

More on a new sphaleron in SU(3) Yang-Mills-Higgs theory

Pascal Nagel | 14.02.2017

INSTITUTE FOR THEORETICAL PHYSICS

www.kit.edu

The Standard Model beyond perturbation theory

Most predictions of the Standard Model (SM) are made using perturbation theory, but not exclusively:

Two non-perturbative examples are

- The Instanton I [Belavin, Polyakov, Schwatz & Tyupkin, 1975] [1] of QCD (= SU(3) Yang-Mills theory)
- The **Sphaleron S** [Klinkhamer & Manton, 1984] [2] of the electroweak SM $(= SU(2) \times U(1)$ Yang-Mills-Higgs theory)
- Instanton: localized, finite-action, solution of field equations in imaginary time
- Topological soliton: static, stable, finite-energy, solution of field equations in real time
- Sphaleron: static, unstable, finite-energy, solution of field equations in real time

Topological objects in field theory

Example: (1+1)-dimensional scalar field with a double well potential

$$\mathcal{L}=rac{1}{2}\left(\partial_{\mu}\phi
ight)\left(\partial^{\mu}\phi
ight)-rac{\lambda}{4}\left(\phi^{2}-v^{2}
ight)^{2}$$

the corresponding field equations are:

$$\partial_t^2 \phi - \partial_x^2 \phi + \lambda \left(\phi^2 - v^2 \right) \phi = \mathbf{0}$$

We are now looking for **static** solutions ($\partial_t \phi = 0$).

It is easy to find two static solutions: $\phi = \pm v$

Introduction Pascal Nagel – More on a new sphaleron in SU(3) Yang-Mills-Higgs theory

Topological objects in field theory

At $x = \pm \infty$ the field is fixed to $\phi = \pm v \Rightarrow$ Hence, the **kink** solution is stable.

Pascal Nagel - More on a new sphaleron in SU(3) Yang-Mills-Higgs theory

Sphalerons and Instantons

A jump forward to (3+1)-dimensional Yang-Mills-Higgs theory:

Here we have not 2 ($\phi = \pm v$), but infinitely many static vacuum configurations [all gauge transformations of $A_m(x_1, x_2, x_3) = 0$], labeled by integers N_{CS} :

$$A_m = -rac{1}{g}\Omega\left(\partial_m\Omega^{-1}
ight), \quad \Omega \in SU(N)$$

Going from one vacuum to another, one needs to go over (sphaleron) or tunnel through (instanton) an energy barrier:

Introduction

Pascal Nagel - More on a new sphaleron in SU(3) Yang-Mills-Higgs theory

The well-known sphaleron S exists in $SU(2) \times U(1)$ Yang-Mills-Higgs theory [2].

It can be embedded in SU(3).

The \widehat{S} is a completely different object, of distinct structure, which exists in SU(3) Yang-Mills-Higgs theory, but <u>not</u> in SU(2).

Finding the \widehat{S} sphaleron configuration

We start from the SU(3) Yang-Mills-Higgs theory Lagrangian with a single complex scalar triplet Φ :

$$\mathcal{L} = rac{1}{2} \operatorname{tr} F_{\mu
u} F^{\mu
u} + (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) - \lambda \left(\Phi^{\dagger} \Phi - rac{v^2}{2}
ight)^2,$$

with the YM field strength tensor $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + g[A_{\mu}, A_{\nu}]$, the covariant derivative $D_{\mu} = \partial_{\mu} + gA_{\mu}$ and the gauge fields $A_{\mu}(x) = A^{a}_{\mu}(x)T^{a}$, with su(3) generators $T^{a} = \lambda^{a}/(2i)$ and g the strong coupling constant.

We are looking for solutions of the corresponding static field equations:

$$egin{aligned} & [D_i,F_{ij}] = g\left(\Phi^\dagger T^a\left(D_j\Phi
ight) - \left(D_j\Phi
ight)^\dagger T^a\Phi
ight)T^a, \ & D_iD_i\Phi = 2\lambda\left(\Phi^\dagger\Phi - rac{v^2}{2}
ight)\Phi, \end{aligned}$$

with appropriate boundary conditions.

Boundary conditions

Obtain constraints on the boundary conditions at infinity by demanding **finiteness of energy**:

$$A_m(r \to \infty) = -\frac{1}{g} U(x) \left(\partial_m U(x)^{-1} \right), \quad U(x) \in SU(3)$$
$$\Phi(r \to \infty) = \frac{v}{\sqrt{2}} U(x) \left(\begin{array}{c} 1\\0\\0 \end{array} \right)$$

and boundary conditions at the origin by demanding regularity:

$$A_m(r \rightarrow 0) = 0, \qquad \Phi(r \rightarrow 0) = 0$$

The key step is finding the right U(x).

