Higgs boson property measurements at the ATLAS experiment

Chara Kitsaki, on behalf of the ATLAS Collaboration National Technical Univ. of Athens

DISCRETE2022: 8th Symposium on Prospects in the Physics of Discrete Symmetries 7-11 November 2022 Baden-Baden, Germany

The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 800)

Introduction

After the Higgs boson discovery by ATLAS and CMS in 2012

statistically significant excess of events / properties consistent with SM prediction

the emphasis is shifted to the precise measurements of this new particle's properties (i.e. mass, spin, parity, couplings, cross sections...)

either put constraints or use it as gateway to physics BSM

The increase in the centre-of-mass energy to 13 TeV and the large dataset allowed further channels to be probed and precise measurements to be performed

This talk will highlight some of the most recent results for the Higgs boson by ATLAS

Mass measurement

<u> $H \rightarrow ZZ^* \rightarrow 4\ell(=e \text{ or } \mu)$ </u>

<u>Improvements</u>

more statistics high-precision $p_{\rm T}^{\mu}$ calibration NN for S/B discrimination event-level $m_{4\ell}$ resolution in the fit

Compatibility between channels: p-value of 0.82

ATLAS Run 1:
$$\sqrt{s} = 7 - 8$$
 TeV, 25 fb⁻¹

 $m_H = 124.51 \pm 0.52 \text{ GeV}$

ATLAS partial Run 2 (2015-2016): $\sqrt{s} = 13$ TeV, 36.1 fb⁻¹

 $m_{\rm H} = 124.79 \pm 0.37~{\rm GeV}$ Phys. Lett. B 784 (2018) 345 ATLAS Full Run 2 (2015-2018): $\sqrt{\rm s} = 13~{\rm TeV},~139~{\rm fb}^{-1}$ $m_{\rm H} = 124.99 \pm 0.19~{\rm GeV}$

arXiv:2207.00320v1

3

CP measurement

SM predicts a Higgs boson with spin 0 and positive parity ($J^{CP} = 0^{++}$) with Run 1 dataset spin 1 and 2 hypotheses excluded with >99.9%CL bosonic coupling in VBF H $\rightarrow \gamma\gamma$ channel arXiv:2208.02338v1 CP-odd component described by dim-6 EFT operators in HISZ and Warsaw bases: Total Matrix element: $|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2 \cdot c_i \cdot \operatorname{Re}(\mathcal{M}_{SM}^* \mathcal{M}_{CP-odd}) + c_i^2 \cdot |\mathcal{M}_{CP-odd}|^2 \quad c_i$: Wilson coefficient

Optimal Observable method: construct CP-sensitive observable

68% (exp.)	95% (exp.)	68% (obs.)	95% (obs.)
[-0.027, 0.027]	[-0.055, 0.055]	[-0.011, 0.036]	[-0.032, 0.0
[-0.028, 0.028]	[-0.061, 0.060]	[-0.010, 0.040]	[-0.034, 0.07
[-0.038, 0.036]	_	[-0.090, 0.035]	-
[-0.022, 0.021]	[-0.046, 0.045]	[-0.012, 0.030]	[-0.034, 0.05
[-0.48, 0.48]	[-0.94, 0.94]	[-0.16, 0.64]	[-0.53, 1.02
[-0.48, 0.48]	[-0.95, 0.95]	[-0.15, 0.67]	[-0.55, 1.0]
	68% (exp.) [-0.027, 0.027] [-0.028, 0.028] [-0.038, 0.036] [-0.022, 0.021] [-0.48, 0.48] [-0.48, 0.48]	68% (exp.) $95%$ (exp.) $[-0.027, 0.027]$ $[-0.055, 0.055]$ $[-0.028, 0.028]$ $[-0.061, 0.060]$ $[-0.038, 0.036]$ $ [-0.022, 0.021]$ $[-0.046, 0.045]$ $[-0.48, 0.48]$ $[-0.94, 0.94]$ $[-0.48, 0.48]$ $[-0.95, 0.95]$	68% (exp.) $95%$ (exp.) $68%$ (obs.) $[-0.027, 0.027]$ $[-0.055, 0.055]$ $[-0.011, 0.036]$ $[-0.028, 0.028]$ $[-0.061, 0.060]$ $[-0.010, 0.040]$ $[-0.038, 0.036]$ $ [-0.090, 0.035]$ $[-0.022, 0.021]$ $[-0.046, 0.045]$ $[-0.012, 0.030]$ $[-0.48, 0.48]$ $[-0.94, 0.94]$ $[-0.16, 0.64]$ $[-0.48, 0.48]$ $[-0.95, 0.95]$ $[-0.15, 0.67]$

limits tightened by ~20% for 68% CL 3 times better results for 95% CL

 $C_{H\tilde{W}}$ (inter. only): 2-5 times more restrictive

previous $H \rightarrow \tau \tau$ result Phys. Lett. B 805 (2020) 135426

previous $H \rightarrow \gamma \gamma$ result arXiv:2202.00487v3

previous $H \rightarrow Z^*Z \rightarrow 4\ell$ result arXiv:2004.03447v3

Simplified template cross-section

 $H \rightarrow \gamma \gamma$

Optimised to simultaneously measure of sections in 28 Higgs boson phase space regions in 101 categories splitting in STXS bins based on kinematics non-overlapping fiducial regions

