

Electroweak Phase Transition in the Two-Higgs-Doublet Model

Alexander Wlotzka | February 15th, 2017

in collaboration with P. Basler, M. Krause, M. Mühlleitner and J. Wittbrodt

INSTITUTE FOR THEORETICAL PHYSICS

Outline

¹ [Introduction](#page-2-0)

² [Calculation](#page-6-0)

[Introduction](#page-2-0)

Motivation

\Rightarrow New Physics required \rightarrow Two-Higgs-Doublet Model (2HDM)

a analyses of EWBG in the 2HDM with old exclusion bounds

[Cline, Lemieux '97][Fromme, Huber, Seniuch '06][Cline, Kainulainen, Trott '11]

[Dorsch, Huber, No '13][Dorsch, Huber, Mimasu, No '14]

 \rightarrow update to newest bounds

n mixing angles of the Higgs sector of the 2HDM never considered in the renormalization so far

 \rightarrow consider them for the first time

- new treatment of the Goldstone bosons in the renormalization
- detailed analysis of implications of the requirement for a strong phase transition on collider observables

Two-Higgs-Doublet Model

Extend the SM Higgs sector by a second Higgs doublet

$$
V_{\text{tree}} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2
$$

$$
+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right]
$$

- new Higgs bosons, five in total: *h*, *H*, *A*, *H*+, *H*[−]
	- \rightarrow impact on the phase transition
- m_{12}^2 , λ_5 can in principle be complex
	- → new sources of *CP*-violation
- coupling of fermions to Higgs bosons:
	- Type I: all fermions to Φ_2

Type II: up-type to Φ_2 , down-type and leptons to Φ_1

■ two sets of input parameters: either parameters in *V*_{tree} or

$$
m_h, m_H, m_A, m_{H^{\pm}}, m_{12}^2, \alpha, \tan \beta, v
$$

Electroweak Phase Transition

requirement for successful EWBG: PT of strong first order

determine *v* for given *T*, criterion for a PT to be strong: [e.g. Quiros '99 and references therein] \blacksquare

$$
\frac{v_c}{T_c} \geq 1
$$

[Introduction](#page-2-0)

Alexander Wlotzka – [Electroweak Phase Transition in the Two-Higgs-Doublet Model](#page-0-0) February 15th, 2017 6/15

Calculation

Effective Potential at Finite Temperature at the One-Loop Level

[excellent review e.g. in Quiros '99]

- **n** ingredients:
	- **tree-level potential**
	- **Coleman-Weinberg potential Coleman-Weinberg in the Coleman Meinberg '73]**
	- \blacksquare temperature potential
	- counterterm potential

- **position of the global minimum, Higgs masses and mixing angles preserved at** tree-level values
- minimization to find the global minimum at given temperature (\rightarrow vacuum expectation value (VEV))
- determination of the critical temperature and the corresponding VEV

Calculation

Tools and Constraints

- two independent calculations and implementations (C₊₊ and Mathematica)
- ScannerS: Scan over the parameter space, boundedness from below and tree-level perturbative unitarity [Coimbra, Sampaio, Santos '13][Ferreira, Guedes, Sampaio, Santos '14]
- *S*, *T*, *U* parameters for electroweak precision observables
- $R_b = \Gamma (Z \to b\bar b)/\Gamma (Z \to \text{\rm Hadrons})$ and $B \to X_s \gamma$
- Higgs exclusion bounds checked by HiggsBounds [Bechtle, Heinemeyer, Weiglein et al. '08, '11, '13]
- Higgs rates checked via SusHi and HDECAY [Harlander, Liebler, Mantler '12][Harlander, Mühlleitner, Rathsman, Spira, Stal '13][Djouadi, Kalinowski, Spira '97 + Muhlleitner][Butterworth et al. '10] ¨
- **EXTER** extensive scans over the parameter space of the 2HDM

qlobal minimum of the potential at $v = 0$, electroweak symmetry unbroken

g global minimum of the potential still at $v = 0$, electroweak symmetry unbroken

 $T = T_c$

degenerate minima, determination of v_c and T_c by the position and height of the jump