Here, insights into the topology of the group space SU(3) are crucial.

The \widehat{S} has **axial symmetry** around the *z*-axis and **reflection symmetry** on the equator:

This means that a change of the azimuthal angle ϕ and a parity transformation can be compensated by respective gauge transformations

The \widehat{S} also has a residual **gauge symmetry**, which we need to fix.

A self-consistent Ansatz [3], based on these symmetries, made in the T,V,U-spin basis of $su(3)^1$, is remarkably structured:

 A_r and A_{θ} require only one su(2) subalgebra of su(3) and A_{ϕ} precisely the other 5 remaining generators of su(3).

Finding the \hat{S} sphaleron configuration

¹To be precise, a slight modification of this basis, since T_3 , U_3 and V_3 are not independent

The Ansatz

The following Ansatz was obtained in [3] with fixed radial gauge ($A_r = 0$):

$$\begin{split} gA_r(r,\theta,\phi) &= 0\\ gA_\phi(r,\theta,\phi) &= \alpha_1(r,\theta)\cos\theta T_\rho + \alpha_2(r,\theta)V_\rho - \alpha_3(r,\theta)\cos\theta U_\rho + \alpha_4(r,\theta)\frac{\lambda_3}{2i} + \alpha_5(r,\theta)\frac{\lambda_8}{2i},\\ gA_\theta(r,\theta,\phi) &= \alpha_6(r,\theta) T_\phi + \alpha_7(r,\theta)\cos\theta V_\phi - \alpha_8(r,\theta)U_\phi,\\ \Phi(r,\theta,\phi) &= \frac{v}{\sqrt{2}} \left[\beta_1(r,\theta)\lambda_3 + \beta_2(r,\theta)\cos\theta 2iT_\rho + \beta_3(r,\theta)2iV_\rho\right] \left(\begin{array}{c} 1\\ 0\\ 0 \end{array}\right) \end{split}$$

This *Ansatz* solves most components of the field equations directly, leaving "only" 11 partial differential equations (PDEs) in r and θ to solve.

The boundary conditions of the 11 real functions α_i and β_j are obtained by matching with the boundary conditions of the fields.

Numerical solution

There is no analytic solution to these equations. In fact, it is even hard to solve them numerically.

We use 2 different approaches:

- Solve the PDEs directly
- Minimize the energy functional (i.e. find an extremum of the action)

Both yield similar results, which solve the PDEs approximately².

The obtained numerical value for the energy is:

$$E_{\widehat{S}}\Big|_{\lambda/g^2=0} pprox 1.283 \left[rac{4\pi v}{g}
ight] pprox 0.844 E_S,$$

with $E_S \equiv 1.52[4\pi v/g]$ the energy of the SU(2) sphaleron S embedded in SU(3).

²All calculations were performed on the ITP cluster.

Finding the \widehat{S} sphaleron configuration

Pascal Nagel - More on a new sphaleron in SU(3) Yang-Mills-Higgs theory

$\widehat{\mathcal{S}}$ energy density

Fig.: Contour plot of the \widehat{S} energy density for $\lambda/g^2 = 0$.

It is remarkable, that the obtained energy for \widehat{S} (with 8 gauge fields) is lower, than that of *S* (with 4 gauge fields).

The result for the energy $E_{\widehat{S}}$ shows, that related processes may not be very much suppressed.

Which physical effects does the \widehat{S} have on the non-perturbative dynamics of QCD?

Can we see them in the quark-gluon plasma at heavy ion colliders (e.g. RHIC)?

Does the \widehat{S} gauge field contribute significantly to the QCD glueball content?

- A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y.S. Tyupkin, *Pseudoparticle solutions of the Yang-Mills equations*, Phys. Lett. B59 (1975) 85.
- [2] F.R. Klinkhamer and N.S. Manton, *A saddle point solution in the Weinberg-Salam theory*, Phys. Rev. D30 (1984) 2212.
- [3] F.R. Klinkhamer and C. Rupp, A sphaleron for the non-Abelian anomaly, Nucl. Phys. B709 (2005) 171 [arXiv:hep-th/0410195].