BDT classifier for signal separation among the various STXS regions

Binary multivariate classifier to separate signal from continuum background and improve measurement sensitivity

No significant deviation from SM

arXiv	:2207	<mark>.00348</mark>

	ATLAS	√s=13 TeV, 139 f
	$H \rightarrow \gamma \gamma$ $m_{H} = 125.09 \text{ GeV}$ Holds + Tot. Unc. Syst. unc. SM	$ Y_H < 2.5$ + Theo. unc. p-value = 93%
$\begin{array}{c} gg \rightarrow H, 0 \ jet, p_{T}^{H} < 10 \\ gg \rightarrow H, 0 \ jet, 10 \le p_{T}^{H} < 200 \\ gg \rightarrow H, 1 \ jet, 0 \le p_{T}^{H} < 120 \\ gg \rightarrow H, 1 \ jet, 0 \le p_{T}^{H} < 120 \\ gg \rightarrow H, 1 \ jet, 120 \le p_{T}^{H} < 200 \\ gg \rightarrow H, 1 \ jet, 120 \le p_{T}^{H} < 200 \\ gg \rightarrow H, 22 \ jets, m_{ji} < 350, 120 \le p_{T}^{H} < 200 \\ gg \rightarrow H, 22 \ jets, m_{ji} < 350, 120 \le p_{T}^{H} < 200 \\ gg \rightarrow H, 22 \ jets, m_{ji} < 350, 120 \le p_{T}^{H} < 200 \\ gg \rightarrow H, 22 \ jets, m_{ji} > 350, p_{T}^{H} < 200 \\ gg \rightarrow H, 200 \le p_{T}^{H} < 300 \\ gg \rightarrow H, 300 \le p_{T}^{H} < 450 \\ gg \rightarrow H, 300 \le p_{T}^{H} < 450 \\ gg \rightarrow H, 300 \le p_{T}^{H} < 450 \\ gg \rightarrow H, 300 \le p_{T}^{H} < 450 \\ gg \rightarrow H, 300 \le p_{T}^{H} < 200 \\ gg \rightarrow H, 22 \ jets, 350 \le m_{ji} < 700, p_{T}^{H} < 200 \\ qq' \rightarrow Hqq', 22 \ jets, 350 \le m_{ji} < 700, p_{T}^{H} < 200 \\ qq' \rightarrow Hqq', 22 \ jets, 350 \le m_{ji} < 1000, p_{T}^{H} < 200 \\ qq' \rightarrow Hqq', 22 \ jets, 350 \le m_{ji} < 1000, p_{T}^{H} < 200 \\ qq' \rightarrow Hqq', 22 \ jets, m_{ji} \ge 1000, p_{T}^{H} < 200 \\ qq' \rightarrow Hqq', 22 \ jets, m_{ji} \ge 1000, p_{T}^{H} < 200 \\ qq \rightarrow Hqq', 22 \ jets, m_{ji} \ge 1000, p_{T}^{H} < 200 \\ pp \rightarrow Hl/vv, p_{V}^{V} < 150 \\ pp \rightarrow Hl/vv, p_{T}^{V} < 150 \\ pp \rightarrow Hl(p) \\ pp \rightarrow Hl(p) \\ pp \rightarrow Hl(p) \\ pp \rightarrow Hl(p) \\ $	Syst. unc.	Tot. Stat. Sys 0.67 $^{+0.28}_{-0.25}$ ($^{+0.25}_{-0.25}$ $^{+0.11}_{-0.25}$ $^{-0.15}_{-0.25}$ $^{-0.11}_{-0.15}$ $^{+0.36}_{-0.34}$ $^{+0.34}_{-0.15}$ $^{+0.34}_{-0.30}$ $^{+0.34}_{-0.31}$ $^{+0.38}_{-0.34}$ ($^{+0.34}_{-0.30}$ $^{+0.34}_{-0.31}$ $^{+0.38}_{-0.30}$ $^{+0.34}_{-0.31}$ $^{+0.38}_{-0.30}$ $^{+0.5}_{-0.5}$ $^{+0.5}_{-0.5}$ $^{+0.5}_{-0.5}$ $^{+0.5}_{-0.1}$ $^{+0.5}_{1.3}$ $^{+0.5}_{-0.5}$ ($^{+0.5}_{-0.5}$ $^{+0.1}_{-0.4}$ $^{+0.11}_{-0.4}$ $^{+0.38}_{-0.4}$ $^{+0.4}_{-0.4}$ $^{+0.4}_{-0.4}$ $^{+0.4}_{-0.4}$ $^{+0.4}_{-0.4}$ $^{+0.4}_{-0.4}$ $^{+0.4}_{-0.4}$ $^{+0.4}_{-0.4}$ $^{+0.4}_{-0.4}$ $^{+0.4}_{-0.4}$ $^{+0.1}_{-0.5}$ $^{+0.5}_{-0.5}$ $^{+0.5}_{-0.4}$ $^{+0.1}_{-0.4}$ $^{+0.7}_{-0.4}$ $^{+0.7}_{-0.4}$ $^{+0.7}_{-0.6}$ $^{+0.6}_{-0.5}$ $^{+0.2}_{-0.6}$ $^{+0.6}_{-0.5}$ $^{+0.2}_{-0.6}$ $^{+0.6}_{-0.5}$ $^{+0.2}_{-0.5}$ $^{-0.2}_{-0.4}$ $^{+0.1}_{-0.4}$ $^{+0.33}_{-0.30}$ $^{+0.7}_{-0.1}$ $^{+0.7}_{-0.6}$ $^{+0.6}_{-0.5}$ $^{+0.2}_{-0.5}$ $^{+0.2}_{-0.6}$ $^{+0.6}_{-0.5}$ $^{+0.2}_{-0.5}$ $^{+0.2}_{-0.5}$ $^{+0.2}_{-0.5}$ $^{+0.2}_{-0.5}$ $^{+0.2}_{-0.5}$ $^{-0.2}_{-0.2}$ $^{+0.7}_{-0.1}$ $^{+0.7}_{-0.7}$ $^{+0.7}_{-0.1}$ $^{+0.7}_{-0.6}$ $^{+0.6}_{-0.2}$ $^{+0.7}_{-0.7}$ $^{+0.7}_{-0.1}$ $^{+0.7}_{-0.6}$ $^{+0.6}_{-0.2}$ $^{+0.7}_{-0.7}$ $^{-0.1}_{-0.6}$ $^{+0.6}_{-0.2}$ $^{+0.7}_{-0.7}$ $^{-0.1}_{-0.6}$ $^{+0.6}_{-0.2}$ $^{+0.7}_{-0.7}$ $^{-0.1}_{-0.6}$ $^{+0.6}_{-0.2}$ $^{+0.7}_{-0.7}$ $^{-0.1}_{-0.6}$ $^{+0.6}_{-0.2}$ $^{+0.7}_{-0.7}$ $^{-0.1}_{-0.6}$ $^{+0.6}_{-0.2}$ $^{+0.7}_{-0.7}$ $^{-0.1}_{-0.6}$ $^{+0.6}_{-0.2}$ $^{+0.7}_{-0.7}$ $^{-0.1}_{-0.6}$ $^{+0.6}_{-0.2}$ $^{-0.2}_{-0.0}$ $^{-0.2}_{-0.2}$ $^{-0.2}_{-0.0}$ $^{-0.2}_{-0.2}$ $^{-0.2}_{-0.0}$ $^{-0.9}_{-0.2}$ $^{-0.9}_{-0.2}$ $^{-0.9}_{-0.2}$ $^{-0.9}_{-0.2}$ $^{-0.9}_{-0.2}$ $^{-0.9}_{-0.2}$ $^{-0.6}_{-0.5}$ $^{-0.5}_{-0.1}$ $^{-0.5}_{-0.5}$ $^{-0.1}_{-0.5}$ $^{-0.5}_{-0.1}$ $^{-0.5}_{-0.5}$ $^{-0.1}_{-0.5}$ $^{-0.5}_{-0.1}$ $^{-0.5}_{-0.5}$ $^{-0.1}_{-0.5}$ $^{-0.5}_{-0.1}$ $^{-0.5}_{-0.5}$ $^{-0.1}_{-0.5}$ $^{-0.5}_{-0.1}$
ttH, p _T ^H ≥ 300 ttH, p _T ^H ≥ 300 tH tH		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		(σ·Β _{γγ})/(σ·Ε

Cro	DSS	
ce		

ggl

EFT interpretation

 $\rightarrow \gamma \gamma$

- 33 STXS regions (finer selection)
- 34 Wilson coefficients in Warsaw basis free to vary in the fit
- each STXS region affected by multiple operators

Principal component analysis

- compute eigenvectors EVn $C_{\text{SMEFT}}^{-1} = P^T C_{STXS}^{-1} P$
- align measurement with the eigenvectors
 - \rightarrow unconstrained eigenvectors are fixed to 0
 - \rightarrow 12 eigenvectors in the fit

arXiv:2207.00348v1

ATLAS \sqrt{s} =13 TeV 139fb⁻¹; H $\rightarrow \gamma\gamma$; SMEFT Interpretation; Λ =1 TeV

