

Search for anomalous couplings in semileptonic WW and WZ decays in the CMS experiment

Matthias Mozer, Thomas Müller, Christoph Renner, <u>Ivan Shvetsov</u>

Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology

Introduction

- Search for anomalous triple gauge couplings (aTGC) at \sqrt{s} = 13 TeV is presented using full 2015 dataset (L= 2.3 fb⁻¹).
- Search is based on the effective field theory approach (EFT)
- Semileptonic channel
- Events with boosted topology are used → jet-substructure techniques used for identification of vector bosons
- Limits are extracted from diboson mass distribution modelled by analytical functions

Overall view of the LHC experiments.

What do we do with this machine?

Is there anything beyond the Standard Model?

How do we search for «new physics»?

- Probing WWZ and WW $\!\gamma$ interactions
- Standard Model Lagrangian is extended with 3 CP-conserving dimension 6 operators

aTGC

Semileptonic channel

- Semileptonic channel:
 - high branching ratio
 - defined scale of the process (M_{WV})

Ivan Shvetsov

• We don't observe quarks but jets

· Characterised by some radius R

Run: 274955 Event: 103903273 $\sqrt{s} = 13 \text{ TeV}$ pp $\rightarrow WV \rightarrow \mu v + \text{jet}$ M_{VW} = 3.6 TeV

Ivan Shvetsov

Particle flow

Combination of information from all subdetectors

Ivan Shvetsov

Motivation

Effects from aTGC at high W/Z boson pT:

Ivan Shvetsov

Boosted objects

 At high p_T decay products are merged into a single reconstructed jet with large R

Ivan Shvetsov

Event selection

cut	electron channel	muon channel
lepton $p_T >$	$50~{ m GeV}$	$53~{ m GeV}$
lepton $ \eta <$	2.5	2.4
$E_T^{miss} >$	$80 { m GeV}$	$40 \mathrm{GeV}$
$ au_{21} <$	0.6	0.6
$M_{WV} >$	$900 \mathrm{GeV}$	$900 {\rm GeV}$
$W_{lep} p_T >$	$200 \mathrm{GeV}$	$200 {\rm GeV}$
fat jet $p_T >$	$200 {\rm GeV}$	$200 {\rm GeV}$
fat jet $ \eta <$	2.4	2.4
$\Delta R(lepton, jet) >$	$\frac{\pi}{2}$	$\frac{\pi}{2}$
$\Delta\Phi(jet, E_T^{miss}) >$	2.0	2.0
$\Delta \Phi(jet, Wlep) >$	2.0	2.0
m_{pruned} window	[40., 150.] GeV	[40., 150.] GeV

- Exactly 1 electron or muon passing quality criteria
- No additional loose leptons
- at least 1 jet with R=0.8 passing quality requirements
- Jets with R=0.4 are used for b-tag veto, cleaned from the fat jet ΔR=0.8)

Backgrounds

- top pair production (ttbar)
- W+jets
- Diboson production (WW, WZ)
- Single top

Control regions

 3 control regions are defined to validate modelling of main backgrounds

Ivan Shvetsov

Analysis strategy

Ivan Shvetsov

Mpruned fit

- Range [40., 150] GeV is used.
- ttbar normalization is constrained with Gaussian with uncertainty 20%
- W+jets normalization is floated freely + c_{EE0} in shape
- Diboson (SM) is constrained with 100% (possible enhancements from aTGC): number is not used later.
- single top is fixed to Monte-Carlo prediction.
- ttbar and W+jets normalizations are extracted from the fit.

Ivan Shvetsov

Mpruned fit

• Data vs Monte-Carlo after the fit:

Mwv shapes

sideband region

signal region

 Normalization is taken from M_{pruned} fit.

Mwv shapes

Ivan Shvetsov

Final background shapes for Mwv

cut on $M_{WV} < 3.5 \text{ TeV}$

Ivan Shvetsov

Signal modelling

Diboson contribution (SM + aTGC):

$$F_{WV} = N_{SM} \cdot e^{a_0 x} + \sum_{i} \left(N_{c_i,1} \cdot c_i^2 \cdot e^{a_{i,1} x} \cdot \frac{1 + \operatorname{Erf}((x - a_{o,i})/a_{w,i})}{2} + N_{c_i,2} \cdot c_i \cdot e^{a_{i,2} x} \right)$$

SM contribution
$$+ \sum_{i \neq j}^{i < j} \left(N_{c_i,c_j} \cdot c_i \cdot c_j \cdot e^{a_{ij} x} \right)$$

aTGC-aTGC interference

- a_0 fit to MC sample, c_i set to 0.
- a_{i,1}, a_{o,i}, a_{w,i} fit to MC sample, c_i set to non-zero.
- a_{ij} fit to generator level, c_i and c_j set to non-zero.

