Chara Kitsaki, on behalf of the ATLAS Collaboration National Technical Univ. of Athens

Higgs boson property measurements at the ATLAS experiment

 DISCRETE2022: 8th Symposium on Prospects in the Physics of Discrete Symmetries 7-11 November 2022 Baden-Baden, Germany

The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 800)

Introduction

This talk will highlight some of the most recent results for the Higgs boson by ATLAS

 either put constraints or use it as gateway to physics **BSM**

After the Higgs boson discovery by ATLAS and CMS in 2012

 statistically significant excess of events / properties consistent with SM prediction

the emphasis is shifted to the precise measurements of this new particle's properties (i.e. mass, spin, parity, couplings, cross sections…)

The increase in the centre-of-mass energy to 13 TeV and the large dataset allowed further channels to be probed and precise measurements to be performed

Mass measurement

$H \to ZZ^* \to 4\ell (=e \text{ or } \mu)$

Improvements

[Phys. Lett. B 784 \(2018\) 345](https://arxiv.org/pdf/1806.00242.pdf) ATLAS Full Run 2 (2015-2018): $\sqrt{\rm s}=13\, \text{TeV},\, 139\; \rm fb^{-1}$ $m_{\text{H}} = 124.79 \pm 0.37 \text{ GeV}$ $m_{\text{H}} = 124.99 \pm 0.19 \text{ GeV}$

3

ATLAS Run 1:
$$
\sqrt{s} = 7 - 8
$$
 TeV, 25 fb⁻¹

 $m_H = 124.51 \pm 0.52$ GeV

ATLAS partial Run 2 (2015-2016): $\sqrt{\rm s}=13\,$ TeV $,\,36.1\,\,{\rm fb}^{-1}$

[arXiv:2207.00320v1](https://arxiv.org/pdf/2207.00320.pdf)

 more statistics high-precision p_T^{μ} calibration NN for S/B discrimination event-level $m_{4\ell}$ resolution in the fit T

Compatibility between channels: p-value of 0.82

CP measurement

with Run 1 dataset spin 1 and 2 hypotheses excluded with >99.9%CL SM predicts a Higgs boson with spin 0 and positive parity $(J^{CP} = 0^{++})$ bosonic coupling in VBF $H \rightarrow \gamma \gamma$ channel [arXiv:2208.02338v1](https://arxiv.org/pdf/2208.02338.pdf) CP-odd component described by dim-6 EFT operators in HISZ and Warsaw bases: Total Matrix element: $|\mathscr{M}|^2=|\mathscr{M}_{\rm SM}|^2+2\cdot c_i\cdot {\rm Re}(\mathscr{M}_{\rm SM}^*\mathscr{M}_{\rm CP-odd})+c_i^2\cdot |\mathscr{M}_{\rm CP-odd}|^2-c_i$: Wilson coefficient 2 $= | \mathcal{M}_{\text{SM}} |^2 + 2 \cdot c_i \cdot \text{Re}(\mathcal{M}_{\text{SM}}^* \mathcal{M}_{\text{CP-odd}}) + c_i^2 \cdot |\mathcal{M}_{\text{CP-odd}}|$

previous $\mathrm{H}\rightarrow\tau\tau$ result [Phys. Lett. B 805 \(2020\) 135426](https://www.sciencedirect.com/science/article/pii/S0370269320302306?via=ihub)

previous $\text{H} \to \gamma \gamma$ result [arXiv:2202.00487v3](https://arxiv.org/pdf/2202.00487.pdf)

previous $\mathrm{H} \rightarrow \mathrm{Z}^*\mathrm{Z} \rightarrow 4\ell$ result [arXiv:2004.03447v3](https://arxiv.org/pdf/2004.03447.pdf)