No significant deviation from SM

Differential cross sections measurements

<u> $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ </u>

Individual channels: measurements in fiducial regions to reduce signal model dependence

Combination: extrapolation to the full phase space

single and double differential cross-sections for Higgs boson $p_{\rm T}$ Higgs boson $|y_{\rm H}|$ jet multiplicity

leading jet $p_{\rm T}$

Results compatible with SM

~20-30% precision up to 300 GeV

~60% precision in 300-650 GeV

Couplings combining measurement

Simultaneous fit of cross-section X branching fraction for the individual measurement

 $\sigma(i \to H \to f) = \sigma_i B_f = \frac{\sigma_i(\kappa) \Gamma_f(\kappa)}{\Gamma_H(\kappa, B_{inv}, B_{u})}$ all decay modes direct or indirect SM decays hypothetical decays into non-SM particles

unconstrained scenario put an improved limit w.r.t arXiv:2201.11428v4 $\kappa_c < 5.7$ (6.7) times SM obs. (exp.) at 95% CL

Parametrisation in *k*-framework

Results compatible with SM

searches arXiv:2202.07953v2

Higgs self-coupling
SM:
$$V(H) = \frac{1}{2}m_{\rm H}^2 H^2 + \lambda_{\rm HHH}\nu H^3 + \frac{1}{4}\lambda_{\rm HHHH}H^4$$
, $\kappa_{\lambda} = \frac{\lambda_{\rm HHH}}{\lambda_{\rm HHH}^{SM}}$

<u>Direct measurements: production of two Higgs bosons</u>

Any deviation from the self-interaction predicted by the SM would be a sign of new physics

Indirect measurements: single-Higgs production

Higgs self-coupling

Two tested scenarios:

 κ_{λ} only: κ_{λ} floating & all other modifiers fixed to unity

<u>*κ*_λ generic</u>: $\kappa_{\lambda}, \kappa_{t}, \kappa_{b}, \kappa_{\tau}, \kappa_{V}$ floating & κ_{2V} fixed to unity

(no available parametrisation of single-Higgs NLO)

ation assumption	Obs. 95% CL	Exp. 95% CL	Obs. v
bination	$-0.6 < \kappa_{\lambda} < 6.6$	$-2.1 < \kappa_{\lambda} < 7.8$	$\kappa_{\lambda} = \lambda$
<i>I</i> combination	$-4.0 < \kappa_{\lambda} < 10.3$	$-5.2 < \kappa_{\lambda} < 11.5$	$\kappa_{\lambda} = \lambda$
combination	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.5$	$\kappa_{\lambda} = 1$
combination, κ_t floating	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 1$
combination, κ_t , κ_V , κ_b , κ_{τ} floating	$-1.3 < \kappa_\lambda < 6.1$	$-2.1 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 2$

11

Summary

- Improvement of the analysis techniques
- Higgs boson nature consistent with the SM predictions
- Ample room for new phenomena BSM to be discovered
- Expect to profit from latest detector developments

We have studied the Higgs boson properties with great precision since its discovery

• Looking forward to Run 3 data to reach higher sensitivity to potential new physics

Thank you for the attention!

Backup

Mass measurement

$\underline{\mathrm{H}} \to \mathrm{Z}\mathrm{Z}^* \to 4\ell$

Final states: 4μ , $2e2\mu$, $2\mu2e$, 4e1 quadruplet per event

Final-state radiation (FSR) y

- 1 FSR candidate per quadruplet
- $m_{4\ell}$ resolution improvement by ~1%

Z-boson mass constraint

 $m_{4\ell}$ resolution improvement by ~17%

arXiv:2207.00320v1

constrained $p_{\rm T}^{4\ell}$ & uncertainty

CP measurement

bosonic coupling in VBF H $\rightarrow \gamma\gamma$ channel

Optimal Observable method - $OO = 2 \cdot \text{Re}(\mathcal{M}_{SM}^* \cdot \mathcal{M}_{CP-odd}) / |\mathcal{M}_{SM}|^2$ using p_T^H and p_T^{JJ}

VBF signal: BDT based event categorisation - fit to the $m_{\gamma\gamma}$ split into the OO bins

arXiv:2208.02338v1

CP measurement

Comparisons with other results

CP mixing angle measurement

top-Higgs coupling (ttH and tH) in $H \rightarrow bb$ Signal: ttH and tH events

Final states: at least 1 top quark decays semi-leptonically to e/μ ℓ +jets and dilepton channels

Background dominated by $t\bar{t}$ +jets

Event categorisation:

