

B-anomalies in a twin Pati-Salam theory of flavour

Mario Fernández Navarro[†]

DISCRETE 2022, 8th November 2022

Based on [2209.00276] [hep-ph] and w.i.p in collaboration with Stephen F. King

[†]M.F.Navarro@soton.ac.uk

• Are we missing something?

B-anomalies

• Hints of LFUV violation in *B*-mesons decays, both in neutral and charged currents.

• Left-handed NP preferred over SM at 4σ with clean observables only.

• Consistent picture of hierarchical anomalies involving 2nd-3rd family fermions.

U_1 vector leptoquark

- $U_1(3, 1, 2/3)$ provides a very good fit to all $b \to s\ell\ell$ and $b \to c\tau\nu$ data (see talk by Andreas Crivellin).
- U₁ is the only single leptoquark that can simultaneously address both LFUV anomalies. [Angelescu, Becirevic, Faroughy, Jaffredo, Sumensari, '21]

$$\mathcal{L}_{ ext{NP}} = rac{1}{\Lambda_{ ext{NP}}^{K}} \left(ar{s}_L \gamma_\mu b_L
ight) \left(ar{\mu}_L \gamma^\mu \mu_L
ight) + rac{1}{\Lambda_{ ext{NP}}^{D}} \left(ar{c}_L \gamma_\mu b_L
ight) \left(ar{ au}_L \gamma^\mu
u_L
ight)$$

- The different NP scales $\Lambda_{\rm NP}^{K} \approx (30 \, {\rm TeV})^2$ and $\Lambda_{\rm NP}^{D} \approx (3 \, {\rm TeV})^2$ point to a TeV scale U_1 with hierarchical couplings to second and third family fermions.
- Hierarchical pattern of anomalies and LQ couplings, connections with flavour hierarchies of the SM?

$$|SU(4) \times SU(3)' \times SU(2)_L \times U(1)_{Y'}| \Rightarrow U_1, g', Z' + \text{vector-like fermions}$$

4321 gauge group proposed as the gauge origin of U_1 , but two different approaches:

- The third family transforms under SU(4) (the rest are singlets) \Rightarrow natural low-energy limit of PS³ multi-scale flavour model [Bordone, Cornella, Fuentes-Martin, Isidori, '17] (and more)
 - Predicts large U₁ couplings for LH and RH third family fermions
 ⇒ is tightly constrained by high-p_T searches [Aebischer, Isidori, Pesut, Stefanek, Wilsch, '22]

 $SU(4) imes SU(3)' imes SU(2)_L imes U(1)_{Y'} \Rightarrow U_1, \, g', \, Z' + ext{vector-like fermions}$

4321 gauge group proposed as the gauge origin of U_1 , but two different approaches:

- The third family transforms under SU(4) (the rest are singlets) \Rightarrow natural low-energy limit of PS³ multi-scale flavour model [Bordone, Cornella, Fuentes-Martin, Isidori, '17] (and more)
 - Predicts large U_1 couplings for LH and RH third family fermions \Rightarrow is tightly constrained by high- p_T searches [Aebischer, Isidori, Pesut, Stefanek, Wilsch, '22]
- Fermiophobic approach (all SM-like families are SU(4) singlets)

[Di Luzio, Greljo, Nardecchia, '17]

 \Rightarrow predicts dominantly LH U_1 currents for *B*-anomalies, but is not a flavour model (ad-hoc flavour structure)

• We will see that fermiophobic approaches can also be naturally connected with the SM flavour hierarchies

Twin Pati-Salam theory of flavour

- High scale PS for chiral fermions: Quark-lepton unification, crucial universality constraints for a predictive framework
- Low energy PS for vector-like fermions: TeV scale U_1 coupled to vector-like fermions
- Full twin PS symmetry forbids SM-like Yukawa couplings (along with the choice of the scalar sector)
- Scalar sector generates VL-chiral fermion mixing \Rightarrow 2nd-3rd family masses, mixings and *B*-anomalies
- Z₄ discrete shaping symmetry provides flavour structure and reduces the number of free parameters, protects from fine-tuning

Yukawa couplings & U_1 couplings

- SM-like Yukawa couplings for chiral fermions forbidden by twin PS symmetry.
- Only vector-like fermions coupled to U₁ (fermiophobic model).
- Effective Yukawa and U₁ couplings arise from mixing of VL and chiral fermions.

• Personal Higgses $\langle H_t \rangle \approx v_{\rm SM}/\sqrt{2}$ and $\langle H_{b,c,s,\mu,\tau} \rangle \sim \mathcal{O}(\text{GeV})$ break degeneracy of family masses (but only H_u and H_d are light and develop VEVs*).