Signal modelling

/Λ²=-10 TeV⁻²

/∆²=-3.5 TeV⁻⁄

c_b positive WW muon channel 10² arbitrary units arb. units u channel c.../Λ²=-20 TeV⁻² 10 /Λ²=0 TeV⁻² 10c_w/Λ²=-1,...,-19 TeV⁻² 10 10⁻² 3500 M_{wv} (GeV) 1500 2000 2500 3000 1000 10⁻² MC-Fit error 10^{-3}

c_w negative WZ muon channel

2500

3000

3500

M_{wz} (GeV)

lines represent signal function \rightarrow working at lower aTGC

Ivan Shvetsov

4th KSETA Plenary Workshop, 14.02.2017

1000

1500

2000

generator level

Limits on aTGCs

 Limits are extracted in a simultaneous unbinned maximum likelihood fit in WW and WZ category, muon and electron channel.

Ivan Shvetsov

• Results presented in terms of EFT and LEP parametrization:

	aTGC	expected limit	observed limit
ц.	$\frac{c_{WWW}}{\Lambda^2}$ (TeV ⁻²)	[-8.73 , 8.70]	[-9.46 , 9.42]
EFara	$\frac{\tilde{c}_W}{\Lambda^2}$ (TeV ⁻²)	[-11.7 , 11.1]	[-12.6 , 12.0]
ď	$\frac{\widetilde{c}_B}{\Lambda^2}$ (TeV ⁻²)	[-54.9 , 53.3]	[-56.1, 55.4]
m.	λ	[-0.036 , 0.036]	[-0.039 , 0.039]
ert	Δg_1^Z	[-0.066 , 0.064]	[-0.067 , 0.066]
Þğ	$\Delta \kappa_Z$	[-0.038 , 0.040]	[-0.040 , 0.041]

Ivan Shvetsov

Limits on aTGCs

2.3 fb⁻¹ (13 TeV)

Expected 95% C.L.

2 dimensional limits:

Ivan Shvetsov

4th KSETA Plenary Workshop, 14.02.2017

0.05

 λ_{Z}

0

Conclusions and outlook

- Search for anomalous triple gauge couplings using semileptonic WV decays was presented.
- Full 2015 dataset with integrated luminosity 2.3 fb⁻¹ is used.
- Results are documented in SMP-16-012.
- First aTGC result from CMS at 13 TeV.
- We plan to update results with 2016 dataset.

Backup

Ivan Shvetsov

Signal sample

- Signal generated with madgraph using EWdim6 model, Madgraph 2.2.3 →LO sample
- 9 points are generated (roughly correspond to sensitivity):

$c_{WWW}/\Lambda^2 [TeV^{-2}]$	$c_W/\Lambda^2 [TeV^{-2}]$	$c_B/\Lambda^2 [TeV^{-2}]$
± 12.0	± 20.0	± 60.0
± 12.0	0.0	0.0
0.0	± 20.0	0.0
0.0	0.0	± 60.0
0.0	0.0	0.0

Pruning

Recluster + veto soft and large-angle recombinations:

- at each stop the softer of two particles i and j to be merged is remov $z_{ij} = \frac{\min(p_{Ti}, p_{Tj})}{p_{Ti} + p_{Tj}} < z_{cut}$ conditions are met: $\Delta R_{ij} = \frac{2 \times r_{cut} \times m_J}{p_T} > D_{cut} \frac{T, i, p_{T,j})}{r_{i+j}} < z_{cut}$ $\Delta R_{ij} = \frac{2 \times r_{cut} \times m_J}{p_T} > D_{cut}$ Parameters of the algorithm: Z_{cut}, r_{cut}

•

N-subjettiness

Ivan Shvetsov

ttbar control region

Ivan Shvetsov

W+jets control region

Ivan Shvetsov

Signal region

Ivan Shvetsov

Signal regions

- Signal is divided into 2 categories: WW and WZ
- This provides discrimination c_B vs. c_W and c_{WWW}