 $\frac{v_c}{T_c}$ = 1.15 ⇒ strong first order PT

 \blacksquare finite non-zero *v*, electroweak symmetry broken

 $\mu_{F(V)} \rightarrow$ fermion(gauge boson)-
initiated cross section (gluon cross section (vector)-boson fusion and associated production) normalized to SM

$$
\mu_{\gamma\gamma} = \mu_F \frac{\text{BR}_{2HDM}(h_{125} \to \gamma\gamma)}{\text{BR}_{SM}(H_{SM} \to \gamma\gamma)}
$$

[Results](#page-8-0) Alexander Wlotzka – [Electroweak Phase Transition in the Two-Higgs-Doublet Model](#page-0-0) February 15th, 2017 14/15

Conclusion

Expedition and the conclusion control of the conclusion of t

- **n** investigated the electroweak phase transition in the *CP*-conserving 2HDM
- determined T_c and v_c via the one-loop effective potential at finite T
- renormalization taking into account the position of the global minimum, all physical masses and mixing angles, novel treatment of the Goldstone bosons therein
- **d** detailed phenomenological analysis taking into account most recent bounds and constraints
- findings:

CP-conserving 2HDM can yield a strong first order PT valid for baryogenesis requiring a strong PT has important consequences for collider observables:

- \rightarrow Type I: m_{A} _{H^{\pm}} \approx 400-500 GeV favored
- \rightarrow Type I: $\mu_{\gamma\gamma} \leq 1.1$
- \rightarrow Type II: $m_A \in [130, 340]$ GeV excluded
- \rightarrow many more in arXiv:1612.04086

Thanks for listening!

Conclusion

Expedition and the conclusion control of the conclusion of t

- **n** investigated the electroweak phase transition in the *CP*-conserving 2HDM
- determined T_c and v_c via the one-loop effective potential at finite T
- renormalization taking into account the position of the global minimum, all physical masses and mixing angles, novel treatment of the Goldstone bosons therein
- **d** detailed phenomenological analysis taking into account most recent bounds and constraints
- findings:

CP-conserving 2HDM can yield a strong first order PT valid for baryogenesis requiring a strong PT has important consequences for collider observables:

- \rightarrow Type I: m_{A} _{H^{\pm}} \approx 400-500 GeV favored
- \rightarrow Type I: $\mu_{\gamma\gamma} \leq 1.1$
- \rightarrow Type II: $m_A \in [130, 340]$ GeV excluded
- \rightarrow many more in arXiv:1612.04086

Thanks for listening!

Backup: Parameter Scans

Settings

- $v = 246.22$ GeV
- $-$ π/2 $\leq \alpha \leq \pi/2$

Table: Parameter ranges for the scan performed in the 2HDM type I.

Table: Parameter ranges for the scan in the 2HDM type II.

Alexander Wlotzka – [Electroweak Phase Transition in the Two-Higgs-Doublet Model](#page-0-0) February 15th, 2017 16/15

Backup: Results

Type I, impact of demanding $\xi_c > 1$ [Basler, Krause, Mühlleitner, Wittbrodt, Wlotzka '16] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 number of parameter points normalised to largest bin -600 -400 -200 0 200 400
 $m_H - m_{H^{\pm}}$ [GeV] $-600\frac{L}{600}$ -400 −200 0 200 400 m_A $-m_{H^{\pm}}$ [GeV] -600 -400 -200 0 200 400
 $m_H - m_{H^{\pm}}$ [GeV] $-600-600$ -400 $-200-$ 0 200 400 $m_A - m_{H^{\pm}}$ [GeV]

[Backup Slides](#page-16-0) Alexander Wlotzka – [Electroweak Phase Transition in the Two-Higgs-Doublet Model](#page-0-0) February 15th, 2017 17/15

 $\Phi_1 = \frac{1}{\sqrt{2}}$

$$
\sqrt{2} \left(\omega_1 + \zeta_1 + i \psi_1 \right)
$$

$$
\Phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_2 + i \eta_2 \\ \omega_2 + i \omega_3 + \zeta_2 + i \psi_2 \end{pmatrix}
$$

 $\int \rho_1 + i\eta_1$

 \setminus

Effective Potential at Finite Temperature [excellent review e.g. in Quiros '99]

Temperature potential *V^T*

 \blacksquare Tree-level potential $+$ one-loop corrections at finite temperature

corresponds to diagrammatic calculation with vanishing external momenta one-loop contributions at finite temperature can be split into two parts:

