

DISCRETE 2022

Baden-Baden, Germany, 7-11 November, 2022

Hybrid scoto/seesaw: flavour and dark matter

Henrique Brito Câmara

henrique.b.camara@tecnico.ulisboa.pt

CFTP/IST, U. Lisbon

In collaboration with: D. M. Barreiros and F. R. Joaquim

arXiv: 2204.13605 [hep-ph]

JHEP 08 (2022) 030

Motivation

The Standard Model cannot explain:

- Neutrino flavour oscillations which imply massive neutrinos and lepton mixing
- Observed dark matter abundance

Motivation

The Standard Model cannot explain:

- Neutrino flavour oscillations which imply massive neutrinos and lepton mixing
- Observed dark matter abundance

Straightforward and elegant solutions:

Motivation

The Standard Model cannot explain:

- Neutrino flavour oscillations which imply massive neutrinos and lepton mixing
- Observed dark matter abundance

Straightforward and elegant solutions:

Our approach:

Model where **both mechanisms** contribute to neutrino masses with a **single discrete symmetry** to accommodate: **spontaneous CP violation**, **neutrino oscillation data** and **dark matter stability**

	Fields	$\rm SU(2)_L \otimes \rm U(1)_Y$	$\mathcal{Z}_8^{e-\mu*} o \mathcal{Z}_2$
3	ℓ_{eL}, e_R	(2 , -1/2), (1 , -1)	$1 \rightarrow +$
lion	$\ell_{\mu L}, \mu_R$	(2 , -1/2), (1 , -1)	$\omega^6 \rightarrow +$
-erm	$\ell_{ au L}, au_R$	(2 , -1/2), (1 , -1)	$\omega^2 \rightarrow +$
	f	(1 ,0)	$\omega^3 ightarrow -$
	Φ	(2, 1/2)	$1 \rightarrow +$
	Δ	(3 ,1)	$1 \rightarrow +$
lars	σ	(1 ,0)	$\omega^2 \rightarrow +$
Sca	η_1	(2 , 1/2)	$\omega^3 ightarrow -$
	η_2	(2 , 1/2)	$\omega^5 ightarrow -$

* $\mathcal{Z}_8^{e- au}$ and $\mathcal{Z}_8^{\mu- au}$ are other possible charge assignments

	Fields	$\rm SU(2)_L \otimes \rm U(1)_Y$	$\mathcal{Z}_8^{e-\mu*} o \mathcal{Z}_2$
6	ℓ_{eL}, e_R	(2 , -1/2), (1 , -1)	$1 \rightarrow +$
lon	$\ell_{\mu L}, \mu_R$	(2 , -1/2), (1 , -1)	$\omega^6 \rightarrow +$
-ern	$\ell_{ au L}, au_R$	(2 , -1/2), (1 , -1)	$\omega^2 \rightarrow +$
_	f	(1 ,0)	$\omega^3 ightarrow -$
	Φ	(2, 1/2)	$1 \rightarrow +$
	Δ	(3 ,1)	$1 \rightarrow +$
lars	σ	(1 ,0)	$\omega^2 \rightarrow +$
Sca	η_1	(2, 1/2)	$\omega^3 ightarrow -$
	η_2	(2, 1/2)	$\omega^5 ightarrow -$

* $\mathcal{Z}_8^{e-\tau}$ and $\mathcal{Z}_8^{\mu-\tau}$ are other possible charge assignments

Z₈ discrete symmetry

- New Z_8 symmetry reduces number of parameters in the Lagrangian
- Leads to low-energy predictions for neutrino mass and mixing parameters
- Presence of dark particles (odd under remnant Z₂ after SSB): fermion *f* and scalars η_{1,2}

	Fields	$\rm SU(2)_L \otimes \rm U(1)_Y$	$\mathcal{Z}_8^{e-\mu*} \to \mathcal{Z}_2$
S	ℓ_{eL}, e_R	(2 , -1/2), (1 , -1)	$1 \rightarrow +$
ion	$\ell_{\mu L}, \mu_R$	(2 , -1/2), (1 , -1)	$\omega^6 \rightarrow +$
Fern	$\ell_{ au L}, au_R$	(2 , -1/2), (1 , -1)	$\omega^2 \rightarrow +$
	f	(1 ,0)	$\omega^3 ightarrow -$
	Φ	(2, 1/2)	$1 \rightarrow +$
	Δ	(3 ,1)	$1 \rightarrow +$
lars	σ	(1 ,0)	$\omega^2 \rightarrow +$
Sca	η_1	(2, 1/2)	$\omega^3 ightarrow -$
	η_2	(2, 1/2)	$\omega^5 ightarrow -$

* $\mathcal{Z}_8^{e-\tau}$ and $\mathcal{Z}_8^{\mu-\tau}$ are other possible charge assignments