- 1. Define Control Regions (CR) and Preliminary Signal Regions (PSR)
- 2. MVA used to define additional CR and final SR from the PSRs

ATLAS-CONF-2022-016

CP mixing angle measurement

<u>T-Higgs coupling in $H \rightarrow \tau \tau$ </u> ATLAS-CONF-2022-032

- CP-sensitive observable: ϕ_{CP}^* (signed acoplanarity angle)
- Different methods for tau lepton decay planes reconstruction
- Signal events model w/o spin correlations -> introduced as per event weights
- 24 Signal Regions & 10 Control Regions in the fit
- The precision is limited by the stat. uncertainties

τ lepton decay modes used in the analysis

Notation	Decay mode	Branching frac
ℓ	$\ell^{\pm} \bar{ u} u$	35.2~%
1p0n	$h^{\pm} u \; (\pi^{\pm} u)$	11.5~%~(10.8
1 p 1 n	$h^{\pm}\pi^{0}\nu \ (\pi^{\pm}\pi^{0}\nu)$	25.9~%~(25.5
1pXn	$h^{\pm} \ge 2\pi^{0}\nu \; (\pi^{\pm}2\pi^{0}\nu)$	10.8~%~(9.3~)
3 p0 n	$3h^{\pm}\nu \ (3\pi^{\pm}\nu)$	9.8~%~(9.0~%

Impact of uncertainties

Set of nuisance parameters	Impact on ϕ_{τ}
Jet	4.3
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.4
Electron	0.3
Muon	0.9
$\tau_{\rm had}$ reconstruction	1.0
Misidentified τ	0.6
$\tau_{\rm had}$ decay mode classification	0.3
π^0 angular resolution and energy scale	0.2
Track $(\pi^{\pm}, \text{ impact parameter})$	0.7
Flavour Tagging	0.2
Luminosity	0.1
Theory uncertainty in $H \to \tau \tau$ processes	1.5
Theory uncertainty in $Z \to \tau \tau$ processes	1.1
Simulated background sample statistics	1.4
Signal normalisation	1.4
Background normalisation	0.6
Total systematic uncertainty	5.2
Data sample statistics	15.6
Total	16.4