Muon channel

MET cut

dim 6 operators

$$\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$$
$$\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi)$$
$$\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi)$$

Ivan Shvetsov

Mpruned fit

• Results of the fit:

DAC	electron			muon		
FAS	pre-fit	post-fit	scale factor	pre-fit	post-fit	scale-factor
W+jets	584	538 ± 56	0.92 ± 0.10	767	814 ± 72	1.06 ± 0.09
tī	243 ± 49	256 ± 46	1.1 ± 0.2	318 ± 64	313 ± 60	1.0 ± 0.2
single top	37	37	1	52	52	1
diboson	34 ± 34	41 ± 27	1.2 ± 0.8	45 ± 45	61 ± 35	1.4 ± 0.8
Total expected	898	872 ± 30	0.97 ± 0.03	1182	1240 ± 35	1.05 ± 0.03
Data		874	\bigcirc		1241	

α -function

WW, electron channel

WW, muon channel

Summary of background extraction

- Normalisation of ttbar and W+jets are extracted from M_{pruned} fit, other backgrounds → from theory prediction.
- W+jets shape is extracted from sideband data and corrected with alpha-function.
- Fit was verified with closure test.

Signal and background yields

- Yields in the signal region
- W+jets uncertainty: statistical uncertainty from M_{pruned} fit and alternative function.

	elec	ctron	mı	ion
	WW	WZ	WW	WZ
W+jets	124 ± 17	103 ± 16	192 ± 20	164 ± 20
tī	73 ± 17	58 ± 13	90 ± 21	71 ± 17
single top	10.9 ± 1.4	9.8 ± 1.2	17.8 ± 2.3	10.6 ± 1.4
diboson (SM)	15.8 ± 2.2	9.3 ± 1.3	20.6 ± 3.0	12.2 ± 1.8
Total expected (SM)	-224 ± 24	180 ± 21	320 ± 29	258 ± 26
diboson $\frac{c_{WWW}}{\Lambda^2} = 12 \text{ TeV}^{-2}$	36.2 ± 5.1	39.9 ± 5.7	50.8 ± 7.3	55.4 ± 8.0
diboson $\frac{\tilde{c}_W}{\Lambda^2} = 20 \text{TeV}^{-2}$	51.6 ± 7.4	69 ± 10	72 ± 10	91 ± 13
diboson $\frac{\tilde{c}_B}{\Lambda^2} = 60 \text{TeV}^{-2}$	41.5 ± 5.9	20.1 ± 2.9	57.0 ± 8.2	26.8 ± 3.9
Data	234	183	340	265

Ivan Shvetsov

Systematics uncertainties: normalization

- b-tagging/mis-tagging (ttbar and WZ)
- Jet energy scale and resolution
- Lepton energy scale and resolution
- Missing E_T uncertainty
- PDF uncertainty → PDF4LHC recommendations
- Q_2 uncertainty (Scale) \rightarrow envelope

process	b-tag	jet en.	lept. en.	lept. id	PDF	scale	$ ot\!$	lumi	V-tag
			electron	n channel					
tĪ	0.8	2.8	< 0.05	1.0	2.5	19	0.5	2.7	12
WZ	0.1	1.7	< 0.05	1.0	2.5	3.6	0.5	2.7	12
WW	< 0.05	2.4	0.6	1.0	1.9	6.0	0.6	2.7	12
Single Top	< 0.05	1.6	0.5	1.0	0.3	2.0	1.2	2.7	12
			muon	channel					
tĪ	0.8	2.6	1.6	3.2	2.6	19	0.1	2.7	12
WZ	< 0.05	1.6	1.4	3.8	2.3	3.5	0.3	2.7	12
WW	< 0.05	2.3	1.7	3.9	1.8	6.0	0.2	2.7	12
Single Top	< 0.05	0.6	1.9	3.6	0.4	1.9	0.5	2.7	12

Ivan Shvetsov

Systematics uncertainties: shapes

- Fit done varying MC up/down
- Uncertainties on slopes of the signal function (without interference):

category	a_{cw}	a_{cb}	a_{cwww}
WW, muon	4.54	5.37	5.28
WW, electron	4.98	6.04	5.90
WZ, muon	4.53	15.50	4.72
WZ, electron	4.87	15.88	5.06