Z₈ discrete symmetry

- New Z₈ symmetry reduces number of parameters in the Lagrangian
- Leads to low-energy predictions for neutrino mass and mixing parameters
- Presence of dark particles (odd under remnant Z₂ after SSB): fermion *f* and scalars η_{1,2}

CP symmetry

- Lagrangian is required to be CP invariant which makes all couplings real
- CP is spontaneously broken by the complex VEV of σ and is successfully transmitted to the leptonic sector

	Fields	$\rm SU(2)_L \otimes \rm U(1)_Y$	$\mathcal{Z}_8^{e-\mu*} o \mathcal{Z}_2$
3	ℓ_{eL}, e_R	(2 , -1/2), (1 , -1)	$1 \rightarrow +$
nion	$\ell_{\mu L}, \mu_R$	(2 , -1/2), (1 , -1)	$\omega^6 \rightarrow +$
-ern	$\ell_{ au L}, au_R$	(2 , -1/2), (1 , -1)	$\omega^2 \rightarrow +$
	f	(1 ,0)	$\omega^3 ightarrow -$
	Φ	(2, 1/2)	$1 \rightarrow +$
	Δ	(3 ,1)	$1 \rightarrow +$
lars	σ	(1 ,0)	$\omega^2 \rightarrow +$
Sca	η_1	(2, 1/2)	$\omega^3 \rightarrow -$
	η_2	(2, 1/2)	$\omega^5 ightarrow -$

* $\mathcal{Z}_8^{e-\tau}$ and $\mathcal{Z}_8^{\mu-\tau}$ are other possible charge assignments

Z₈ discrete symmetry

- New Z₈ symmetry reduces number of parameters in the Lagrangian
- Leads to low-energy predictions for neutrino mass and mixing parameters
- Presence of dark particles (odd under remnant Z₂ after SSB): fermion *f* and scalars η_{1,2}

CP symmetry

- · Lagrangian is required to be CP invariant which makes all couplings real
- CP is spontaneously broken by the complex VEV of σ and is successfully transmitted to the leptonic sector

Vacuum configuration

$$\left\langle \phi^0 \right\rangle = \frac{v}{\sqrt{2}} , \left\langle \eta^0_{1,2} \right\rangle = 0 , \left\langle \Delta^0 \right\rangle = \frac{w}{\sqrt{2}} , \left\langle \sigma \right\rangle = \frac{u \, e^{i\theta}}{\sqrt{2}}$$

Scalar potential contains:

$$V_{\sigma} = m_{\sigma}^2 \left|\sigma\right|^2 + \frac{\lambda_{\sigma}}{2} \left|\sigma\right|^4 + m_{\sigma}^{\prime 2} \left(\sigma^2 + \sigma^{*2}\right) + \frac{\lambda_{\sigma}^{\prime}}{2} \left(\sigma^4 + \sigma^{*4}\right)$$

Scalar potential contains:

$\begin{array}{c} \textbf{CPV solution to the minimisation conditions}} \\ \left\langle \phi^0 \right\rangle = \frac{v}{\sqrt{2}} \ , \ \left\langle \eta^0_{1,2} \right\rangle = 0 \ , \ \left\langle \Delta^0 \right\rangle = \frac{w}{\sqrt{2}} \ , \left\langle \sigma \right\rangle = \frac{u \, e^{i\theta}}{\sqrt{2}} \\ \hline \\ \textbf{Cos}(2\theta) = -\frac{m_{\sigma}'^2}{2u^2 \lambda_{\sigma}'} \end{array}$

 $V_{\sigma} = m_{\sigma}^{2} |\sigma|^{2} + \frac{\lambda_{\sigma}}{2} |\sigma|^{4} + m_{\sigma}^{\prime 2} \left(\sigma^{2} + \sigma^{*2}\right) + \frac{\lambda_{\sigma}^{\prime}}{2} \left(\sigma^{4} + \sigma^{*4}\right)$

Scalar potential contains:

$$V_{\sigma} = m_{\sigma}^{2} |\sigma|^{2} + \frac{\lambda_{\sigma}}{2} |\sigma|^{4} + m_{\sigma}^{\prime 2} (\sigma^{2} + \sigma^{*2}) + \frac{\lambda_{\sigma}^{\prime}}{2} (\sigma^{4} + \sigma^{*4})$$