I V_{CW} in the $\overline{\text{MS}}$ -scheme: [e.g. Quiros '99]

$$
V_{\text{CW}}(\{\omega\}) = \sum_{i} \frac{n_i}{64\pi^2} (-1)^{2s_i} m_i^4(\{\omega\}) \left[\log \left(\frac{m_i^2(\{\omega\})}{\mu^2} \right) - c_i \right]
$$

$$
\{\omega\}
$$
: field configurations of the Higgs fields $m_i^2(\{\omega\})$: eigenvalue of mass matrix at $\{\omega\}$ s; spin of particle *i* n_i : degree of freedom for particle *i* α_i : degrees of freedom for particle *i* $c_i = 5/6$ for vector bosons, 3/2 otherwise μ^2 : renormalization scale

Coleman-Weinberg potential V_{CW} [Coleman, Weinberg '73]

$\mathsf{Temperature}\ \mathsf{Potential}\ \mathsf{Output}$

temperature potential V_T **is given by**

$$
V_T = \sum_k n_k \, \frac{T^4}{2\pi^2} \, J_{\pm}^{(k)}
$$

with

$$
J_{\pm}\left(\frac{m_k^2}{T^2}\right) = \mp \int_0^\infty dx \, x^2 \log\left[1 \pm e^{-\sqrt{x^2 + m_k^2/T^2}}\right]
$$

with $+(-)$ for fermions (bosons)

problem: breakdown of perturbative expansion for high *T* [Weinberg '74]

 \rightarrow can be cured by including thermal corrections to the masses of bosons

Temperature Potential **[19] Temperature** $\frac{1}{2}$

two different approaches $(m \overline{m}) =$ mass without (with) thermal corrections) : Arnold-Espinosa: [Arnold, Espinosa '93]

$$
J_{\pm}^{(k)} = \begin{cases} J_{-}\left(\frac{m_k^2}{T^2}\right) - \frac{\pi}{6}(\overline{m}_k^3 - m_k^3) & k = W_L, Z_L, \gamma_L, \Phi^0, \Phi^{\pm} \\ J_{-}\left(\frac{m_k^2}{T^2}\right) & k = W_T, Z_T \\ J_{+}\left(\frac{m_k^2}{T^2}\right) & k = f \end{cases}
$$

Parwani: [Parwani '92]

$$
J_{\pm}^{(k)} = \left\{ \begin{array}{ll} J_{-} \left(\frac{\overline{m}_k^2}{T^2} \right) & k = W_L, Z_L, \gamma_L, \Phi^0, \Phi^{\pm} \\ J_{-} \left(\frac{m_k^2}{T^2} \right) & k = W_T, Z_T \\ J_{+} \left(\frac{m_k^2}{T^2} \right) & k = f \ . \end{array} \right.
$$

and also use \overline{m} in V_{CW} where appropriate

difference formally of higher order, both approaches tested

[Backup Slides](#page-16-0)

Alexander Wlotzka – [Electroweak Phase Transition in the Two-Higgs-Doublet Model](#page-0-0) February 15th, 2017 2015

Renormalization

recall: set of input parameters

$$
m_h, m_H, m_A, m_{H^{\pm}}, m_{12}^2, \alpha, \tan \beta, v
$$

- **use these input parameters for efficient scan of the parameter space**
- problem: input parameters \neq one-loop parameters from effective potential \blacksquare (input parameters \triangleq tree-level parameters

masses and angles from the effective potential at one loop $\hat{=}$ one-loop masses and angles in $\overline{\text{MS}}$ -scheme with vanishing external momenta)

 \blacksquare idea: counterterms (CTs) to achieve

input parameters $=$ one-loop parameters from effective potential

- only finite pieces needed
- **one CT** for each parameter in V_{tree}

Renormalization

counterterm potential:

$$
V_{\text{CT}} = \delta m_{11}^2 \Phi_1^{\dagger} \Phi_1 + \delta m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[\delta m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \delta \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2
$$

+ $\frac{1}{2} \delta \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \delta \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \delta \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1)$
+ $\left[\frac{1}{2} \delta \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right]$

renormalization at $T = 0 \Rightarrow$ **only** V_{tree} **and** V_{CW} **relevant**

position of the minimum \rightarrow first derivative masses and mixing angles \rightarrow second derivative (Hesse matrix)