- Slope involving c_b is assigned to have 15 % uncertainty (WZcategory).
- Other slopes: 5 %

Ivan Shvetsov

HEEP ID

https://twiki.cern.ch/twiki/bin/view/CMS/HEEPElectronIdentificationRun2#Selection_Cuts_HEEP_V6_1_Optiona

Selection Cuts: HEEP V6.1 (Optional for 76X)

Variable	Barrel	Endcap
ET	> 35 GeV	> 35 GeV
η range	η _{sc} < 1.4442	1.566 < η _{sc} < 2.5
isEcalDriven	=1	=1
Δη _{in} seed	< 0.004	< 0.006
Δφ _{in}	< 0.06	< 0.06
H/E	<1/E + 0.05	< 5/E + 0.05
full 5x5 σ _{iηiη}	n/a	<0.03
full 5x5 E2x5/E5x5	>0.94 OR E1x5/E5x5 > 0.83	n/a
EM + Had Depth 1 Isolation	<2+0.03*Et +0.28*rho	<2.5 +0.28*rho for Et<50 else
		<2.5+0.03*(Et-50) +0.28*rho
Track Isol: Trk Pt	<5 for Et<95 else	<5 for Et<100 else
	<5 + 1.5*rho	<5 + 0.5*rho
Inner Layer Lost Hits	<=1	<=1
dxy	<0.02	<0.05

Ivan Shvetsov

HighPt muon ID

https://twiki.cern.ch/twiki/bin/viewauth/CMS/SWGuideMuonIdRun2#HighPt_Muon

Plain-text description	Technical description	Comments
The candidate is reconstructed as a Global Muon	recoMu.isGlobalMuon()	
At least one muon- chamber hit included in the global-muon track fit	<pre>recoMu.globalTrack()- >hitPattern().numberOfValidMuonHits() > 0</pre>	To suppress hadronic punch-through and muons from decays in flight.
Muon segments in at least two muon stations This implies that the muon is also an arbitrated tracker muon, see SWGuideTrackerMuons	<pre>recoMu.numberOfMatchedStations() > 1</pre>	To suppress punch-through and accidental track-to-segment matches. Also makes selection consistent with the logic of the muon trigger, which requires segments in at least two muon stations to obtain a meaningful estimate of the muon p_{T_i}
The p _T relative error of the muon best track is less than 30%	<pre>recoMu.muonBestTrack()- >ptError()/recoMu.muonBestTrack()->pt() < 0.3</pre>	
Its tracker track has transverse impact parameter d _{xy} < 2 mm w.r.t. the primary vertex	<pre>fabs(recoMu.muonBestTrack()->dxy(vertex- >position())) < 0.2 Or dB() < 0.2 on pat::Muon [1]</pre>	To suppress cosmic muons and further suppress muons from decays in flight (see <u>CMS AN 2008/098</u>). The 2 mm cut preserves efficiency for muons from decays of b and c hadrons. It is a loose cut and can be tightened further with minimal loss of efficiency for prompt muons if background from cosmic muons is an issue. Another way to obtain a better cosmic-ray suppression is to complement the d_{xy} cut with a cut on the opening angle α or use a dedicated cosmic-id algorithm (see Section 7.1 of <u>MUO-10-004</u>). innerTrack() is also supported for dxy cut, as the performance of the two is very close.
The longitudinal distance of the tracker track wrt. the primary vertex is d _z < 5 mm	<pre>fabs(recoMu.muonBestTrack()->dz(vertex- >position())) < 0.5</pre>	Loose cut to further suppress cosmic muons, muons from decays in flight and tracks from PU. innerTrack() is also supported for dz cut, as the performance of the two is very close.
Number of pixel hits > 0	<pre>recoMu.innerTrack()- >hitPattern().numberOfValidPixelHits() > 0</pre>	To further suppress muons from decays in flight.
Cut on number of tracker layers with hits >5	<pre>recoMu.innerTrack() - >hitPattern().trackerLayersWithMeasurement() > 5</pre>	To guarantee a good p _T measurement, for which some minimal number of measurement points in the tracker is needed. Also suppresses muons from decays in flight.