Higgs triplet, doublet and singlet

$$\begin{split} V \supset & \mu_{\Delta} \left(\Phi^{\dagger} \Delta i \tau_{2} \Phi^{*} + \text{H.c.} \right) \\ w \simeq -\frac{\sqrt{2} \mu_{\Delta} v^{2}}{v^{2} \lambda_{\Delta 3} + u^{2} \lambda_{\Delta \sigma} + 2m_{\Delta}^{2}} \end{split} \begin{array}{l} \text{Naturally small triplet} \\ \text{VEV} \\ \text{VEV} \\ \begin{pmatrix} \phi_{\text{R}}^{0} \\ \sigma_{\text{R}} \\ \sigma_{\text{I}} \end{pmatrix} = \mathbf{K} \begin{pmatrix} h_{1} \\ h_{2} \\ h_{3} \end{pmatrix} \end{aligned} \begin{array}{l} \text{We consider triplet} \\ \text{decoupled from} \\ \text{remaining states} \\ \end{split}$$

Scalar potential contains:

$V_{\sigma} = m_{\sigma}^{2} |\sigma|^{2} + \frac{\lambda_{\sigma}}{2} |\sigma|^{4} + m_{\sigma}^{\prime 2} \left(\sigma^{2} + \sigma^{*2}\right) + \frac{\lambda_{\sigma}^{\prime}}{2} \left(\sigma^{4} + \sigma^{*4}\right)$ **CPV solution** to the minimisation conditions $\left\langle \phi^{0} \right\rangle = \frac{v}{\sqrt{2}} , \left\langle \eta^{0}_{1,2} \right\rangle = 0 , \left\langle \Delta^{0} \right\rangle = \frac{w}{\sqrt{2}} , \left\langle \sigma \right\rangle = \frac{u \, e^{i\theta}}{\sqrt{2}}$ $\cos(2\theta) = -\frac{{m'_{\sigma}}^2}{2u^2\lambda'_{-}}$

$$\begin{split} V \supset & \mu_{\Delta} \left(\Phi^{\dagger} \Delta i \tau_{2} \Phi^{*} + \text{H.c.} \right) \\ w \simeq -\frac{\sqrt{2} \mu_{\Delta} v^{2}}{v^{2} \lambda_{\Delta 3} + u^{2} \lambda_{\Delta \sigma} + 2m_{\Delta}^{2}} \end{split} \begin{array}{l} \text{Naturally small triplet} \\ \text{VEV} \\ \text{VEV} \\ \begin{pmatrix} \phi_{\text{R}}^{0} \\ \sigma_{\text{R}} \\ \sigma_{\text{I}} \end{pmatrix} = \mathbf{K} \begin{pmatrix} h_{1} \\ h_{2} \\ h_{3} \end{pmatrix} \end{aligned} \begin{array}{l} \text{We consider triplet} \\ \text{decoupled from} \\ \text{remaining states} \\ \end{split}$$

Dark sector: two inert doublets

$$\begin{pmatrix} \eta_1^+ \\ \eta_2^+ \end{pmatrix} = \mathbf{R} \begin{pmatrix} S_1^+ \\ S_2^+ \end{pmatrix}$$

Charged lepton flavour violation

 $-\mathcal{L}_{\text{Yuk.}} = \overline{\ell_L} \mathbf{Y}_{\ell} \Phi e_R + \overline{\ell_L^c} \mathbf{Y}_{\Delta} i\tau_2 \Delta \ell_L + \overline{\ell_L} \mathbf{Y}_f^1 \tilde{\eta}_1 f + \overline{\ell_L} \mathbf{Y}_f^2 \tilde{\eta}_2 f + \frac{1}{2} y_f \sigma \overline{f^c} f + \text{H.c.}$

 $-\mathcal{L}_{\text{Yuk.}} = \overline{\ell_L} \mathbf{Y}_{\ell} \Phi e_R + \overline{\ell_L^c} \mathbf{Y}_{\Delta} i \tau_2 \Delta \ell_L + \overline{\ell_L} \mathbf{Y}_f^1 \tilde{\eta}_1 f + \overline{\ell_L} \mathbf{Y}_f^2 \tilde{\eta}_2 f + \frac{1}{2} y_f \sigma \overline{f^c} f + \text{H.c.}$

Type-II seesaw

$$-\mathcal{L}_{\text{Yuk.}} = \overline{\ell_L} \mathbf{Y}_{\ell} \Phi e_R + \overline{\ell_L^c} \mathbf{Y}_{\Delta} i\tau_2 \Delta \ell_L + \overline{\ell_L} \mathbf{Y}_f^1 \tilde{\eta}_1 f + \overline{\ell_L} \mathbf{Y}_f^2 \tilde{\eta}_2 f + \frac{1}{2} y_f \sigma \overline{f^c} f + \text{H.c.}$$

Type-II seesaw

Scotogenic

$$-\mathcal{L}_{\text{Yuk.}} = \overline{\ell_L} \mathbf{Y}_{\ell} \Phi e_R + \overline{\ell_L^c} \mathbf{Y}_{\Delta} i\tau_2 \Delta \ell_L + \overline{\ell_L} \mathbf{Y}_f^1 \tilde{\eta}_1 f + \overline{\ell_L} \mathbf{Y}_f^2 \tilde{\eta}_2 f + \frac{1}{2} y_f \sigma \overline{f^c} f + \text{H.c.}$$

