

Radio detection of air showers: Quo Vadis?

Anne Zilles (IEKP/IKP)

www.kit.edu

Comparison to other detection techniques

[arXiv:1701.05496, modified]

Comparison to other detection techniques

[arXiv:1701.05496, modified]

Air shower and emission of radio signal

[arXiv:1701.05496, modified]

Radio pulses from air showers

Emitted signal: broad frequency spectrum

 \rightarrow short in time \rightarrow only contains few oscillations at each frequency

Shower front: ~ meters thick

 \rightarrow amplified emission due to coherence at ~10-100MHz

Typical bandwidth for measurements 30-80MHz

- \rightarrow main information: amplitude and arrival time
- \rightarrow more detailed information lost

Radio detection of air showers:

Quo Vadis?

Radio detection of air showers:

Quo Vadis?

Which physic's question can be answered with the help of radio detection?

My focus for this talk: mass composition of CRs

Transition from galactic to extra-galactic

acceleration limit of galactic SN? \rightarrow experimental check of elemental composition of CRs

Already roughly measured \rightarrow need higher resolution

High-precision composition measurements in transition region

 \rightarrow decompose

into individual elements

(p, He,..., Fe)

Identifying primary particle type: Separation of mass of CR by atmospheric depth

→ Methods based on statistics!

Development of a heavy ion induced shower starts earlier

 → reaches the maximum number of particles earlier (low atmospheric depth)
 + more muons on ground

than is the case for proton induced showers of the same energy (high atmospheric depth)

Shower depth X_{max} = max. number of particles Typically: $(X_{max,p} - X_{max,Fe}) \approx 100 \text{ g/cm}^2$

Best reconstruction uncertainty by Fluorescence detection technique: ~ 20 g/cm²

Low-Frequency Array (LOFAR)

LOFAR core = "superterp" (300×300 m²)

- Radio telescope located mainly in the Netherlands
- Astronomer's instrument also used for CR detection

LOFAR

7x48)

Low-band antenna, analyzed from 30-80MHz

Particle detector array (LORA) for triggering 20 PD at 300×300 m²

\mathbf{X}_{\max} reconstruction from LDF - LOFAR

Karlsruhe Institute of Technology

LOFAR

Based on the well-understood emission mechanisms of the radio signal → simulations can described accurately the measured radio signal

Radio footprint in the shower plane: Plane described by the direction of the shower and the Earth's magnetic field

Circles = measurements of LOFAR Background = simulations

LDF = Lateral distribution function Measured radio signal depend on the distance to the shower axis

2d LDF fit to radio simulations yields mean X_{max} to ~17 g/cm²

- provided no unknown systematics: competitive with fluorescence

Separation between proton and iron

Mass sensitivity of radio detection was also proven by LOPES [Phys. Rev. D 85 (2012) 071101] Tunka-Rex [JCAP 01 (2016) 052]

. . .

SKA1-low - low frequency array stations

SKA1-low - low frequency array stations

Located in West-Australia

- ~70,000 dipole antennas in a circle of 750m diameter
- **bandwidth 50-350 MHz** (different part of radio signal)

Measuring X_{max} with SKA-low

Decomposing possible?

Origin of surpression? Separate masses!

Inclined Air Showers

Increase statistic for UHECR: **Go to higher zenith angles!**

- Hadronic and electromagnetic component of shower absorbed $\,\rightarrow\,$ radio signal and muons left
- Earth's atmosphere transparent for radio signal (unlike for optical methods)
- Complementary information to muons
 - \rightarrow better reconstruction of primary particle type
 - \rightarrow add mass-sensitivity

[F. Schroeder]

Inclined air showers: Huge footprints

- Simulated footprints of the radio emission of extensive air showers with an energy of 5 × 10¹⁸ eV
- Typical 30-80 MHz freq. band
- detection threshold:
 by Galactic noise
 ≈ 1-2 µV/m/MHz

- + Footprint becomes large
- + Detectable at distances of km

\rightarrow projection:

- Antenna array with kms-spacing possible
- radio technique scalable to large areas
- large exposure for moderate costs

Neutrino detection: Horizontal air showers

Looking for neutrinos beyond IceCube energies \rightarrow very large detection area needed!

e.g. cosmogenic neutrinos (GZK neutrinos from the interaction of CR with CMB)

Several projects already on-going

Neutrino detection: Horizontal air showers

Looking for neutrinos beyond IceCube energies \rightarrow very large detection area needed!

e.g. cosmogenic neutrinos (GZK neutrinos from the interaction of CR with CMB)

Giant Radio Array for Neutrino Detection equip an area of roughly 200,000 km² with one antenna per square kilometer

v EAS radio emission

[Olivier Martineau]

Interaction

Summary

- Radio detection air showers well-established detection technique
- Emission of radio signal well-understood

Quo vadis?

= Where can we profit the most by using the radio detection

- → Elemental composition of CRs in the transition region from Galactic to Extragalactic origin: extreme precision measurements by dense radio arrays (SKA-low)
- → additional mass sensitivity for UHECR: hybrid detection with particle detectors (Auger Future?)
- → neutrino detection: providing large detection areas covered by sparse radio arrays (GRAND)

backup

Neutrino detection beyond IceCube energies

[From "UHE Neutrino searches with the Pierre Auger Observatory", Javier Tiffenberg]

 \rightarrow Huge detection area needed \rightarrow Radio (cheap)

Amplitude calibration

- Commercial reference source also used by LOPES and LOFAR
- \rightarrow Common amplitude scale

54 23 April 2015 Physikalisches Kollquium Radio Detection of Cosmic Rays

frank.schroeder@kit.edu Institut für Kernphysik (IKP)

Energy reconstruction by AERA

Total energy in radio signal scales quadratically with electro-mag. shower energy

Energy scaling of radio signal

LOPES energy (with CC-amplitude) [eV]

Atmospheric detection

Lunar detection

 $\begin{array}{l} \mbox{Area} \sim 1 \ \mbox{km}^2 \\ \mbox{Energy} \gtrsim 10^{17} \ \mbox{eV} \end{array}$

Area $\sim 10^5 \ { m km^2}$ Energy $\gtrsim 10^{20} \ { m eV}$