STXS

arXiv:2207.00348v1

Correlation matrix

 $\rightarrow \gamma \gamma$

ATLAS

$\sigma_{gg \rightarrow H, 0\text{-jet, } p_{T}^{H} < 10}^{\gamma\gamma}$	1										
$\sigma_{gg \rightarrow H, 0 \text{-jet}, 10 \leq p_{\perp}^{H} < 200}^{\gamma\gamma}$	-0.10	1									
$\sigma_{gg \rightarrow H, 1-jet, p_{T}^{H} < 60}^{\gamma\gamma}$	0.00	-0.23	1								
$\sigma_{gg \rightarrow H, 1 \text{-jet}, 60 \leq p_{\perp}^{H} < 120}^{\gamma\gamma}$	-0.07	0.20	0.08	1							
$\sigma_{gg \rightarrow H, 1-jet, 120 \le p_{-}^{H} < 200}^{\gamma\gamma}$	-0.03	0.14	0.07	0.23	1						
$\sigma_{gg \rightarrow H, \geq 2\text{-jets, m}}^{\gamma\gamma} < 350, p_{\perp}^{H} < 120$	0.05	-0.08	0.02	-0.20	0.03	1					
σ ^{γγ} gg→H, ≥2-jets, m _⊥ < 350, 120 ≤ p ⁺ _⊥ < 200	-0.03	0.10	0.09	0.18	-0.01	0.01	1				
$\sigma_{gg \rightarrow H, \geq 2\text{-jets m}}^{\gamma\gamma} \ge 350, p_{\perp}^{H} < 200$	0.01	-0.04	0.02	-0.03	-0.02	0.01	-0.03	1			
$\sigma_{gg \rightarrow H, 200 \le p_{\perp}^{H} < 300}^{\gamma\gamma}$	-0.05	0.14	0.08	0.24	0.17	0.03	0.15	0.00	1		
$\sigma_{gg \rightarrow H, \ 300 \le p_{\pm}^{H} < 450}^{\gamma\gamma}$	0.00	0.04	0.05	0.09	0.08	0.07	0.09	0.02	0.07	1	
$\sigma_{gg \rightarrow H, p_{\tau}^{H} \ge 450}^{\gamma\gamma}$	-0.01	0.04	0.05	0.08	0.07	0.04	0.07	0.02	0.10	0.02	1
$\sigma^{\gamma\gamma}_{qq ightarrow Hqq', \ \leq 1-jet \ and \ VH-veto}$	0.00	-0.09	-0.23	-0.38	-0.37	-0.24	-0.26	-0.05	-0.31	-0.22	-0.15
$\sigma^{\gamma\gamma}_{qq' ightarrow Hqq', VH-had}$	-0.01	-0.01	-0.01	-0.03	-0.02	-0.12	-0.28	0.01	-0.19	-0.12	-0.03
$\sigma_{qq' \rightarrow Hqq', \geq 2\text{-jets}, 350 \leq m_{\parallel} < 700, p_{\perp}^{H} < 200}$	-0.01	0.03	0.02	0.02	0.01	-0.01	0.01	-0.51	0.01	-0.01	0.00
$\sigma_{qq' \rightarrow Hqq', \geq 2\text{-jets}, 700 \leq m_{\parallel} < 1000, p_{\perp}^{H} < 200}$	0.00	0.02	0.03	0.02	0.01	0.02	0.03	-0.30	0.02	0.01	0.01
$\sigma_{qq' \rightarrow Hqq', \geq 2\text{-jets, } m_{\parallel} \geq 1000, p_{\perp}^{H} < 200}$	0.00	0.01	0.05	0.00	-0.01	0.02	0.02	-0.26	0.01	-0.01	0.01
$\sigma_{qq' \rightarrow Hqq', \geq 2\text{-jets}, 350 \geq m_{\parallel} < 1000, p_{\perp}^{H} \geq 200}$	-0.02	0.01	0.00	0.00	-0.01	-0.03	-0.01	0.00	-0.24	-0.14	-0.08
$\sigma_{qq' \rightarrow Hqq', \geq 2\text{-jets, }m_{\downarrow} \geq 1000, p_{\downarrow}^{H} \geq 200}$	0.00	0.01	0.03	0.00	0.00	0.01	0.01	-0.05	-0.05	-0.04	-0.03
σ ^{⊮γγ} qq→HIν, p [∨] < 150	0.01	0.03	-0.01	0.01	0.01	-0.01	0.00	0.00	0.01	0.01	0.00
$\sigma_{qq \rightarrow Hlv, p_{v}^{V} \ge 150}^{\gamma\gamma}$	0.00	0.02	0.01	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.01
$\sigma_{pp \rightarrow HII/vv, p' < 150}^{\gamma\gamma}$	-0.01	-0.01	0.00	-0.01	0.00	-0.01	-0.01	-0.01	0.01	0.00	0.00
$\sigma_{pp \rightarrow HII/\nu\nu, p_{\nu}^{\vee} \ge 150}^{\gamma\gamma}$	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.01
$\sigma_{\text{ttH, p}_{\pm}^{\text{H}} < 60}^{\gamma\gamma}$	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.01
$\sigma_{ttH, 60 \le p_{T}^{H} < 120}^{\gamma\gamma}$	0.00	0.00	0.02	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.01
$\sigma_{ttH, 120 \le p_{T}^{H} < 200}^{\gamma\gamma}$	0.00	0.02	0.01	0.00	0.00	0.02	0.01	0.02	0.02	0.03	0.02
$\sigma_{ttH, 200 \le p_{T}^{H} < 300}^{\gamma\gamma}$	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.02	-0.01	0.01	0.01
$\sigma_{\text{ttH, p}_{\text{T}}^{\text{H}} \ge 300}^{\gamma\gamma}$	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.02	0.03	-0.03	-0.02
$\sigma_{ m tH}^{\gamma\gamma}$	0.00	0.01	0.01	0.00	0.00	-0.02	-0.02	-0.06	-0.05	-0.04	-0.02
	< 10	< 200	< 60	< 120	< 200	< 120	< 200	< 200	< 300	< 450	≥ 450
	jet, p ^H	u ⊐d v	jet, p ^H		± d ∨	, ⊢ d ,0	±d ∨	0, p ^H .	±d √	±d √	т Т Т
	-0 ,H	et, 10	→H, 1-	et, 60	t, 120	< 35	° 0, 120	≥ 35	H, 200	H, 300	77 99 →
	σ ⁷⁷ 99-	, Н, О-ј	$\sigma_{gg^{-}}^{\gamma\gamma}$,Н, 1-j	H, 1-je	ets, m	< 35	ets m	"Y gg→	"YY gg →	0
		0 ³⁰		0 00⊖ 00⊖	γγ gg→l	I, ≥2-j	ets, m	, ≥2-j	ь	ь	
		-		-	0	γγ gg→⊢	l, ≥2-j∈	¥ 190			
						ь	γγ gg→H	0			
							ь				