2 *ci*

Optimal Observable method: construct CP-sensitive observable

 limits tightened by ~20% for 68% CL 3 times better results for 95% CL

 $c_{H\tilde{W}}$ (inter. only): 2-5 times more restrictive

Optimised to simultaneously measure of sections in 28 Higgs boson phase space regions in 101 categories splitting in STXS bins based on kinematics non-overlapping fiducial regions

BDT classifier for signal separation among the various STXS regions

Binary multivariate classifier to separate signal from continuum background and improve measurement sensitivity

ggF

 $gg \rightarrow H$, \geq

VBF

 $qq' \rightarrow Hqq'$,

qq'→Hqq', ≥2

 $qq' \rightarrow Hqq', \geq 2$

 $qa' \rightarrow$

VH

ttH

Simplified template cross-section

 $H \rightarrow \gamma \gamma$

No significant deviation from SM

EFT interpretation [arXiv:2207.00348v1](https://arxiv.org/pdf/2207.00348.pdf)

H → *γγ*

- compute eigenvectors EVn $C_{\text{SMEFT}}^{-1} = P^T C_{STXS}^{-1} P$
- align measurement with the eigenvectors
- \rightarrow unconstrained eigenvectors are fixed to 0
- \rightarrow 12 eigenvectors in the fit

- 33 STXS regions (finer selection)
- 34 Wilson coefficients in Warsaw basis free to vary in the fit
- each STXS region affected by multiple operators

Principal component analysis

No significant deviation from SM

Differential cross sections measurements

$H \to \gamma \gamma$ and $H \to ZZ^* \to 4\ell$

single and double differential cross-sections for Higgs boson $p_{\rm T}$

- Higgs boson $|y_\mathrm{H}|$
	- jet multiplicity
- leading jet $p_{\rm T}$

Individual channels: measurements in fiducial regions to reduce signal model dependence

Combination: extrapolation to the full phase space

Results compatible with SM

~20-30% precision up to 300 GeV

~60% precision in 300-650 GeV

Couplings combining measurement

Simultaneous fit of cross-section \times branching fraction for the individual measurement

Parametrisation in *κ*-framework

all decay modes direct or indirect SM decays hypothetical decays into non-SM particles $\sigma(i \rightarrow H \rightarrow f) = \sigma_i B_f =$ *σi* (*κ*)*Γf*(*κ*) *ΓH*(*κ*, *Binv*, *Bu*)

unconstrained scenario put an improved limit w.r.t [arXiv:2201.11428v4](https://arxiv.org/abs/2201.11428) *κ* < 5.7 (6.7) times SM obs. (exp.) at 95% CL

Results compatible with SM

searches [arXiv:2202.07953v2](https://arxiv.org/abs/2202.07953)

Higgs self-coupling [ATLAS-CONF-2022-050](https://cds.cern.ch/record/2816332/files/ATLAS-CONF-2022-050.pdf) $SM: V(H) =$ 1 2 $m_H^2 H^2 + \lambda_{\rm HHH} \nu H^3 +$ 1 4

Direct measurements: production of two Higgs bosons \cdot *Indirect measurements: single-Higgs production*

$$
\lambda_{HHHH}H^4
$$
, $\kappa_{\lambda} = \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}}$

Any deviation from the self-interaction predicted by the SM would be a sign of new physics

Higgs self-coupling

Two tested scenarios:

κ_λ only: κ_λ floating & all other modifiers fixed to unity

 $\frac{\partial K_\lambda}{\partial t}$ *generic*: $\kappa_\lambda, \kappa_t, \kappa_b, \kappa_\tau, \kappa_V$ floating & κ_{2V} fixed to unity

(no available parametrisation of single-Higgs NLO)

11

Summary

-
- Improvement of the analysis techniques
- Higgs boson nature consistent with the SM predictions
- Ample room for new phenomena BSM to be discovered
- Expect to profit from latest detector developments

• We have studied the Higgs boson properties with great precision since its discovery

• Looking forward to Run 3 data to reach higher sensitivity to potential new physics

Thank you for the attention!