Type-II seesaw

Scotogenic

$$\mathbf{Y}_{\ell} = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

$$-\mathcal{L}_{\text{Yuk.}} = \overline{\ell_L} \mathbf{Y}_{\ell} \Phi e_R + \overline{\ell_L^c} \mathbf{Y}_{\Delta} i\tau_2 \Delta \ell_L + \overline{\ell_L} \mathbf{Y}_f^1 \tilde{\eta}_1 f + \overline{\ell_L} \mathbf{Y}_f^2 \tilde{\eta}_2 f + \frac{1}{2} y_f \sigma \overline{f^c} f + \text{H.c.}$$

Type-II seesaw

Scotogenic

 $\mathbf{Y}_{\ell} = \begin{pmatrix} \times & 0 & 0\\ 0 & \times & 0\\ 0 & 0 & \times \end{pmatrix}$

$$\mathcal{Z}_{8}^{e-\mu} \\ \mathbf{Y}_{f}^{1} = \begin{pmatrix} y_{e} \\ 0 \\ 0 \end{pmatrix} \ \mathbf{Y}_{f}^{2} = \begin{pmatrix} 0 \\ y_{\mu} \\ 0 \end{pmatrix} \ \mathbf{Y}_{\Delta} = \begin{pmatrix} y_{1} & 0 & 0 \\ 0 & 0 & y_{2} \\ 0 & y_{2} & 0 \end{pmatrix} \ e^{-i\theta}$$

$$-\mathcal{L}_{\text{Yuk.}} = \overline{\ell_L} \mathbf{Y}_{\ell} \Phi e_R + \overline{\ell_L^c} \mathbf{Y}_{\Delta} i\tau_2 \Delta \ell_L + \overline{\ell_L} \mathbf{Y}_f^1 \tilde{\eta}_1 f + \overline{\ell_L} \mathbf{Y}_f^2 \tilde{\eta}_2 f + \frac{1}{2} y_f \sigma \overline{f^c} f + \text{H.c.}$$

Type-II seesaw

Scotogenic

 $\mathbf{Y}_{\ell} = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$

$$\mathcal{Z}_{8}^{e-\mu} \\ \mathbf{Y}_{f}^{1} = \begin{pmatrix} y_{e} \\ 0 \\ 0 \end{pmatrix} \ \mathbf{Y}_{f}^{2} = \begin{pmatrix} 0 \\ y_{\mu} \\ 0 \end{pmatrix} \ \mathbf{Y}_{\Delta} = \begin{pmatrix} y_{1} & 0 & 0 \\ 0 & 0 & y_{2} \\ 0 & y_{2} & 0 \end{pmatrix} \ e^{-i\theta}$$

$$\mathbf{M}_{\nu} = \begin{pmatrix} \mathcal{F}_{11}M_{f} y_{e}^{2} + \sqrt{2}w \, y_{1} \, e^{-i\theta} & \mathcal{F}_{12}M_{f} \, y_{e} y_{\mu} & 0 \\ & & \mathcal{F}_{22}M_{f} \, y_{\mu}^{2} & \sqrt{2}w \, y_{2} e^{-i\theta} \\ & & & & & 0 \end{pmatrix}$$

Effective neutrino mass matrix

$$-\mathcal{L}_{\text{Yuk.}} = \overline{\ell_L} \mathbf{Y}_{\ell} \Phi e_R + \overline{\ell_L^c} \mathbf{Y}_{\Delta} i\tau_2 \Delta \ell_L + \overline{\ell_L} \mathbf{Y}_f^1 \tilde{\eta}_1 f + \overline{\ell_L} \mathbf{Y}_f^2 \tilde{\eta}_2 f + \frac{1}{2} y_f \sigma \overline{f^c} f + \text{H.c.}$$

Type-II seesaw

Scotogenic

$$L \xrightarrow{f} f \xrightarrow{f} f \xrightarrow{f} L L \xrightarrow{f} f \xrightarrow{f} f \xrightarrow{f} f \xrightarrow{f} L L \xrightarrow{f} f \xrightarrow{f} g \xrightarrow{f} f \xrightarrow$$

$$\mathbf{Y}_{\ell} = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

Spontaneous origin for leptonic CP violation

$$\langle \sigma \rangle = \frac{u \, e^{i\theta}}{\sqrt{2}}$$

$$\mathcal{Z}_{8}^{e-\mu} \mathbf{Y}_{f}^{1} = \begin{pmatrix} y_{e} \\ 0 \\ 0 \end{pmatrix} \mathbf{Y}_{f}^{2} = \begin{pmatrix} 0 \\ y_{\mu} \\ 0 \end{pmatrix} \mathbf{Y}_{\Delta} = \begin{pmatrix} y_{1} & 0 & 0 \\ 0 & 0 & y_{2} \\ 0 & y_{2} & 0 \end{pmatrix} e^{-i\theta}$$

