DISCRETE-2022 7th-11th November 2022

Recent searches for new

Matteo Franchini on behalf of the ATLAS collaboration

phenomena with the ATLAS detector

Istituto Nazionale di Fisica Nucleare

Intro

- *** Focus** on phase-space regions having **the most interesting** "tensions" with respect to SM.
- * Extensive run-2 analysis program in both **ATLAS** & **CMS** advancing well:
 - more than 400 run-2 papers submitted each and more than 300 in progress only in ATLAS
- **run-3** in most interesting phase-space region first.
- spreading.
 - Solution ATLAS looks at results from CMS... they see more 2-3 σ excesses!

*** More run-2 results to come**, carefully scrutinising more specific/exclusive final states. Also preparing for

* Necessarily to consider every hint of new physics from both experiments: both cross check and search wide-

otal 1090

Run1 607

Partial Run2 31

Full Run2 163

Pixel de/dx analysis

- *** Signature:** anomalously high ionisation (dE/dx) tracks due to heavy nonrelativistic particles
- *** Strategy:** parameterise Bethe-Bloch to turn dE/dx into a mass measurement (from $\beta\gamma$ and p_T)
- * Search for excess of heavy ionising tracks over data-driven background

DISCRETE-2022 - 7-11 Nov

MET

Meta-stable heavy particle (decays inside detector) Leaves high ionisation track

 $g_{(LLP)}$

Data-Driven Bkg

Generate bkg tracks from measured events $(1/p_T \text{ and } dE/dx)$ in control region inverting cuts

Validate in dedicated regions: low track p_T ([50, 100] GeV) and high η ([1.8, 2.5])

Pixel de/dx analysis

*** Excess** (3.6 σ local, 3.3 σ global) in high dE/dx SR (> 2.4) with mass hypothesis of 1.4 TeV

***** A **cross-check** with timing variables show that candidate tracks have $\beta \approx 1$, which does not support a heavy LLP(long lived particle) signal-like interpretation of the excess

4

DISCRETE-2022 - 7-11 Nov

Matteo Franchini

LEUV

Lepton Flavour Universality Violation

LFUV

Lepton Flavour Universality Violation

* CMS found possible deviations in ratio ee/ $\mu\mu$ @ high messes

$$R_{\mu^+\mu^-/e^+e^-} = \frac{d\sigma(q\overline{q} \to \mu^+\mu^-)/dm_{\ell\ell}}{d\sigma(q\overline{q} \to e^+e^-)/dm_{\ell\ell}}$$

DISCRETE-2022 - 7-11 Nov

LEUV

Lepton Flavour Universality Violation

*** CMS** found **possible deviations** in ratio ee/ $\mu\mu$ @ high messes

$$R_{\mu^+\mu^-/e^+e^-} = \frac{d\sigma(q\overline{q} \to \mu^+\mu^-)/dm_{\ell\ell}}{d\sigma(q\overline{q} \to e^+e^-)/dm_{\ell\ell}}$$

DISCRETE-2022 - 7-11 Nov

*** ATLAS** non-resonant high mass dilepton+1b search

LEUV

Lepton Flavour Universality Violation

*** CMS** found **possible deviations** in ratio ee/ $\mu\mu$ @ high messes

$$R_{\mu^+\mu^-/e^+e^-} = \frac{d\sigma(q\overline{q} \to \mu^+\mu^-)/dm_{\ell\ell}}{d\sigma(q\overline{q} \to e^+e^-)/dm_{\ell\ell}}$$

DISCRETE-2022 - 7-11 Nov

*** ATLAS ongoing follow-up studies** on LFUV in high-mass Drell-Yan is twofold :

- *** double differential** measurement of highmass **Drell-Young** inclusive ratios
- ***** follow-up search in **dilepton + 0/1/2**b final states:
 - Including <u>more operators</u> (bbll, tull, tcll, and ttll) + μμ/ee ratios
 - Including also unfolded results in b-jet bins

Narrow dimnuon resonance

* A narrow di-muon resonance in ATLAS is searched for in $m_{\mu\mu} \in [16, 62]$ GeV.

* Good balance between a high BR (bb) and clean, high mass-resolution (µµ). Main **backgrounds:** Z + jets and $t\bar{t}$. **BDT** is used to discriminate the signal from SM.

* The **largest excess** is observed at a $m_{\mu\mu} = 52$ GeV and is 3.3 σ local (1.7 σ global).

 $h \rightarrow aa \rightarrow bb\mu^+\mu^-$

VLL in 4321model

Search for vector-like leptons VLL (N,L) decaying via offshell leptoquarks (U) [arXiv:2208.09700] [4321 model] motivated by b-anomalies

*** CMS: ML-based** analysis covering **3***b* **+ 0/1/2***τ* <u>final states</u>

- Solution Excess: ~2.8 σ , located in 1 and 2 τ regions. No VLL-mass dependence
- * Already published **ATLAS** result of VLL in τ final states (doublet model) doesn't see any excess [<u>ATLAS-CONF-2022-044</u>].
- *** ATLAS**: New, ambitious analysis looking 4321model VLL targeting Moriond'23
 - Strategy based on ML discrimination.

in 4321model

- * Search for vector-like leptons VLL (N,L) decaying via offshell leptoquarks (U) [arXiv:2208.09700] [4321 model] motivated by *b*-anomalies
- *** CMS: ML-based** analysis covering $3b + 0/1/2\tau$ final states
 - Solution Excess: ~2.8 σ , located in 1 and 2 τ regions. No VLLmass dependence
- * Already published ATLAS result of VLL in τ final states (doublet model) doesn't see any excess [ATLAS-CONF-2022-044].
- *** ATLAS**: New, ambitious analysis looking 4321model VLL targeting Moriond'23
 - Strategy based on ML discrimination.