EFT interpretation

 $H \rightarrow \gamma \gamma$

Coeff.	Operator	Incl.	Coeff.	Operator	Incl.					
c_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\checkmark	$c_{qq}^{(3)}$	$(\bar{q}_r \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_s)$	\checkmark	$c_{H_{2}}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}H)(\bar{q}_{r}\tau^{I}\gamma^{\mu}q_{r})$	\checkmark		$(\bar{l}_{n}^{j}[Y_{l}^{\dagger}]_{na}e_{a})(\bar{d}_{r}[Y_{d}]_{rs}q_{s}^{j})$
c_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$	\checkmark	$c_{qq}^{(3)\prime}$	$(ar{q}_r \gamma_\mu au^I q_s) (ar{q}_s \gamma^\mu au^I q_r)$	\checkmark	r^{Hq}	$(H^{\dagger}i\overleftrightarrow{D} H)(\bar{a} \gamma^{\mu}a)$		$\begin{bmatrix} ledq \\ c^{(1)} \end{bmatrix}$	$(\bar{a}^{j}[V^{\dagger}] \mid u) \in (\bar{a}^{k}[V^{\dagger}] \mid d)$
C_H	$(H^{\dagger}H)^3$		$c_{qq}^{(1)}$	$(\bar{q}_r \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_s)$	\checkmark	$^{\iota}Hq$	$(\Pi^{\dagger} \iota D_{\mu} \Pi)(q_r \gamma^{\mu} q_r)$	v	$\begin{bmatrix} c q u q d \\ (1) \end{pmatrix}$	$(q_p[r_u]pquq) \in j_k(q_r[r_d]rsu_s)$
$c_{H\square}$	$(H^\dagger H) \square (H^\dagger H)$	\checkmark	$c_{qq}^{(1)\prime}$	$(\bar{q}_r \gamma_\mu q_s)(\bar{q}_s \gamma^\mu q_r)$	\checkmark	c_{Hu}	$(H^{\dagger}i D_{\mu}H)(u_{r}\gamma^{\mu}u_{r})$	\checkmark	$C_{quqd}^{(1)}$	$(q_p^{\prime}[Y_d]_{ps}u_q)\epsilon_{jk}(q_r^{\kappa}[Y_u]_{rq}d_s)$
C _{HD}	$\left(H^{\dagger}D^{\mu}H ight)^{*}\left(H^{\dagger}D_{\mu}H ight)$	\checkmark	$c_{lq}^{(\bar{3})}$	$(\bar{l}_r \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_s)$		c_{Hd}	$(H^{\dagger}iD_{\mu}H)(\bar{d}_{r}\gamma^{\mu}d_{r})$	\checkmark	$c_{quqd}^{(8)}$	$(\bar{q}_p^J T^A [Y_u^{\dagger}]_{pq} u_q) \epsilon_{jk} (\bar{q}_r^k T^A [Y_d^{\dagger}]_{rs} d_{jk})$
C_{HG}	$H^\dagger HG^A_{\mu u}G^{A\mu u}$	\checkmark	$c_{lq}^{(1)}$	$(\bar{l}_r \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_s)$		c_{Hud}	$(H^{\dagger}iD_{\mu}H)(\bar{u}_{p}\gamma^{\mu}[Y_{u}Y_{d}^{\dagger}]_{pq}d_{q})$		$c_{quqd}^{(8)\prime}$	$(\bar{q}_p^J T^A [Y_d^{\dagger}]_{ps} u_q) \epsilon_{jk} (\bar{q}_r^k T^A [Y_u^{\dagger}]_{rq} d_{jk})$
C_{HW}	$H^{\dagger}HW^{I}_{\mu u}W^{I\mu u}$	\checkmark	c_{ee}	$(\bar{e}_r \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_s)$		c_{ll}	$(\bar{l}_r \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_s)$		$c_{lequ}^{(1)}$	$(\bar{l}_p^J[Y_e^{\dagger}]_{pq}e_q)\epsilon_{jk}(\bar{q}_r^k[Y_u^{\dagger}]_{rs}u_s)$
C_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	\checkmark	C _{eu}	$(\bar{e}_r \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_s)$		c'_{II}	$(\bar{l}_r \gamma_\mu l_s)(\bar{l}_s \gamma^\mu l_r)$	\checkmark	$c_{leau}^{(3)}$	$(\bar{l}_{p}^{j}\sigma^{\mu\nu}[Y_{e}^{\dagger}]_{ps}e_{q})\epsilon_{jk}(\bar{q}_{r}^{k}\sigma_{\mu\nu}[Y_{u}^{\dagger}]_{rq}\iota$
C_{HWB}	$H^{\dagger} au^{I} H W^{I}_{\mu u} B^{\mu u}$	\checkmark	c_{ed}	$(\bar{e}_r \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_s)$					legu	
C_{eH}	$(H^{\dagger}H)(\bar{l}_{p}[Y_{e}^{\dagger}]_{pq}e_{q}H)$	\checkmark	c _{uu}	$(\bar{u}_r \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_s)$	\checkmark					
c_{uH}	$(H^{\dagger}H)(\bar{q}_{p}[Y_{u}^{\dagger}]_{pq}u_{q}H)$	\checkmark	c'_{uu}	$(\bar{u}_r \gamma_\mu u_s)(\bar{u}_s \gamma^\mu u_r)$	\checkmark					
C_{dH}	$(H^{\dagger}H)(\bar{q}_{p}[Y_{d}^{\dagger}]_{pq}d_{q}H)$	\checkmark	c _{dd}	$(\bar{d}_r \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_s)$						
C_{eW}	$(\bar{l}_p \sigma^{\mu\nu} [Y_e^{\dagger}]_{pq} e_q) \tau^I H W_{\mu\nu}^I$		c'_{dd}	$(\bar{d}_r \gamma_\mu d_s) (\bar{d}_s \gamma^\mu d_r)$						
C_{eB}	$(\bar{l}_p \sigma^{\mu\nu} [Y_e^{\dagger}]_{pq} e_q) H B_{\mu\nu}$		$c_{ud}^{(1)}$	$(\bar{u}_r \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_s)$	\checkmark					
C_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A [Y_u^{\dagger}]_{pq} u_q) \widetilde{H} G^A_{\mu\nu}$	\checkmark	$c_{ud}^{(8)}$	$(\bar{u}_r \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_s)$	\checkmark					
c_{uW}	$(\bar{q}_p \sigma^{\mu\nu} [Y_u^{\dagger}]_{pq} u_q) \tau^I \tilde{H} W_{\mu\nu}^I$	\checkmark	c_{le}	$(\bar{l}_r \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_s)$						
C_{uB}	$(\bar{q}_p \sigma^{\mu\nu} [Y_u^{\dagger}]_{pq} u_q) \widetilde{H} B_{\mu\nu}$	\checkmark	c_{lu}	$(\bar{l}_r \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_s)$						
c_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A [Y_d^{\dagger}]_{pq} d_q) H G^A_{\mu\nu}$		c_{ld}	$(\bar{l}_r \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_s)$						
C_{dW}	$(\bar{q}_p \sigma^{\mu\nu} [Y_d^{\dagger}]_{pq} d_q) \tau^I H W_{\mu\nu}^I$		c_{qe}	$(\bar{q}_r \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_s)$						
C_{dB}	$(\bar{q}_p \sigma^{\mu\nu} [Y_d^{\dagger}]_{pq} d_q) H B_{\mu\nu}$		$c_{qu}^{(1)}$	$(\bar{q}_r \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_s)$	\checkmark					
$c_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{r}\tau^{I}\gamma^{\mu}l_{r})$	\checkmark	$c_{qu}^{(8)}$	$(\bar{q}_r \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_s)$	\checkmark					
$c_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{r}\gamma^{\mu}l_{r})$	\checkmark	$c_{qd}^{(1)}$	$(\bar{q}_r \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_s)$	\checkmark					
c_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{r}\gamma^{\mu}e_{r})$	\checkmark	$c_{qd}^{(8)}$	$(\bar{q}_r \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_s)$	\checkmark					