$$\mathbf{M}_{\nu} = \begin{pmatrix} \mathcal{F}_{11}M_{f} y_{e}^{2} + \sqrt{2}w y_{1} e^{-i\theta} & \mathcal{F}_{12}M_{f} y_{e} y_{\mu} & 0 \\ & & & \mathcal{F}_{22}M_{f} y_{\mu}^{2} & \sqrt{2}w y_{2} e^{-i\theta} \\ & & & & & & 0 \end{pmatrix}$$

Effective neutrino mass matrix

High-energy parameters

High-energy parameters

Low-energy parameters

Global fit of neutrino oscillation data

Salas *et al.* (2020), Esteban *et al.* (2020), Capozzi *et al.* (2021)

Parameter	Best Fit $\pm 1\sigma$	3σ range
$ heta_{12}(^{\circ})$	34.3 ± 1.0	$31.4 \rightarrow 37.4$
$ heta_{23}(^{\circ})[\mathrm{NO}]$	49.26 ± 0.79	$41.20 \rightarrow 51.33$
$\theta_{23}(^{\circ})[\mathrm{IO}]$	$49.46\substack{+0.60 \\ -0.97}$	$41.16 \rightarrow 51.25$
$ heta_{13}(^{\circ})[\mathrm{NO}]$	$8.53\substack{+0.13\\-0.12}$	$8.13 \rightarrow 8.92$
$ heta_{13}(^{\circ})[\mathrm{IO}]$	$8.58\substack{+0.12 \\ -0.14}$	$8.17 \rightarrow 8.96$
$\delta(^{\circ})[\mathrm{NO}]$	194^{+24}_{-22}	$128 \to 359$
$\delta(^{\circ})[\mathrm{IO}]$	284^{+26}_{-28}	$200 \rightarrow 353$
$\Delta m_{21}^2 \left(\times 10^{-5} \mathrm{eV}^2\right)$	$7.50\substack{+0.22\\-0.20}$	$6.94 \rightarrow 8.14$
$\left \Delta m_{31}^2\right \left(\times 10^{-3}\mathrm{eV}^2\right) [\mathrm{NO}]$	$2.55_{-0.03}^{+0.02}$	$2.47 \rightarrow 2.63$
$\left \Delta m_{31}^2\right \left(\times 10^{-3}\mathrm{eV}^2\right) [\mathrm{IO}]$	$2.45_{-0.03}^{+0.02}$	$2.37 \rightarrow 2.53$

$$\mathbf{M}_{\nu} = \begin{pmatrix} \mathcal{F}_{11}M_f y_e^2 + \sqrt{2}w \, y_1 \, e^{-i\theta} & \mathcal{F}_{12}M_f \, y_e y_\mu & 0 \\ \vdots & \mathcal{F}_{22}M_f \, y_\mu^2 & \sqrt{2}w \, y_2 e^{-i\theta} \\ \vdots & 0 \end{pmatrix} \xrightarrow{\mathbf{M}_{\nu}} \mathbf{M}_{\nu} = \mathbf{U}^* \operatorname{diag}(m_1, m_2, m_3) \, \mathbf{U}^{\dagger}$$

High-energy parameters

The presence of two texture zeros in the neutrino mass matrix leads to testable low-energy constraints

$\mathcal{Z}_8^{e-\mu} \to \mathrm{B}_4:$	$\begin{pmatrix} \times \\ \cdot \\ \cdot \end{pmatrix}$	× ×	$\begin{pmatrix} 0 \\ \times \\ 0 \end{pmatrix}$,
$\mathcal{Z}_8^{e-\tau} \to \mathcal{B}_3:$	$\begin{pmatrix} \times \\ \cdot \\ \cdot \\ \cdot \end{pmatrix}$	0 0	$\begin{pmatrix} \times \\ \times \\ \times \end{pmatrix}$,
$\mathcal{Z}_8^{\mu- au} o A_1:$	$\begin{pmatrix} 0 \\ \cdot \\ \cdot \end{pmatrix}$	$0 \\ imes$	$\begin{pmatrix} \times \\ \times \\ \times \end{pmatrix}$

Alcaide, Salvado, Santamaria (2018)

Low-energy parameters

Global fit of neutrino oscillation data

Salas *et al.* (2020), Esteban *et al.* (2020), Capozzi *et al.* (2021)

