

Electroweak Phase Transition in the Two-Higgs-Doublet Model

Alexander Wlotzka | February 15th, 2017

in collaboration with P. Basler, M. Krause, M. Mühlleitner and J. Wittbrodt

INSTITUTE FOR THEORETICAL PHYSICS

Outline

Introduction

2 Calculation

Motivation	[Morrissey, Ramsey-Musolf '12]					
 Electroweak Baryogenesis (EWBG): generation of the observed baryon-antibaryon asymmetry in the electroweak phase transition 						
 Sakharov conditions 	[Sakharov '67]					
departure from thermal equilibrium						
baryon number violating processes						
C- and CP-violating processes						
further condition: phase transition (PT) must be (strong) first order						
ightarrow expanding bubbles with broken phase inside, symmetric phase outside						
In the SM:	[see e.g. Morrissey, Ramsey-Musolf '12 and references therein]					
 Sakharov conditions fulfilled 						
a strong phase transition only occurs, if	[Shaposhnikov et. al. '87, '95][Jansen '95]					
$m_h \lesssim$ 70 GeV						
 CP-violation induced by CKM-matrix too small 						

Introduction

Motivation

\Rightarrow New Physics required \rightarrow Two-Higgs-Doublet Model (2HDM)

analyses of EWBG in the 2HDM with old exclusion bounds

[Cline, Lemieux '97][Fromme, Huber, Seniuch '06][Cline, Kainulainen, Trott '11]

[Dorsch, Huber, No '13][Dorsch, Huber, Mimasu, No '14]

 \rightarrow update to newest bounds

 mixing angles of the Higgs sector of the 2HDM never considered in the renormalization so far

 \rightarrow consider them for the first time

- new treatment of the Goldstone bosons in the renormalization
- detailed analysis of implications of the requirement for a strong phase transition on collider observables

Two-Higgs-Doublet Model

extend the SM Higgs sector by a second Higgs doublet

$$\begin{split} \mathcal{H}_{\text{tree}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right] \end{split}$$

- new Higgs bosons, five in total: *h*, *H*, *A*, *H*⁺, *H*⁻
 - \rightarrow impact on the phase transition
- m_{12}^2 , λ_5 can in principle be complex
 - \rightarrow new sources of *CP*-violation
- coupling of fermions to Higgs bosons:
 - Type I: all fermions to Φ_2
 - Type II: up-type to Φ_2 , down-type and leptons to Φ_1
- two sets of input parameters: either parameters in V_{tree} or

$$m_h$$
, m_H , m_A , $m_{H^{\pm}}$, m_{12}^2 , α , $\tan \beta$, v

Electroweak Phase Transition

requirement for successful EWBG: PT of strong first order

determine v for given T, criterion for a PT to be strong: [e.g. Quiros '99 and references therein]

$$\frac{v_c}{T_c} \ge 1$$

Introduction

Alexander Wlotzka - Electroweak Phase Transition in the Two-Higgs-Doublet Model

Calculation

Effective Potential at Finite Temperature at the One-Loop Level

[excellent review e.g. in Quiros '99]

- ingredients:
 - tree-level potential
 - Coleman-Weinberg potential
 - temperature potential
 - counterterm potential

[Coleman, Weinberg '73]

- position of the global minimum, Higgs masses and mixing angles preserved at tree-level values
- $\bullet\,$ minimization to find the global minimum at given temperature (\rightarrow vacuum expectation value (VEV))
- determination of the critical temperature and the corresponding VEV

Calculation

Tools and Constraints

- two independent calculations and implementations (C++ and Mathematica)
- ScannerS: Scan over the parameter space, boundedness from below and tree-level perturbative unitarity [Coimbra, Sampaio, Santos '13][Ferreira, Guedes, Sampaio, Santos '14]
- S, T, U parameters for electroweak precision observables
- $R_b = \Gamma(Z \to b\bar{b})/\Gamma(Z \to \text{Hadrons})$ and $B \to X_s \gamma$
- Higgs exclusion bounds checked by HiggsBounds [Bechtle, Heinemeyer, Weiglein et al. '08, '11, '13]
- Higgs rates checked via SusHi and HDECAY [Harlander, Liebler, Mantler '12][Harlander, Mühlleitner, Rathsman, Spira, Stal '13][Djouadi, Kalinowski, Spira '97 + Mühlleitner][Butterworth et al. '10]
- extensive scans over the parameter space of the 2HDM