Ivan Shvetsov

Pruning

Ivan Shvetsov

limits for WW and WZ categories

Ivan Shvetsov

WW+WZ

merged WW+WZ, no interference

Ivan Shvetsov

• SM interference:

$$N_{obs} = N_{SM} + c_i \cdot aTGC_1 + c_1 \cdot aTGC_1^2 + c_2 \cdot aTGC_2^2$$

• → shift in the ellipse

Ivan Shvetsov

Effects of the aTGC-aTGC interference

Karlsruhe Institute of Technology

- aTGC-aTGC interference: $N_{obs} = N_{SM} + c_i \cdot aTGC_1 \cdot aTGC_2 + c_1 \cdot aTGC_1^2 + c_2 \cdot aTGC_2^2$
- \rightarrow rotation of the ellipse:

$$aTGC_{1}' = \cos\alpha \cdot aTGC_{1} + \sin\alpha \cdot aTGC_{2}$$
$$aTGC_{2}' = -\sin\alpha \cdot aTGC_{1} + \cos\alpha \cdot aTGC_{2}$$

Cross-checks for ttbar control region

Ivan Shvetsov

4th KSETA Plenary Workshop, 14.02.2017

Electron channel

2.3 fb⁻¹ (13 TeV) 2.3 fb⁻¹ (13 TeV) CMS Preliminary CMS Preliminary 160 Number of events Number of events 220 Muon channel **Electron channel** Data Data 200 🗄 140 signal region signal region ww ww 180E 120 wz wz 160 W+jets W+jets 100 140 ttbar true W ttbar true W 120 80 ttbar unmatched ttbar unmatched 100 Single Top Single Top 60 80 60 40 40 20 20 0 Λ <u>Data - MC</u> MC <u>Data - MC</u> MC 0.5 0.5 -0.5 0.5 160 180 200 M_{jet pruned} (GeV) 160 180 200 M_{jet pruned} (GeV) 60 120 60 80 100 120 80 100 140 40 140 40

Signal region

Muon channel

no requirement on b-tagging

Electron channel

Muon channel

Details about signal function

$$\begin{split} F_{atgc} \cdot A_N = & N_{SM} \cdot e^{a_0 x} + \sum_i \left(N_{c_i,1} \cdot c_i^2 \cdot e^{a_{i,1} x} \cdot \frac{1 + \operatorname{Erf}((x - a_{o,i})/a_{w,i})}{2} + N_{c_i,2} \cdot c_i \cdot e^{a_{i,2} x} \right) \\ &+ \sum_{i \neq j}^{i < j} \left(N_{c_i,c_j} \cdot c_i \cdot c_j \cdot e^{a_{ij} x} \right) , \end{split}$$

$$S_{aTGC} = 1 + \sum_{i} S_{c_i}$$
$$F_{atgc} \rightarrow S_{aTGC} \cdot F_{atgc}$$
$$S_{c_i} = b_0 + b_1 \cdot c_i + b_2 \cdot c_i^2 - 1$$

$$\begin{split} A_{N} = & N_{SM} + \sum_{i} \left(N_{c_{i},1} \cdot c_{i}^{2} + N_{c_{i},2} \cdot c_{i} \right) + \sum_{i \neq j}^{i < j} \left(N_{c_{i},c_{j}} \cdot c_{i} \cdot c_{j} \right) \\ & N_{c_{i},1} = \frac{N_{c_{i}}^{MC^{+}} + N_{c_{i}}^{MC^{-}}}{2} - N_{SM} \\ & N_{c_{i},2} = \frac{N_{c_{i},c_{j}}^{MC^{+}} - N_{c_{i}}^{MC^{-}}}{2} \\ & N_{c_{i},c_{j}} = N_{c_{i},c_{j}}^{gen} - \left(N_{SM} + N_{c_{i},1} + N_{c_{i},2} + N_{c_{j},1} + N_{c_{j},2} \right) \\ & = N_{c_{i}+,c_{j}+}^{gen} - \left(N_{SM} + \frac{N_{c_{i}}^{MC^{+}} + N_{c_{i}}^{MC^{-}}}{2} - N_{SM} + \frac{N_{c_{i}}^{MC^{+}} - N_{c_{i}}^{MC^{-}}}{2} \right) \\ & + \frac{N_{c_{j}}^{MC^{+}} + N_{c_{j}}^{MC^{-}}}{2} - N_{SM} + \frac{N_{c_{j}}^{MC^{+}} - N_{c_{j}}^{MC^{-}}}{2} \right) \\ & = (N_{c_{i}+,c_{j}+}^{gen} + N_{SM}) - (N_{c_{i}}^{MC^{+}} + N_{c_{j}}^{MC^{+}}) \; . \end{split}$$

$$\mu = \frac{m_W^2}{2} + \vec{p}_{T,lepton} \cdot \vec{E}_T^{miss}$$

- take real part if complex solution
- take the one with the smallest absolute value if 2 real solutions

