_i}^2}{m_{\phi}^2}\right)\right).
$$

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 43/21

DM Bounds from Direct Detection Experiments

[LUX collaboration '15]

- All contributions have to combine to a WIMP-nucleon cross-section below the LUX bounds.
- All contributions are positive, only the Z-penguin with the neutron is negative ⇒ saves the day.
- Largest contribution comes from tree-level process. Largest negative term is hence interference term of tree-level and neutron Z-penguin.
- Most important terms, have to nearly cancel each other:

$$
A_{\mathcal{I}}\cdot D^4_{\lambda,33}\cdot sin(\theta_{13})^4-A_{\mathcal{II}}\cdot D^4_{\lambda,33}\cdot sin(\theta_{13})^2\cdot cos(\theta_{13})^2\cdot cos(\theta_{23})^2
$$

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 45/21

[References](#page-26-0)

DM Bounds from Direct Detection Experiments

- Tree level and neutron Z-penguin have to nearly cancel each other.
	- \Rightarrow serious constraints on θ_{13}
- For higher couplings the cancellation gets more complicated.
- For too large couplings the cancellation is no longer possible at all \rightarrow excluded.
- Top-flavoured DM is the natural choice: ⇒ Tree-level contribution small ⇒ Neutron Z-penguin contribution large.

Combined Analysis of Constraints (QDF)

Combined application of both flavour, relic abundance and direct detection constraint in quasi-degenerate freeze-out scenario.

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 46/21

Combined Analysis of Constraints (QDF)

- **A** combination of relic abundance and direct detection constraints confine θ_{13} to a narrow interval.
- **n** The bounds on the DM mass become more serious, since the parameters do not only have to fulfill relic abundance constraints.
- The combined analysis clearly prefers top-flavoured DM.

Combined Analysis of Constraints (SFF)

Combined application of both flavour, relic abundance and direct detection constraint in single flavour freeze-out scenario.

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 48/21

Combined Analysis of Constraints (SFF)

- **A** combination of relic abundance and direct detection constraints confine θ_{13} to a narrow interval (even more serious than in QDF).
- **E** Especially in SFF the combination of all constraints extremely limits the chance of finding a valid configuration of all parameters for $m_{\chi_t} \leq m_{\text{top}}$.
- The combined analysis clearly prefers top-flavoured DM.

Figure : Exclusion plots for dijet final state for various couplings, mixing angles set to zero.

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 50/21

Figure : Exclusion plots for dijet final state for various couplings, mixing angles set to zero.

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 51/21

Figure : Exclusion plots for dijet final state for various couplings, mixing angles set to zero.

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 52/21

Figure : Exclusion plots for *tt* final state for various couplings, mixing angles set to zero.

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 53/21

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 54/21

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 55/21

relative number of valid points 0.006 0.005 0.004 0.003 0.002 0.001 δ_{12} **Figure :** Impact of flavour constraints on Θ_{12}^5 . 6

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 56/21

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 57/21

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 58/21

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 59/21

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 60/21

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 61/21

[References](#page-26-0)

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 63/21

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 64/21

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 65/21

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 66/21

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 67/21

 $m_{\phi} = 850$ GeV and $m_{\chi} = 150$ GeV.

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 68/21

 $m_{\phi} = 850$ GeV and $m_{\chi} = 250$ GeV.

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 69/21

 $m_{\phi} = 850$ GeV and $m_{\chi} = 225$ GeV.

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 Feb 13, 2017 70/21

 $m_{\phi} = 850$ GeV and $m_{\chi} = 250$ GeV.

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 Feb 13, 2017 71/21

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 Feb 13, 2017 72/21

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) **Feb 13, 2017** Feb 13, 2017 73/21

[References](#page-26-0)

Monika Blanke, **Simon Kast** – [Flavoured Dark Matter in DMFV](#page-0-0) Feb 13, 2017 **Feb 13, 2017** 74/21