- expressions for derivatives of V_{CW} in gauge basis given in ٠ [Camargo-Molina, Morais, Pasechnik, Sampaio, Wessen '16]
- Reminder: Higgs fields in gauge basis:

$$
\Phi_1=\frac{1}{\sqrt{2}}\begin{pmatrix}\rho_1+i\eta_1\\\omega_1+\zeta_1+i\psi_1\end{pmatrix}\quad \Phi_2=\frac{1}{\sqrt{2}}\begin{pmatrix}\rho_2+i\eta_2\\\omega_2+i\omega_3+\zeta_2+i\psi_2\end{pmatrix}
$$

Renormalization

conditions:

$$
\partial_{\phi_i} \ V_{\text{CT}}(\phi)|_{\phi=\langle \phi^c \rangle_{\mathcal{T}=0}} = - \partial_{\phi_i} \ V_{\text{CW}}(\phi)|_{\phi=\langle \phi^c \rangle_{\mathcal{T}=0}}
$$

and

$$
\partial_{\phi_i} \partial_{\phi_j} V_{\text{CT}}(\phi)|_{\phi = \langle \phi^c \rangle_{\mathcal{T} = 0}} = - \partial_{\phi_i} \partial_{\phi_j} V_{\text{CW}}(\phi)|_{\phi = \langle \phi^c \rangle_{\mathcal{T} = 0}}
$$

with

$$
\phi_i \equiv \{\rho_1, \eta_1, \rho_2, \eta_2, \zeta_1, \psi_1, \zeta_2, \psi_2\}
$$

- problem: system over-constrained ⇒ no general solution
- idea: approximation \rightarrow take only those elements of the Hesse matrix corresponding to physical particles (h, H, A, H^+, H^-)
- \blacksquare rotate to the tree-level mass basis on both sides
- demand the condition only for the entries for h, H, A, H^+, H^-

$$
\partial_{\phi_i} \partial_{\phi_j} \ V_{\text{CT}}(\phi)|_{\phi = \langle \phi^c \rangle_{\mathcal{T}=0}} \left| \mathcal{H}^{\pm}_{\text{mass}} = - \partial_{\phi_i} \partial_{\phi_j} \ V_{\text{CW}}(\phi)|_{\phi = \langle \phi^c \rangle_{\mathcal{T}=0}} \right| \mathcal{H}^{\pm}_{\text{mass}}
$$

and

$$
\partial_{\phi_i} \partial_{\phi_j} V_{\text{CT}}(\phi)|_{\phi = \langle \phi^c \rangle_{\mathcal{T} = 0}} \big|_{\text{mass}}^{h, H, A} = -\partial_{\phi_i} \partial_{\phi_j} V_{\text{CW}}(\phi)|_{\phi = \langle \phi^c \rangle_{\mathcal{T} = 0}} \big|_{\text{mass}}^{h, H, A}
$$

[Backup Slides](#page-16-0)

Alexander Wlotzka – [Electroweak Phase Transition in the Two-Higgs-Doublet Model](#page-0-0) February 15th, 2017 23/15

Renormalization

We find:

- eight counterterms to be fixed
- first derivative \rightarrow two independent conditions
- \blacksquare second derivative \rightarrow five independent conditions
- set $\delta \lambda_4 = 0$ (only appears in the sum with $\delta \lambda_3$)

Result:

- **n** minimum of the full effective potential at one-loop remains at $v \pm 2$ GeV
- **n** masses and mixing angles preserved up to numerical fluctuations

Renormalization

problem: IR divergence in the second derivative of V_{CW} for the Goldstone bosons (we work in Landau gauge \rightarrow $m_{G^0/G^{\pm}} = 0$) [see e.g. Martin '14 and Elias-Miro, Espinosa, Konstandin '14 and references therein]

solution: this IR divergence is spurious and can be dropped [Casas, Espinosa, Quiros, Riotto '94][Elias-Miro, Espinosa, Konstandin '14] [Camargo-Molina, Morais, Pasechnik, Sampaio, Wessen '16]

full self-energy is given by

$$
\Sigma(\rho^2) = \partial^2 V_{\text{eff}} + \Sigma(\rho^2) - \Sigma(0)
$$

split everything into IR finite and divergent pieces and observe a relation between the divergent pieces

- \Rightarrow find that the divergent piece cancels
- was checked explicitly using the calculation of

[Krause, Lorenz, Mühlleitner, Santos, Ziesche '16]