Backup

■ *Ŝ* map:

$$U(\theta,\phi) = \begin{pmatrix} \cos^2 \theta & -\cos \theta \sin \theta \ e^{i\phi} & \sin \theta \ e^{-i\phi} \\ -\cos \theta \sin \theta \ e^{i\phi} & \sin^2 \theta \ e^{2i\phi} & \cos \theta \\ -\sin \theta \ e^{-i\phi} & -\cos \theta & 0 \end{pmatrix}$$

su(3) basis:

$$\begin{split} T_{\phi} &= \sin \phi \frac{\lambda_1}{2i} + \cos \phi \frac{\lambda_2}{2i} & T_{\rho} &= \cos \phi \frac{\lambda_1}{2i} - \sin \phi \frac{\lambda_2}{2i} \\ V_{\phi} &= -\sin \phi \frac{\lambda_4}{2i} + \cos \phi \frac{\lambda_5}{2i} & V_{\rho} &= \cos \phi \frac{\lambda_4}{2i} + \sin \phi \frac{\lambda_5}{2i} \\ U_{\phi} &= -\sin(2\phi) \frac{\lambda_6}{2i} + \cos(2\phi) \frac{\lambda_7}{2i} & U_{\rho} &= \cos(2\phi) \frac{\lambda_6}{2i} + \sin(2\phi) \frac{\lambda_7}{2i} \end{split}$$

Backup

• Example PDE:

$$\begin{split} r^{2} \sin \theta \cos \theta \partial_{r}^{2} \alpha_{1} + \sin \theta \cos \theta \partial_{\theta}^{2} \alpha_{1} - \frac{3}{2} \partial_{\theta} \alpha_{1} + \frac{1}{2} \cos 2\theta \ \partial_{\theta} \alpha_{1} - \sin \theta \cos \theta \alpha_{1} \alpha_{6}^{2} \\ &- \frac{1}{4} \sin \theta \cos^{3} \theta \alpha_{1} \alpha_{7}^{2} - \frac{1}{4} \sin \theta \cos \theta \alpha_{1} \alpha_{8}^{2} - \frac{1}{4} g^{2} r^{2} v^{2} \sin \theta \cos \theta \alpha_{1} \beta_{1}^{2} \\ &- \frac{1}{4} g^{2} r^{2} v^{2} \sin \theta \cos^{3} \theta \alpha_{1} \beta_{2}^{2} - \sin \theta \partial_{\theta} \alpha_{2} \alpha_{8} - \frac{3}{4} \sin \theta \cos \theta \alpha_{2} \alpha_{6} \alpha_{7} - \frac{1}{2} \sin \theta \alpha_{2} \partial_{\theta} \alpha_{8} \\ &+ \frac{1}{2} \cos \theta \alpha_{2} \alpha_{8} - \frac{1}{4} g^{2} r^{2} v^{2} \sin \theta \cos \theta \alpha_{2} \beta_{2} \beta_{3} - \sin \theta \cos^{2} \theta \partial_{\theta} \alpha_{3} \alpha_{7} + \frac{3}{4} \sin \theta \cos \theta \alpha_{3} \alpha_{6} \alpha_{8} \\ &- \frac{1}{2} \sin \theta \cos^{2} \theta \alpha_{3} \partial_{\theta} \alpha_{7} + \cos \theta \alpha_{3} \alpha_{7} - \frac{1}{2} \cos 2\theta \cos \theta \alpha_{3} \alpha_{7} - \frac{1}{4} g^{2} r^{2} v^{2} \sin \theta \cos \theta \alpha_{3} \beta_{1} \beta_{3} \\ &+ 2 \sin \theta \partial_{\theta} \alpha_{4} \alpha_{6} + \sin \theta \alpha_{4} \partial_{\theta} \alpha_{6} - \cos \theta \alpha_{4} \alpha_{6} - \frac{1}{2} \sqrt{3} \sin \theta \cos \theta \alpha_{5} \alpha_{7} \alpha_{8} \\ &- \frac{g^{2} r^{2} v^{2} \sin \theta \cos \theta \alpha_{5} \beta_{1} \beta_{2}}{2 \sqrt{3}} + \sin \theta \partial_{\theta} \alpha_{6} - \cos \theta \alpha_{6} + \frac{3}{2} \sin \theta \cos \theta \alpha_{7} \alpha_{8} \\ &+ \frac{1}{2} g^{2} r^{2} v^{2} \sin \theta \cos \theta \beta_{1} \beta_{2} = 0 \end{split}$$