CKM mixing, $\mu - \tau$ mixing also predicted

GIM-like mechanism and FCNCs

• We need large flavour-violating U_1 couplings for the *B*-anomalies \Rightarrow introduce $\Omega_{15}(15, 1, 1)_l$ to split VL quark-lepton masses

$$\begin{pmatrix} M_4^Q & 0 & 0 \\ 0 & M_5^Q & 0 \\ 0 & 0 & M_6^Q \end{pmatrix} = V_{45}^Q \begin{pmatrix} M_{44}^Q & M_{45}^\psi & 0 \\ M_{54}^\psi & M_{55}^Q & 0 \\ 0 & 0 & M_{66}^Q \end{pmatrix} V_{45}^{\bar{Q}\dagger}, \\ \begin{pmatrix} M_4^L & 0 & 0 \\ 0 & M_5^L & 0 \\ 0 & 0 & M_6^L \end{pmatrix} = V_{45}^L \begin{pmatrix} M_{44}^Q & M_{45}^\psi & 0 \\ M_{44}^U & M_{45}^\psi & 0 \\ M_{54}^\psi & M_{55}^U & 0 \\ 0 & 0 & M_{66}^L \end{pmatrix} V_{45}^{\bar{L}\dagger}, \\ \end{bmatrix} \Rightarrow \frac{g_4}{\sqrt{2}} Q_a^\dagger \gamma_\mu \begin{pmatrix} c_{\theta_LQ} & -s_{\theta_LQ} & 0 \\ s_{\theta_LQ} & c_{\theta_LQ} & 0 \\ 0 & 0 & 1 \end{pmatrix} L_b U_1^\mu + \text{h.c.}$$

where a, b = 4, 5, 6 and $W_{LQ} = V_{45}^Q V_{45}^{L^{\dagger}}$ is a CKM-like matrix in $SU(4)_I$ (VL quark-lepton) flavour space.

• Large flavour violating charged currents in VL flavour space, but no tree-level FCNCs. $s_{\theta_{I,O}} \approx 1/\sqrt{2}$ best benchmark for *B*-anomalies.

GIM-like mechanism and FCNCs

• We need large flavour-violating U_1 couplings for the *B*-anomalies \Rightarrow introduce $\Omega_{15}(15, 1, 1)_l$ to split VL quark-lepton masses

$$\begin{pmatrix} M_4^Q & 0 & 0 \\ 0 & M_5^Q & 0 \\ 0 & 0 & M_6^Q \end{pmatrix} = V_{45}^Q \begin{pmatrix} M_{44}^Q & M_{45}^\psi & 0 \\ M_{54}^\psi & M_{55}^Q & 0 \\ 0 & 0 & M_{66}^Q \end{pmatrix} V_{45}^{\bar{Q}^\dagger}, \\ \begin{pmatrix} M_4^L & 0 & 0 \\ 0 & M_5^L & 0 \\ 0 & 0 & M_6^L \end{pmatrix} = V_{45}^L \begin{pmatrix} M_{44}^Q & M_{45}^\psi & 0 \\ M_{44}^Q & M_{55}^\psi & 0 \\ M_{54}^\psi & M_{55}^U & 0 \\ 0 & 0 & M_{66}^L \end{pmatrix} V_{45}^{\bar{L}^\dagger}, \\ \end{bmatrix} \Rightarrow \frac{g_4}{\sqrt{2}} Q_a^\dagger \gamma_\mu \begin{pmatrix} c_{\theta_LQ} & -s_{\theta_LQ} & 0 \\ s_{\theta_LQ} & c_{\theta_LQ} & 0 \\ 0 & 0 & 1 \end{pmatrix} L_b U_1^\mu + \text{h.c.}$$

where a, b = 4, 5, 6 and $W_{LQ} = V_{45}^Q V_{45}^{L\dagger}$ is a CKM-like matrix in $SU(4)_I$ (VL quark-lepton) flavour space.

- Large flavour violating charged currents in VL flavour space, but no tree-level FCNCs. $s_{\theta_{LQ}} \approx 1/\sqrt{2}$ best benchmark for *B*-anomalies.
- Each VL family mixes with only one chiral family, i.e. we have only (3-4), (2-5) and (1-6)
 VL-chiral mixing, hence flavour-violating U₁ couplings and flavour diagonal g', Z'
 couplings for chiral fermions.

i, j = 1, 2, 3 and a, b = 4, 5, 6Mario Fernández Navarro B-anomalies in a twin Pati-Salam theory of flavour