arXiv:2207.00348v1

$u_s)$

21

Differential cross sections measurements

<u> $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ </u>

Fiducial phase space

 $p_{\rm T}^{\rm H}$ and $|y_{\rm H}|$ derived from decay products

Total phase space

 $p_{\rm T}^{\rm H}$ and $|y_{\rm H}|$ derived from simulation

Acceptance factors ~ 50%

arXiv:2207.08615v1

Acceptance factors

Combination analysis inputs

arXiv:2207.00348v1

;	Targeted production processes	\mathcal{L} [fb ⁻¹]	Ref.	Fits deployed in
	ggF, VBF, WH, ZH, ttH, tH	139	[31]	All
	ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	139	[28]	All
	$t\bar{t}H + tH$ (multilepton)	36.1	[39]	All but fit of kinematics
	ggF, VBF	139	[29]	All
	WH, ZH	36.1	[30]	All but fit of kinematics
	$t\overline{t}H + tH$ (multilepton)	36.1	[39]	All but fit of kinematics
	inclusive	139	[32]	All but fit of kinematics
	WH, ZH	139	[33, 34]	All
	VBF	126	[35]	All
	$t\overline{t}H + tH$	139	[36]	All
	inclusive	139	[37]	Only for fit of kinematic
	ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	139	[38]	All
	$t\bar{t}H + tH$ (multilepton)	36.1	[39]	All but fit of kinematics
	$ggF + t\overline{t}H + tH$, VBF + $WH + ZH$	139	[<mark>40</mark>]	All but fit of kinematics
	WH + ZH	139	[41]	Only for free-floating κ_c
ole	VBF	139	[42]	κ models with $B_{\rm u}$ & $B_{\rm inv}$
	ZH	139	[43]	κ models with $B_{\rm u.}$ & $B_{\rm inv}$

tics tics tics atics tics tics K_C $B_{\rm inv.}$ $B_{\rm inv.}$