• global minimum of the potential still at v = 0, electroweak symmetry unbroken

 $T = T_c$

• degenerate minima, determination of v_c and T_c by the position and height of the jump

• $\frac{v_c}{T_c} = 1.15 \Rightarrow$ strong first order PT

finite non-zero v, electroweak symmetry broken

[Basler, Krause, Mühlleitner, Wittbrodt, Wlotzka '16]

 $\begin{array}{l} \mu_{F(V)} \rightarrow \mbox{fermion(gauge boson)-initiated cross section (gluon (vector)-boson fusion and associated production) normalized to SM \\ \end{array}$

$$\mu_{\gamma\gamma} = \mu_F \frac{\mathsf{BR}_{\mathsf{2HDM}}(h_{125} \to \gamma\gamma)}{\mathsf{BR}_{\mathsf{SM}}(H_{\mathsf{SM}} \to \gamma\gamma)}$$

Results Alexander Wlotzka – Electroweak Phase Transition in the Two-Higgs-Doublet Model

Conclusion

Conclusion

- investigated the electroweak phase transition in the *CP*-conserving 2HDM
- determined T_c and v_c via the one-loop effective potential at finite T
- renormalization taking into account the position of the global minimum, all physical masses and mixing angles, novel treatment of the Goldstone bosons therein
- detailed phenomenological analysis taking into account most recent bounds and constraints
- findings:

CP-conserving 2HDM can yield a strong first order PT valid for baryogenesis requiring a strong PT has important consequences for collider observables:

- ightarrow Type I: $m_{A,H^{\pm}} pprox$ 400-500 GeV favored
- ightarrow Type I: $\mu_{\gamma\gamma}\lesssim$ 1.1
- \rightarrow Type II: $m_A \in [130, 340]$ GeV excluded
- \rightarrow many more in arXiv:1612.04086

Thanks for listening!

Conclusion

Conclusion

- investigated the electroweak phase transition in the *CP*-conserving 2HDM
- determined T_c and v_c via the one-loop effective potential at finite T
- renormalization taking into account the position of the global minimum, all physical masses and mixing angles, novel treatment of the Goldstone bosons therein
- detailed phenomenological analysis taking into account most recent bounds and constraints
- findings:

CP-conserving 2HDM can yield a strong first order PT valid for baryogenesis requiring a strong PT has important consequences for collider observables:

- ightarrow Type I: $m_{A,H^{\pm}} pprox$ 400-500 GeV favored
- ightarrow Type I: $\mu_{\gamma\gamma}\lesssim$ 1.1
- \rightarrow Type II: $m_A \in [130, 340]$ GeV excluded
- \rightarrow many more in arXiv:1612.04086

Thanks for listening!

Backup: Parameter Scans

Settings

- v = 246.22 GeV
- $-\pi/2 \le \alpha \le \pi/2$

# points	m _h	m _H in C	m _A GeV	$m_{H^{\pm}}$	m ² ₁₂ in GeV ²	$tan(\beta)$
1 000 000	m _{h125}	130 - 1000	30 - 1000	65 - 1000	$0-5\times 10^5$	1 – 35
100 000	30 - 120	m _{h125}	30 - 1000	65 - 1000	$0-5\times10^5$	1 – 35

Table: Parameter ranges for the scan performed in the 2HDM type I.

# points	m _h	m _H	m _A	$m_{H^{\pm}}$	m ² ₁₂	$tan(\beta)$
	in GeV			in GeV ²		
1 000 000	m _{h125}	130 - 1000	30 - 1000	480 - 1000	$0-5\times 10^5$	0.1 – 35
100 000	30 - 120	m _{h125}	450 - 1000	480 - 1000	$0-5\times10^5$	0.1 - 35

Table: Parameter ranges for the scan in the 2HDM type II.