Parameter	Best Fit $\pm 1\sigma$	3σ range
$ heta_{12}(^\circ)$	34.3 ± 1.0	$31.4 \rightarrow 37.4$
$\theta_{23}(^{\circ})[\mathrm{NO}]$	49.26 ± 0.79	$41.20 \rightarrow 51.33$
$\theta_{23}(^{\circ})[\mathrm{IO}]$	$49.46\substack{+0.60 \\ -0.97}$	$41.16 \rightarrow 51.25$
$\theta_{13}(^{\circ})[\mathrm{NO}]$	$8.53\substack{+0.13\\-0.12}$	$8.13 \rightarrow 8.92$
$ heta_{13}(^{\circ})[\mathrm{IO}]$	$8.58\substack{+0.12 \\ -0.14}$	$8.17 \rightarrow 8.96$
$\delta(^{\circ})[\mathrm{NO}]$	194_{-22}^{+24}	$128 \to 359$
$\delta(^{\circ})[\mathrm{IO}]$	284^{+26}_{-28}	200 ightarrow 353
$\Delta m_{21}^2 \left(\times 10^{-5} \mathrm{eV}^2\right)$	$7.50\substack{+0.22\\-0.20}$	$6.94 \rightarrow 8.14$
$\left \Delta m_{31}^2\right \left(\times 10^{-3}\mathrm{eV}^2\right) [\mathrm{NO}]$	$2.55_{-0.03}^{+0.02}$	$2.47 \rightarrow 2.63$
$\left \Delta m_{31}^2\right \left(\times 10^{-3} \mathrm{eV}^2\right) [\mathrm{IO}]$	$2.45_{-0.03}^{+0.02}$	$2.37 \rightarrow 2.53$

$$\mathbf{M}_{\nu} = \begin{pmatrix} \mathcal{F}_{11}M_f y_e^2 + \sqrt{2}w \, y_1 \, e^{-i\theta} & \mathcal{F}_{12}M_f \, y_e y_\mu & 0 \\ & & & \mathcal{F}_{22}M_f \, y_\mu^2 & \sqrt{2}w \, y_2 e^{-i\theta} \\ & & & & & 0 \end{pmatrix} \overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet$$

High-energy parameters

The presence of two texture zeros in the neutrino mass matrix leads to testable low-energy constraints

$\mathcal{Z}_8^{e-\mu} \to \mathrm{B}_4:$	(× (.	× ×	$\begin{pmatrix} 0 \\ \times \\ 0 \end{pmatrix}$,
$\mathcal{Z}_8^{e-\tau} \to \mathcal{B}_3:$	$\begin{pmatrix} \times \\ \cdot \\ \cdot \end{pmatrix}$	0 0	$\begin{pmatrix} \times \\ \times \\ \times \end{pmatrix}$,
$\mathcal{Z}_8^{\mu-\tau} \to A_1:$	$\begin{pmatrix} 0 \\ \cdot \\ \cdot \\ \cdot \end{pmatrix}$	$0 \\ imes$	$\begin{pmatrix} \times \\ \times \\ \times \end{pmatrix}$

Alcaide, Salvado, Santamaria (2018)

Low-energy parameters

Global fit of neutrino oscillation data

Salas *et al.* (2020), Esteban *et al.* (2020), Capozzi *et al.* (2021)

Parameter	Best Fit $\pm 1\sigma$	3σ range
$ heta_{12}(^{\circ})$	34.3 ± 1.0	$31.4 \rightarrow 37.4$
$\theta_{23}(^{\circ})[\text{NO}]$	49.26 ± 0.79	$41.20 \rightarrow 51.33$
$\theta_{23}(^{\circ})[\mathrm{IO}]$	$49.46\substack{+0.60 \\ -0.97}$	$41.16 \rightarrow 51.25$
$\theta_{13}(^{\circ})[\text{NO}]$	$8.53\substack{+0.13\\-0.12}$	$8.13 \rightarrow 8.92$
$\theta_{13}(^{\circ})[\mathrm{IO}]$	$8.58\substack{+0.12\\-0.14}$	$8.17 \rightarrow 8.96$
$\delta(^{\circ})[\mathrm{NO}]$	194_{-22}^{+24}	$128 \rightarrow 359$
$\delta(^{\circ})[\mathrm{IO}]$	284^{+26}_{-28}	200 ightarrow 353
$\Delta m_{21}^2 \left(\times 10^{-5} \mathrm{eV}^2\right)$	$7.50\substack{+0.22\\-0.20}$	$6.94 \rightarrow 8.14$
$\left \Delta m_{31}^2\right \left(\times 10^{-3} \mathrm{eV}^2\right) [\mathrm{NO}]$	$2.55_{-0.03}^{+0.02}$	$2.47 \rightarrow 2.63$
$ \Delta m_{31}^2 \left(\times 10^{-3} \mathrm{eV}^2 \right) [\mathrm{IO}]$	$2.45_{-0.03}^{+0.02}$	$2.37 \rightarrow 2.53$