GIM-like mechanism and FCNCs

In the large mixing angle formalism

$$s_{34}^{Q,L} = \frac{x_{34}^{\psi} \left\langle \phi_{3,1} \right\rangle}{\sqrt{\left(x_{34}^{\psi} \left\langle \phi_{3,1} \right\rangle\right)^2 + \left(M_{44}^{Q,L}\right)^2}} \;, \; s_{25}^{Q,L} = \frac{x_{25}^{\psi} \left\langle \phi_{3,1} \right\rangle}{\sqrt{\left(x_{25}^{\psi} \left\langle \phi_{3,1} \right\rangle\right)^2 + \left(M_{55}^{Q,L}\right)^2}} \;, \; s_{16}^{Q,L} = \frac{x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle}{\sqrt{\left(x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle\right)^2 + \left(M_{66}^{Q,L}\right)^2}} \;, \; s_{16}^{Q,L} = \frac{x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle}{\sqrt{\left(x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle\right)^2 + \left(M_{66}^{Q,L}\right)^2}} \;, \; s_{16}^{Q,L} = \frac{x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle}{\sqrt{\left(x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle\right)^2 + \left(M_{66}^{Q,L}\right)^2}} \;, \; s_{16}^{Q,L} = \frac{x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle}{\sqrt{\left(x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle\right)^2 + \left(M_{66}^{Q,L}\right)^2}} \;, \; s_{16}^{Q,L} = \frac{x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle}{\sqrt{\left(x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle\right)^2 + \left(M_{66}^{Q,L}\right)^2}} \;, \; s_{16}^{Q,L} = \frac{x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle}{\sqrt{\left(x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle\right)^2 + \left(M_{66}^{Q,L}\right)^2}} \;, \; s_{16}^{Q,L} = \frac{x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle}{\sqrt{\left(x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle\right)^2 + \left(M_{66}^{Q,L}\right)^2}} \;, \; s_{16}^{Q,L} = \frac{x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle}{\sqrt{\left(x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle\right)^2 + \left(M_{66}^{Q,L} \left\langle \phi_{3,1} \right\rangle}\right)^2}} \;, \; s_{16}^{Q,L} = \frac{x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle}{\sqrt{\left(x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle\right)^2 + \left(M_{66}^{Q,L} \left\langle \phi_{3,1} \right\rangle}\right)^2 + \left(M_{66}^{Q,L} \left\langle \phi_{3,1} \right\rangle}\right)^2} \;, \; s_{16}^{Q,L} = \frac{x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle}{\sqrt{\left(x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle\right)^2 + \left(M_{66}^{Q,L} \left\langle \phi_{3,1} \right\rangle}\right)^2 \;, \; s_{16}^{Q,L} = \frac{x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle}{\sqrt{\left(x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle^2 + \left(M_{66}^{Q,L} \left\langle \phi_{3,1} \right\rangle}\right)^2 + \left(M_{66}^{Q,L} \left\langle \phi_{3,1} \right\rangle}\right)^2 + \left(M_{66}^{Q,L} \left\langle \phi_{3,1} \right\rangle}\right)^2 \;, \; s_{16}^{Q,L} = \frac{x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle}{\sqrt{\left(x_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle^2 + \left(M_{66}^{Q,L} \left\langle \phi_{3,1} \right\rangle}\right)^2 + \left(M_{66}^{Q,L} \left\langle \phi_{3,1} \right\rangle}\right)^2 + \left(M_{66}^{Q,L} \left\langle \phi_{3,1} \right\rangle}\right)^2 \;, \; s_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle}\right)^2 \;, \; s_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle}\right)^2 \;, \; s_{16}^{\psi} \left\langle \phi_{3,1} \right\rangle$$

If s^{Q,L}₂₅ ≈ s^{Q,L}₁₆ then no tree level (1-2) FCNCs ⇒ GIM-like mechanism in the (1-2) sector, down-alligned (2-3) sector protects from tree level B_s meson mixing.

• $s_{34}^{Q,L} \approx 1$ is motivated by the top mass and $R_{D^{(*)}}$, $s_{16}^Q \lesssim 0.2$ compatible with bounds from coloron production at LHC.

• We choose a suitable benchmark $\langle \phi_{3,1} \rangle \approx 0.6 \text{ TeV}$, 0.3 TeV and $M_{44}^{Q,L} < M_{55}^{Q,L}$, $M_{66}^{Q,L}$

≈ 1.2 TeV –	0.8 TeV,	and we	explore t	he parameter	space of	x_{34}^{ψ}	and	x_{25}^{ψ} .
-------------	----------	--------	-----------	--------------	----------	-----------------	-----	-------------------