Alexander Wlotzka - Electroweak Phase Transition in the Two-Higgs-Doublet Model

Backup: Results

[Basler, Krause, Mühlleitner, Wittbrodt, Wlotzka '16]

Type I, impact of demanding $\xi_c > 1$

Effective Potential at Finite Temperature

- Tree-level potential + one-loop corrections at finite temperature
- corresponds to diagrammatic calculation with vanishing external momenta
- one-loop contributions at finite temperature can be split into two parts:
 - Coleman-Weinberg potential V_{CW}
 - Temperature potential V_T
- V_{CW} in the $\overline{\text{MS}}$ -scheme:

$$V_{\rm CW}(\{\omega\}) = \sum_{i} \frac{n_i}{64\pi^2} (-1)^{2s_i} m_i^4(\{\omega\}) \left[\log\left(\frac{m_i^2(\{\omega\})}{\mu^2}\right) - c_i \right]$$

arts: (Coleman, Weinberg '73)

[excellent review e.g. in Quiros '99]

le.a. Quiros '991

Temperature Potential

• temperature potential V_T is given by

$$V_T = \sum_k n_k \frac{T^4}{2\pi^2} J_{\pm}^{(k)}$$

with

$$J_{\pm}\left(\frac{m_k^2}{T^2}\right) = \mp \int_0^\infty dx \, x^2 \log\left[1 \pm e^{-\sqrt{x^2 + m_k^2/T^2}}\right]$$

with +(-) for fermions (bosons)

problem: breakdown of perturbative expansion for high T

[Weinberg '74]

ightarrow can be cured by including thermal corrections to the masses of bosons

19/15

[excellent review e.g. in Quiros '99]

Temperature Potential

two different approaches (m (m) = mass without (with) thermal corrections) : Arnold-Espinosa: [Arnold, Espinosa '93]

$$J_{\pm}^{(k)} = \begin{cases} J_{-}\left(\frac{m_{k}^{2}}{T^{2}}\right) - \frac{\pi}{6}(\overline{m}_{k}^{3} - m_{k}^{3}) & k = W_{L}, Z_{L}, \gamma_{L}, \Phi^{0}, \Phi^{\pm} \\ J_{-}\left(\frac{m_{k}^{2}}{T^{2}}\right) & k = W_{T}, Z_{T} \\ J_{+}\left(\frac{m_{k}^{2}}{T^{2}}\right) & k = f \end{cases}$$

Parwani:

[Parwani '92]

$$J_{\pm}^{(k)} = \begin{cases} J_{-} \begin{pmatrix} \overline{m_k^2} \\ \overline{T^2} \end{pmatrix} & k = W_L, Z_L, \gamma_L, \Phi^0, \Phi^{\pm} \\ J_{-} \begin{pmatrix} m_k^2 \\ \overline{T^2} \end{pmatrix} & k = W_T, Z_T \\ J_{+} \begin{pmatrix} m_k^2 \\ \overline{T^2} \end{pmatrix} & k = f. \end{cases}$$

and also use \overline{m} in V_{CW} where appropriate

difference formally of higher order, both approaches tested

Backup Slides

Alexander Wlotzka - Electroweak Phase Transition in the Two-Higgs-Doublet Model

Renormalization

recall: set of input parameters

$$m_h$$
, m_H , m_A , $m_{H^{\pm}}$, m_{12}^2 , α , $\tan \beta$, v

- use these input parameters for efficient scan of the parameter space
- problem: input parameters ≠ one-loop parameters from effective potential (input parameters ≏ tree-level parameters
 - masses and angles from the effective potential at one loop $\hat{=}$ one-loop masses and angles in $\overline{\text{MS}}$ -scheme with vanishing external momenta)
- idea: counterterms (CTs) to achieve
 - input parameters = one-loop parameters from effective potential
- only finite pieces needed
- one CT for each parameter in V_{tree}

Renormalization

counterterm potential:

$$\begin{split} \mathcal{V}_{\text{CT}} &= \delta m_{11}^2 \Phi_1^{\dagger} \Phi_1 + \delta m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[\delta m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \delta \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 \\ &+ \frac{1}{2} \delta \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \delta \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \delta \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left[\frac{1}{2} \delta \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right] \end{split}$$

• renormalization at $T = 0 \Rightarrow$ only V_{tree} and V_{CW} relevant

 position of the minimum → first derivative masses and mixing angles → second derivative (Hesse matrix)