Predictions for lightest neutrino mass and effective Majorana mass

Normal Ordering (NO):
$$m_1 = m_{\text{lightest}}, m_2 = \sqrt{m_{\text{lightest}}^2 + \Delta m_{21}^2}, m_3 = \sqrt{m_{\text{lightest}}^2 + \Delta m_{31}^2}$$

 $m_{\beta\beta} = \left| c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 m_2 e^{-i\alpha_{21}} + s_{13}^2 m_3 e^{-i\alpha_{31}} \right|$

Case
$$\mathbb{Z}_8^{e-\mu}$$
 NO $\mathbb{Z}_8^{e-\mu} \to \mathrm{B}_4 : \begin{pmatrix} \times & \times & 0 \\ \cdot & \times & \times \\ \cdot & \cdot & 0 \end{pmatrix}$

$$(\mathbf{M}_{\nu})_{13} = (\mathbf{M}_{\nu})_{33} = 0$$

$$(\mathbf{M}_{\nu})_{13} = (\mathbf{M}_{\nu})_{33} = 0$$

δ and θ_{23}

• Sharply predicts $\delta \sim 3\pi/2$ and selects second octant for θ_{23}

$$(\mathbf{M}_{\nu})_{13} = (\mathbf{M}_{\nu})_{33} = 0$$

- Sharply predicts $\delta \sim 3\pi/2$ and selects second octant for θ_{23}
- Lower limit ~ 40 meV (3 σ) now being probed by cosmology
- Upper limit ~ 60 meV (2 σ)

- Sharply predicts $\delta \sim 3\pi/2$ and selects second octant for θ_{23}
- Lower limit ~ 40 meV (3 σ) now being probed by cosmology
- Upper limit ~ 60 meV (2 σ)
- Current KamLAND-Zen 400 almost excludes this case, will be tested by near-future 0νββ experiments

Charged-lepton flavour violation

Cases		Type-II seesaw	Scotogenic
$\mathcal{Z}_8^{e-\mu}$	(B_4)	$\tau^- \to \mu^+ e^- e^-$	$\mu \to e\gamma, \ \mu \to 3e, \ \mu - e \text{ conversion}$
$\mathcal{Z}_8^{e- au}$	(B_3)	$\tau^- ightarrow \mu^+ e^- e^-$	$\tau \to e\gamma, \ \tau \to 3e$
$\mathcal{Z}_8^{\mu- au}$	(A_1)	$\tau^- ightarrow e^+ \mu^- \mu^-$	$\tau \to \mu \gamma, \ \tau \to 3 \mu$

Charged-lepton flavour violation

Cases		Type-II seesaw	Scotogenic
$\mathcal{Z}_8^{e-\mu}$	(B_4)	$\tau^- \to \mu^+ e^- e^-$	$\mu \to e\gamma, \ \mu \to 3e, \ \mu - e \text{ conversion}$
$\mathcal{Z}_8^{e- au}$	(B_3)	$\tau^- ightarrow \mu^+ e^- e^-$	$\tau \to e\gamma, \ \tau \to 3e$
$\mathcal{Z}_8^{\mu- au}$	(A_1)	$\tau^- ightarrow e^+ \mu^- \mu^-$	$ au o \mu \gamma, \ au o 3 \mu$

Parameters	Scan range
M_{f}	[10, 1000] (GeV)
$m_{\eta_1}^2, m_{\eta_2}^2$	$[10^2, 1000^2] \; ({\rm GeV}^2)$
$ \mu_{12} $	$[10^{-6}, 10^3]$ (GeV)
$ \lambda_3 , \lambda_4 , \lambda_3' , \lambda_4' $	$[10^{-5}, 1]$
$ \lambda_5 $	$[10^{-12}, 1]$

Large fraction of parameter space is excluded by current cLFV constraints

Charged-lepton flavour violation

- Large fraction of parameter space is excluded by current cLFV constraints
- Scotogenic cLFV processes are mediated at loop level by dark charged scalars

$$\frac{\mathrm{BR}(\mu \to e\gamma)}{4.2 \times 10^{-13}} \approx 1.98 \times 10^{10} \left(\frac{70 \ \mathrm{GeV}}{m_{S_1^+}}\right)^4 \sin^2(2\varphi) y_e^2 y_\mu^2 \left| g\left(\frac{M_f^2}{m_{S_1^+}^2}\right) - \frac{m_{S_1^+}^2}{m_{S_2^+}^2} g\left(\frac{M_f^2}{m_{S_2^+}^2}\right) \right|^2$$