Backup

Mass measurement

$H \rightarrow ZZ^* \rightarrow 4\ell$

Final states: 4*μ*, 2e2*μ*, 2*μ*2e, 4e 1 quadruplet per event

- 1 FSR candidate per quadruplet
- *m*₄*ℓ* resolution improvement by ~1%

Final-state radiation (FSR) γ

Z-boson mass constraint

*m*₄*ℓ* resolution improvement by ~17%

[arXiv:2207.00320v1](https://arxiv.org/pdf/2207.00320.pdf)

 $\mathsf{constrained}\, p_{\text{T}}^{\mathcal{4}\ell}$ & uncertainty

CP measurement

VBF signal: BDT based event categorisation - fit to the split into the *OO* bins *mγγ*

[arXiv:2208.02338v1](https://arxiv.org/pdf/2208.02338.pdf)

$\int_{\rm SM}^* \cdot \mathscr{M}_{\rm CP-odd}$)/| $\mathscr{M}_{\rm SM}|^2$ using $p_{\rm T}^{\rm H}$ and $p_{\rm T}^{\rm jj}$

bosonic coupling in VBF H → *γγ* channel

Optimal Observable method - $OO = 2 \cdot \text{Re}(\mathscr{M}_{\rm SM}^* \cdot \mathscr{M}_{\rm CP-odd})/|\mathscr{M}_{\rm SM}|^2$ using $p_{\rm T}^{\rm H}$ and

CP measurement

Comparisons with other results

CP mixing angle measurement

top-Higgs coupling (ttH and tH) in $H \rightarrow b\overline{b}$ [ATLAS-CONF-2022-016](https://cds.cern.ch/record/2805772/files/ATLAS-CONF-2022-016.pdf) Signal: ttH and tH events $t\bar{t}H$ and tH

Final states: at least 1 top quark decays semi-leptonically to e/μ ℓ +jets and dilepton channels

Background dominated by $t\bar{t}$ +jets tt

Event categorisation:

- 1. Define Control Regions (CR) and Preliminary Signal Regions (PSR)
- 2. MVA used to define additional CR and final SR from the PSRs

CP mixing angle measurement

- CP-sensitive observable: ϕ^*_{CP} (signed acoplanarity angle) *CP*
- Different methods for tau lepton decay planes reconstruction
- Signal events model w/o spin correlations -> introduced as per event weights
- 24 Signal Regions & 10 Control Regions in the fit
- The precision is limited by the stat. uncertainties

τ-Higgs coupling in H → *ττ* [ATLAS-CONF-2022-032](https://cds.cern.ch/record/2809728/files/ATLAS-CONF-2022-032.pdf) ^τ lepton decay modes used in the analysis

Impact of uncertainties

STXS

[arXiv:2207.00348v1](https://arxiv.org/pdf/2207.00348.pdf)

Correlation matrix

 $\rightarrow \gamma \gamma$

ATLAS

EFT interpretation

21

[arXiv:2207.00348v1](https://arxiv.org/pdf/2207.00348.pdf)

$u_{\scriptscriptstyle S})$

H → *γγ*

Differential cross sections measurements

 $H \to \gamma \gamma$ and $H \to ZZ^* \to 4\ell$

Fiducial phase space

 p_T^H and $|y_H|$ derived from decay products $p_{\rm T}^{\rm H}$ T and $|y_H|$

Total phase space

 p_T^H and y_H derived from simulation $p_{\rm T}^{\rm H}$ T and $|y_H|$

[arXiv:2207.08615v1](https://arxiv.org/pdf/2207.08615.pdf)

Acceptance factors ~ 50%

Acceptance factors

Combination analysis inputs

[arXiv:2207.00348v1](https://arxiv.org/pdf/2207.00348.pdf)

tics atics tics tics κ_c $B_{\rm inv.}$ $B_{\rm inv.}$