Multiboson WWW

- ★ Goal: Measure of the <u>WWW production</u> crosssection in final states: <u>2leptonSameSign(2ℓSS)</u> and <u>3leptons (3ℓ)</u>
- ***** Use a **BDT** to discriminate signal VS background.
- * 4 **SRs**($e^{\pm}e^{\pm}$, $\mu^{\pm}\mu^{\pm}$, $e^{\pm}\mu^{\pm}$, 3ℓ) simultaneously fitted using the BDT distributions to obtain the total signal-strength μ_{WWW} .
- *** Results:** Bkg-only hypothesis rejected at 8.0σ (

	Fit	$\mu(WWW)$	Significance observed (expec
5.4 <i>σ</i>) 18 fb	$e^{\pm}e^{\pm}$	1.54 ± 0.76	$2.2~(1.4)~\sigma$
	$e^{\pm}\mu^{\pm}$	1.44 ± 0.39	$4.1~(3.0)~\sigma$
	$_{}$ $\mu^{\pm}\mu^{\pm}$	2.23 ± 0.46	$5.6~(2.7)~\sigma$
	2ℓ	1.75 ± 0.30	$6.6~(4.0)~\sigma$
	3ℓ	1.32 ± 0.37	$4.8~(3.8)~\sigma$
	Combined	1.61 ± 0.25	8.0 (5.4) σ

Multiboson WWW

- ★ Goal: Measure of the <u>WWW production</u> crosssection in final states: <u>2leptonSameSign(2ℓSS)</u> and <u>3leptons (3ℓ)</u>
- ***** Use a **BDT** to discriminate signal VS background.
- * 4 **SRs**($e^{\pm}e^{\pm}$, $\mu^{\pm}\mu^{\pm}$, $e^{\pm}\mu^{\pm}$, 3ℓ) simultaneously fitted using the BDT distributions to obtain the total signal-strength μ_{WWW} .
- *** Results:** Bkg-only hypothesis rejected at 8.0σ (
 - Eimits: σ_{obs} = 820 ± 100 ± 80 fb. σ_{exp} = 511 ± 1
 (@NLO QCD and LO EW accuracy)

* Unfortunately this time no significance excess seen by **CMS**

	Fit	$\mu(WWW)$	Significance observed (expec
- 4 \	$e^{\pm}e^{\pm}$	1.54 ± 0.76	$2.2 (1.4) \sigma$
5.4 <i>o</i>)	$e^\pm \mu^\pm$	1.44 ± 0.39	$4.1~(3.0)~\sigma$
18 fh	$\mu^{\pm}\mu^{\pm}$	2.23 ± 0.46	5.6 (2.7) σ
	2ℓ	1.75 ± 0.30	$6.6~(4.0)~\sigma$
	3ℓ	1.32 ± 0.37	$4.8 (3.8) \sigma$
	Combined	1.61 ± 0.25	8.0 (5.4) σ

tt resonances

- *** CMS** search for $A/H \rightarrow t\bar{t}$: **Observe excess** local 3.5 σ (1.9 σ global) @400 GeV for pseudo-scalar in dilepton channel
- *** ATLAS**: similar previous search @ 8 TeV but <u>did not interpret results below 500 GeV</u>.
- ***** ATLAS: current full run-2 effort underway can cross-check the result: search in associated production $t\bar{t}A/H \rightarrow tt\bar{t}\bar{t} \dots \underline{but \ saw \ no \ excesses}$ so far.

Conclusion

- * Big effort in searching **signs of new physics**. Many excess hints observed by ATLAS and (especially) CMS
 - Most promising ones presented here, but not exhaustive of them all...

- * Are these **excesses** coming from New Physics? Or maybe from background mis-modelling? Or event fluctuation?
- *** Important** because we know where to **look in the future**, ready for further investigations, many already <u>ongoing</u> or <u>planned</u>.

Double Resonance Y->XX'

 $X \rightarrow YH \rightarrow bb\gamma\gamma$ CMS-PAS-HIG-21-011 (2022)

(125,90) GeV with $m_X = 650$ GeV, 3.8 σ local, 2.8 σ global also some excess for $m_X = 850 \text{ GeV}$

- 2-body single resonance Y excess
- - no excess

DISCRETE-2022 - 7-11 Nov

same mass region (within resolution) than

HDBS-2021-17 on-going \rightarrow Moriond'23

comparable sensitivity than CMS expected $\rightarrow \sigma$ down to few fb in region of interest

ATLAS-CONF-2022-045 looked at $X \rightarrow YH \rightarrow qqbb$,

ATLAS Week @ Lisbon (10-14 October) | 14 October 2022 | PAGE 5/14

 $Y \rightarrow XX \rightarrow jjjj$ arXiv:2206.09997 (2022)

2 events with four-jet mass \sim 8 TeV and $< m_{jj} > \sim$ 2 TeV 3.9σ local, 1.6σ global

WWW	\rightarrow	$\ell \nu \ell$
WWW	\rightarrow	lνł
VZ combi	ine	d
WVZ –	$\rightarrow \ell$	$\nu q q$

WVV combined

DISCRETE-2022 - 7-11 Nov

 4.1σ

 3.1σ

Matteo Franchini

19

