Mass composition studies of cosmic rays with muons & experiences with the DDAp

Sarah Müller

Karlsruhe Institute of Technology and Universidad Nacional de San Martín

February 13, 2017


Contents

- 1 Mass composition studies of CRs
- 2 Double Degree program in Astrophysics

Contents

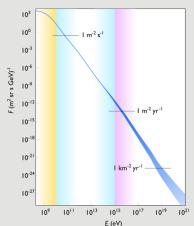
- 1 Mass composition studies of CRs
- 2 Double Degree program in Astrophysics

Origin of Cosmic Rays

- Particles accelerated at astrophysical sources
- Which sources?
- Transition from galactic to extra-galactic?
- Propagation effects?

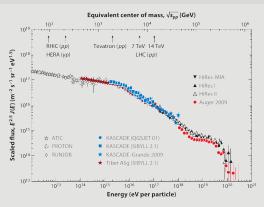
How to find out experimentally

- Energy distribution of CRs
- Elemental composition
- Arrival directions


Detection of Cosmic Rays

Low energies

direct detection of cosmic rays


High energies

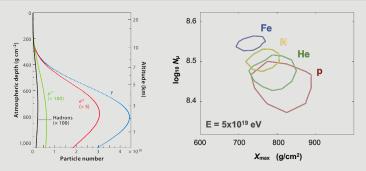
measurement of air showers at earth


Energy Spectrum


- $E \le 10^{14} \, \mathrm{eV}$: acceleration in galactic SNRs (favored interpretation)
- $10^{14} \, \mathrm{eV} < E \le 10^{17} \, \mathrm{eV}$ ("knee"): acceleration limit of galactic SN?
- $E > 10^{17} \, \text{eV}$ ("ankle"): transition to extra-galactic CRs?
- ⇒ Experimental check: Elemental composition of CRs

Measurement of High Energy CRs

Primary CR produces particle cascade in atmosphere

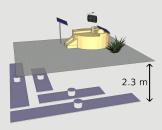

Signal: footprint on ground & development in atmosphere

Def.: Depth of Shower Maximum X_{max}

- X denotes atmospheric column density
- \blacksquare X_{max} : density where number of particles is maximal

Separation of Light and Heavy Primaries

- Light CRs (p): Deep showers (large X_{max}) with few muons
- Heavy CRs (Fe): High showers (small X_{max}) with many muons

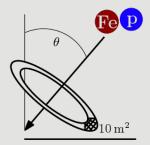

Superposition model

Nucleus of mass $A \approx A$ independent nucleons with $E_h = E_0/A$

Upgrade of Pierre Auger Observatory

Muon measurements with

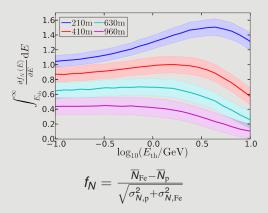
- Scintillation detectors on top of each water-Cherenkov detector
- Buried scintillation detectors (AMIGA) as direct verification
- ⇒ Energy thresholds of few tens of Mev to 1 GeV



Simulation Study

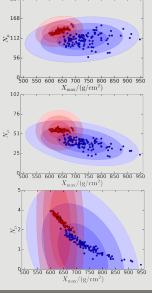
How does the energy threshold of muon detectors influence the separability of primaries?

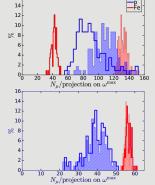
Shower library


- p & Fe primaries (115 unthinned showers each)
- $E = 3.16 \times 10^{18} \, eV$
- $\theta = 38^{\circ}, \phi \text{ random}$

- Ideal muon detectors in shower plane
- **Account for detection fluctuations by resampling "true"** N_{μ} :

$$P_{\lambda}(k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad \lambda = \rho_{\mu} A = N_{\mu}$$
 (Poisson)


Threshold Dependence of Separability

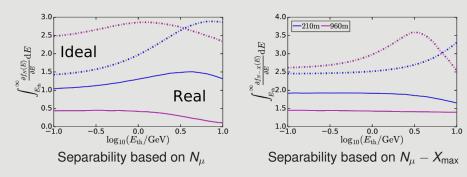


Best separability at small core distances for $E_{\rm th} \approx 4\,{\rm GeV}$?!

$N_{\mu} - X_{\rm max} \ (r = 210 \, {\rm m})$

■ *E*_{th} = 0.1 GeV: overlapping muon number distributions

■ $E_{\text{th}} = 4 \, \text{GeV}$: clear separation


■ E_{th} = 26 GeV: small overlap, large fluctuations

 N_{μ} /projection on

10

Effect of Detection Fluctuations


- Ideal: high thresholds and large core distances favored
- Real: detection fluctuations worsen separability for large r or E_{th}
- Threshold dependence of separability still visible for small *r*

Questions?

■ Best separability for threshold $E_{th} \approx 4 \, \mathrm{GeV?!}$

- Change of $N_{\mu} X_{\text{max}}$ correlation with E_{th}
- Fluctuations reduce effect, however still noticeable for small r

Contents

- 1 Mass composition studies of CRs
- 2 Double Degree program in Astrophysics

Combine two doctoral programs

Doctorado en Astrofísica

UNSAM

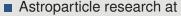
UNIVERSIDAD
NACIONAL DE

newly created for the DDAp, directed together with KIT

already existent program, integrated into KSETA

Karlsruhe Institute of Technology

- Merge of university & national large scale research center
- 25000 students, 6000 scientists
- Astroparticle research at the Institute for Nuclear Physics (IKP)



Universidad Nacional de San Martín

- Public university
- Established 1992
- 22000 students

Program Overview

- Co-supervised scientific research
- 2 stays of at least 12 months at other place
- Complementary lectures in physics & language courses

Orientation, start with scientific work

Choose joint scientific topic

Scientific work on topic {

Finish thesis

Exemplary schedule (for German participants) /2 year at KIT (Germany)

1/2 year at KIT
1/2 year at UNSAM

1 year at KIT

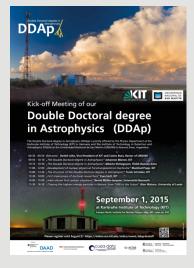
1/2 year at UNSAM

 $^{1/2}$ year at KIT

(Argentina) (Germany)

(Argentina)

(Germany)



Defense with joint final examination

Doctoral degree of both universities

Inauguration of the Program

- 2012 first individual "cotutelle"
- 2014 first participants at KIT
- 2015 first participants at UNSAM
- May 2015 Kick-Off at UNSAM
- September 2015 Kick-Off at KIT

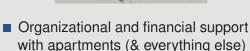
cuaa-dahz

DDAp Participants

DDAp Lectures

Lecturers from UNSAM/KIT come for 1-2 weeks to KIT/UNSAM

- G. Romero: Introduction to Black-Hole Astrophysics (2015, KIT)
 Scientific Philosophy (2016, UNSAM)
- E. Roulet: Neutrino Astrophysics (2016, KIT)
- D. Zeppenfeld: Particle Physics at Colliders (2016, UNSAM)
- S. Mollerach: Cosmology and Statistical Methods (2016, KIT)



Buenos Aires - Home and Work

- 1st stay: 45 min/1.15 h to work
- 2nd stay: much nearer:)

ITeDA Institute

 \sim 60 staff, technicians, doctoral researchers, students, ...

supervisor Federico Sanchez

- Office with other doctoral researchers
- Group meeting every week
- Lunch together at cantine

Muon Detectors @ ITeDA

- Development of AMIGA muon detectors
- Design of analysis software
- Data analysis

Language & Culture

Thanks for your attention!