The case of **scalar DM**: lightest neutral scalar S_1

The case of **fermionic DM:** fermion *f*

Allowed mass region:

above 45 GeV

Co-annihilation channels, e.g. :

The case of **fermionic DM:** fermion *f*

Allowed mass region:

above 45 GeV

e

h

e

 Z, γ

Conclusion

• Neutrino masses are generated via the **interplay** between **type-II seesaw** and **scotogenic** mechanisms

Conclusion

- Neutrino masses are generated via the **interplay** between **type-II seesaw** and **scotogenic** mechanisms
- A single Z_8 symmetry is broken down to a dark Z_2 by the complex VEV of a scalar singlet, leading to observable CP-violating effects in the lepton sector and low-energy constraints, resulting in two-texture zero patterns in the effective neutrino mass matrix

- Neutrino masses are generated via the **interplay** between **type-II seesaw** and **scotogenic** mechanisms
- A single Z_8 symmetry is broken down to a dark Z_2 by the complex VEV of a scalar singlet, leading to observable CP-violating effects in the lepton sector and low-energy constraints, resulting in two-texture zero patterns in the effective neutrino mass matrix
- For most cases the **model selects one** θ_{23} **octant with** $\delta \sim 3\pi/2$, predictions for the lightest neutrino mass are in the range probed by **cosmology** and will be tested by near future $0\nu\beta\beta$ -decay experiments

- Neutrino masses are generated via the **interplay** between **type-II seesaw** and **scotogenic** mechanisms
- A single Z_8 symmetry is broken down to a dark Z_2 by the complex VEV of a scalar singlet, leading to observable CP-violating effects in the lepton sector and low-energy constraints, resulting in two-texture zero patterns in the effective neutrino mass matrix
- For most cases the model selects one θ_{23} octant with $\delta \sim 3\pi/2$, predictions for the lightest neutrino mass are in the range probed by cosmology and will be tested by near future $0\nu\beta\beta$ -decay experiments
- A large fraction of our model's parameter space is excluded by current cLFV constraints while other regions will be probed by future experiments

- Neutrino masses are generated via the **interplay** between **type-II seesaw** and **scotogenic** mechanisms
- A single Z_8 symmetry is broken down to a dark Z_2 by the complex VEV of a scalar singlet, leading to observable CP-violating effects in the lepton sector and low-energy constraints, resulting in two-texture zero patterns in the effective neutrino mass matrix
- For most cases the **model selects one** θ_{23} **octant with** $\delta \sim 3\pi/2$, predictions for the lightest neutrino mass are in the range probed by **cosmology** and will be tested by near future $0\nu\beta\beta$ -decay experiments
- A large fraction of our model's parameter space is excluded by current cLFV constraints while other regions will be probed by future experiments
- Scalar DM: one viable mass region between 68 GeV and 90 GeV is compatible with the observed DM relic density, current DD constraints and collider bounds (LEP and Higgs data), this region will be probed by future DD searches

- Neutrino masses are generated via the **interplay** between **type-II seesaw** and **scotogenic** mechanisms
- A single Z_8 symmetry is broken down to a dark Z_2 by the complex VEV of a scalar singlet, leading to observable CP-violating effects in the lepton sector and low-energy constraints, resulting in two-texture zero patterns in the effective neutrino mass matrix
- For most cases the model selects one θ_{23} octant with $\delta \sim 3\pi/2$, predictions for the lightest neutrino mass are in the range probed by cosmology and will be tested by near future $0\nu\beta\beta$ -decay experiments
- A large fraction of our model's parameter space is excluded by current cLFV constraints while other regions will be probed by future experiments
- Scalar DM: one viable mass region between 68 GeV and 90 GeV is compatible with the observed DM relic density, current DD constraints and collider bounds (LEP and Higgs data), this region will be probed by future DD searches
- Fermion DM: masses above 45 GeV are compatible with observed relic density

- Neutrino masses are generated via the **interplay** between **type-II seesaw** and **scotogenic** mechanisms
- A single Z_8 symmetry is broken down to a dark Z_2 by the complex VEV of a scalar singlet, leading to observable CP-violating effects in the lepton sector and low-energy constraints, resulting in two-texture zero patterns in the effective neutrino mass matrix
- For most cases the model selects one θ_{23} octant with $\delta \sim 3\pi/2$, predictions for the lightest neutrino mass are in the range probed by cosmology and will be tested by near future $0\nu\beta\beta$ -decay experiments
- A large fraction of our model's parameter space is excluded by current cLFV constraints while other regions will be probed by future experiments
- Scalar DM: one viable mass region between 68 GeV and 90 GeV is compatible with the observed DM relic density, current DD constraints and collider bounds (LEP and Higgs data), this region will be probed by future DD searches
- Fermion DM: masses above 45 GeV are compatible with observed relic density

Thank you !