Other results

August 2016	CMS ATLAS					
Fit Value			Channel	Limits	∬ <i>L</i> dt	N S
			WW	[-4.3e-02, 4.3e-02]	4.6 fb ⁻¹	7 TeV
<u> </u>	H		WW	[-2.5e-02, 2.0e-02]	20.3 fb ⁻¹	8 TeV
	⊢ •−−1		WW	[-6.0e-02, 4.6e-02]	19.4 fb ⁻¹	8 TeV
			WZ	[-1.3e-01, 2.4e-01]	33.6 fb ⁻¹	8,13 TeV
			WV	[-9.0e-02, 1.0e-01]	4.6 fb ⁻¹	7 TeV
	—		WV	[-4.3e-02, 3.3e-02]	5.0 fb ⁻¹	7 TeV 🧹
	—		WV	[-4.0e-02, 4.1e-02]	2.3 fb ⁻¹	13 TeV 🔰
	⊢●		LEP Comb.	[-7.4e-02, 5.1e-02]	0.7 fb ⁻¹	0.20 TeV
λ_	► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►		WW	[-6.2e-02, 5.9e-02]	4.6 fb ⁻¹	7 TeV
Z	H H		WW	[-1.9e-02, 1.9e-02]	20.3 fb ⁻¹	8 TeV
	F		WW	[-4.8e-02, 4.8e-02]	4.9 fb ⁻¹	7 TeV
	⊢ ●-1		WW	[-2.4e-02, 2.4e-02]	19.4 fb ⁻¹	8 TeV
	H		WZ	[-4.6e-02, 4.7e-02]	4.6 fb ⁻¹	7 TeV
	н		WZ	[-1.4e-02, 1.3e-02]	33.6 fb ⁻¹	8,13 TeV
	—		WV	[-3.9e-02, 4.0e-02]	4.6 fb ⁻¹	7 TeV
	H		WV	[-3.8e-02, 3.0e-02]	5.0 fb⁻¹	7 TeV 🧹
	F		WV	[-3.9e-02, 3.9e-02]	2.3 fb ⁻¹	13 TeV 🥤
	⊢_ ●1		D0 Comb.	[-3.6e-02, 4.4e-02]	8.6 fb ⁻¹	1.96 TeV
	┝━╋━┥		LEP Comb.	[-5.9e-02, 1.7e-02]	0.7 fb ⁻¹	0.20 TeV
Δg_{\perp}^{Z}	—		WW	[-3.9e-02, 5.2e-02]	4.6 fb ⁻¹ ,	7 TeV
-1	H -		WW	[-1.6e-02, 2.7e-02]	20.3 fb ⁻¹	8 TeV
			WW	[-9.5e-02, 9.5e-02]	4.9 fb ⁻¹	7 TeV
	⊢ •−-1		WW	[-4.7e-02, 2.2e-02]	19.4 fb⁻¹	8 TeV
			WV	[-6.7e-02, 6.6e-02]	2.3 fb ⁻¹	13 TeV 🍸
			WZ	[-5.7e-02, 9.3e-02]	4.6 fb⁻′	7 TeV
	H		WZ	[-1.5e-02, 3.0e-02]	33.6 fb ⁻ '	8,13 IeV
			WV	[-5.5e-02, 7.1e-02]	4.6 fb ⁻¹	7 TeV
	⊢ •		D0 Comb.	[-3.4e-02, 8.4e-02]	8.6 fb⁻¦	1.96 TeV
	┣╼┯┫		LEP Comb.	[-5.4e-02, 2.1e-02]	0.7 fb ⁻	0.20 TeV
-0.4 -0.2	0	0.2	0.4	0.6	0.8	
				aTGC Lim	nits @95	5% C.L.

Ivan Shvetsov