- expressions for derivatives of V_{CW} in gauge basis given in [Camargo-Molina, Morais, Pasechnik, Sampaio, Wessen '16]
- Reminder: Higgs fields in gauge basis:

$$\Phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_1 + i\eta_1 \\ \omega_1 + \zeta_1 + i\psi_1 \end{pmatrix} \quad \Phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_2 + i\eta_2 \\ \omega_2 + i\omega_3 + \zeta_2 + i\psi_2 \end{pmatrix}$$

Renormalization

conditions:

$$\partial_{\phi_i} |V_{\mathsf{CT}}(\phi)|_{\phi = \langle \phi^c \rangle_{T=0}} = -\partial_{\phi_i} |V_{\mathsf{CW}}(\phi)|_{\phi = \langle \phi^c \rangle_{T=0}}$$

and

$$\partial_{\phi_i}\partial_{\phi_j} \left. V_{\mathsf{CT}}(\phi) \right|_{\phi = \langle \phi^c
angle_{\mathcal{T}=0}} = -\partial_{\phi_i}\partial_{\phi_j} \left. V_{\mathsf{CW}}(\phi) \right|_{\phi = \langle \phi^c
angle_{\mathcal{T}=0}}$$

with

$$\phi_i \equiv \{\rho_1, \eta_1, \rho_2, \eta_2, \zeta_1, \psi_1, \zeta_2, \psi_2\}$$

- problem: system over-constrained \Rightarrow no general solution
- idea: approximation → take only those elements of the Hesse matrix corresponding to physical particles (h, H, A, H⁺, H⁻)
- rotate to the tree-level mass basis on both sides
- demand the condition only for the entries for *h*, *H*, *A*, *H*⁺, *H*⁻

$$\partial_{\phi_i} \partial_{\phi_j} \left. \mathsf{V}_{\mathsf{CT}}(\phi) \right|_{\phi = \langle \phi^c \rangle_{\mathcal{T}=0}} \left|_{\mathsf{mass}}^{H^{\pm}} = -\partial_{\phi_i} \partial_{\phi_j} \left. \mathsf{V}_{\mathsf{CW}}(\phi) \right|_{\phi = \langle \phi^c \rangle_{\mathcal{T}=0}} \left|_{\mathsf{mass}}^{H^{\pm}} \right.$$

and

$$\partial_{\phi_{i}}\partial_{\phi_{j}} V_{\mathsf{CT}}(\phi)|_{\phi = \langle \phi^{c} \rangle_{\mathcal{T}=0}} \big|_{\mathsf{mass}}^{h,H,\mathcal{A}} = -\partial_{\phi_{i}}\partial_{\phi_{j}} V_{\mathsf{CW}}(\phi)|_{\phi = \langle \phi^{c} \rangle_{\mathcal{T}=0}} \big|_{\mathsf{mass}}^{h,H,\mathcal{A}}$$

Backup Slides

Alexander Wlotzka - Electroweak Phase Transition in the Two-Higgs-Doublet Model

Renormalization

We find:

- eight counterterms to be fixed
- $\hfill first derivative \rightarrow$ two independent conditions
- $\hfill second derivative \rightarrow$ five independent conditions
- set $\delta \lambda_4 = 0$ (only appears in the sum with $\delta \lambda_3$)

Result:

- minimum of the full effective potential at one-loop remains at $\nu\pm 2~{\rm GeV}$
- masses and mixing angles preserved up to numerical fluctuations

Renormalization

• problem: IR divergence in the second derivative of V_{CW} for the Goldstone bosons (we work in Landau gauge $\rightarrow m_{G^0,G^{\pm}} = 0$) [see e.g. Martin '14 and Elias-Miro, Espinosa, Konstandin '14 and references therein]

 solution: this IR divergence is spurious and can be dropped [Casas, Espinosa, Quiros, Riotto '94][Elias-Miro, Espinosa, Konstandin '14] [Camargo-Molina, Morais, Pasechnik, Sampaio, Wessen '16]

full self-energy is given by

$$\Sigma(p^2) = \partial^2 V_{\text{eff}} + \Sigma(p^2) - \Sigma(0)$$

split everything into IR finite and divergent pieces and observe a relation between the divergent pieces

- \Rightarrow find that the divergent piece cancels
- was checked explicitly using the calculation of

[Krause, Lorenz, Mühlleitner, Santos, Ziesche '16]