Observable	Experiment/constraint	Theory expr.
$\delta C_L^{\mu} (R_{K^{(*)}})$	$-0.40^{+0.08}_{-0.09}[41]$	(2.86), (3.58)
$g_{V_L}(R_{D^{(*)}})$	$0.05 \pm 0.02[14]$	(2.87), (3.59)
$\delta(\Delta M_s) (B_s - \overline{B}_s)$	$\lesssim 0.11$ [54]	(2.96), (3.61)
$\mathcal{B}(\tau \rightarrow 3\mu)$	$< 2.1 \cdot 10^{-8} \ (90\% \ {\rm CL})[67]$	(3.71)
$\mathcal{B}(\tau \rightarrow \mu \gamma)$	$< 5.0 \cdot 10^{-8} \ (90\% \ {\rm CL})[68]$	(3.78)
$\mathcal{B}(B_s \rightarrow \tau^{\pm} \mu^{\mp})$	$< 3.4 \cdot 10^{-5} (90\% \text{ CL})[69]$	(3.82)
$\mathcal{B}(B^+ \rightarrow K^+ \tau^{\pm} \mu^{\mp})$	$< 2.8 \cdot 10^{-5} (90\% \text{ CL})[70]$	(3.84)
$\mathcal{B}(\tau \rightarrow \mu \phi)$	$< 8.4 \cdot 10^{-8} \ (90\% \ {\rm CL})[71]$	(3.85)
$(g_{\tau}/g_{e,\mu})_{\ell+\pi+K}$	$1.0003 \pm 0.0014[3]$	(3.89)
$\mathcal{B}(B_s \rightarrow \tau^+ \tau^-)$	$< 5.2 \times 10^{-3} (90\% \text{ CL})[72]$	(3.92)
$\mathcal{B}(B \rightarrow K\tau^+\tau^-)$	$< 2.25 \times 10^{-3} \ (90\% \ {\rm CL})$ [73]	(3.93)
$\mathcal{B}\left(B \rightarrow K^{(*)}\nu\bar{\nu}\right)/\mathcal{B}\left(B \rightarrow K^{(*)}\nu\bar{\nu}\right)_{SM}$	$< 3.5(3.2)~(90\%~{\rm CL})[74,75]$	(3.96)

- R_D and R_{D^*} corrected in the same direction and with the same size.
- Light VL lepton required to relax ΔM_s, tantalizing 2.8σ excess at CMS searches of a VL lepton with these features [2208.09700] [hep-ex]

• General fermiophobic 4321 models predict only the U_1 signal.

- Z' signal is intrinsic to the twin PS model due to the $\mu \tau$ mixing predicted.
- Signals also in $B_s \to \tau \mu$, $B \to K \tau \mu$, $\tau \to \mu \phi$.

Rare decays

High- p_T signatures

Physical masses of VL fermions

$$\tilde{M}_{a}^{Q} = \sqrt{\left(x_{ia}^{\psi}\left\langle\phi_{3}\right\rangle\right)^{2} + \left(M_{a}^{Q}\right)^{2}}, \quad \tilde{M}_{a}^{L} = \sqrt{\left(x_{ia}^{\psi}\left\langle\phi_{1}\right\rangle\right)^{2} + \left(M_{a}^{L}\right)^{2}}$$

• The coloron $g' \rightarrow t\bar{t}$ bounds set the scale of the model as $M_{g'} \gtrsim 3.5 \text{ TeV}$ [2103.16558].

- These lead to $M_{U_1} \approx 3 \text{ TeV}$, beyond current limits but whithin projected sentivity for HL-LHC.
- Other than direct production, $pp \rightarrow \tau \tau$ is enhanced by U_1 exchange (most promising channel).
- Z' searches usually not competitive.

- Novel model building approach to connect the consistent picture of *B*-anomalies with the SM flavour hierarchies.
- Fermiophobic model with dominantly left-handed currents.
- U₁ couplings and Yukawa couplings arise via mixing with VL fermions
 ⇒ B-anomalies and Yukawa couplings connected via the same physics
- GIM-like mechanism protects from the most dangerous FCNCs.
- Testable theory of flavour with predictions at low-energy observables and high-*p*_T searches.

The author acknowledges support from the European Union's Horizon 2020 Research and Innovation programme under the Marie Skłodowska-Curie grant agreement No. 860881-HIDDeN.

Backup: Gauge boson masses

$$\begin{split} M_{U_1} &= \frac{1}{2} g_4 \sqrt{3 v_1^2 + 3 v_3^2 + \frac{4}{3} v_{15}^2} \,, \\ M_{g'} &= \frac{\sqrt{3}}{\sqrt{2}} \sqrt{g_4^2 + g_3^2} v_3 \,, \\ M_{Z'} &= \frac{1}{2} \sqrt{\frac{3}{2}} \sqrt{g_4^2 + \frac{2}{3} g_1^2} \sqrt{3 v_1^2 + v_3^2} \end{split}$$

with

$$\langle \phi_3 \rangle = \begin{pmatrix} \frac{v_3}{\sqrt{2}} & 0 & 0\\ 0 & \frac{v_3}{\sqrt{2}} & 0\\ 0 & 0 & \frac{v_3}{\sqrt{2}}\\ 0 & 0 & 0 \end{pmatrix}, \quad \langle \phi_1 \rangle = \begin{pmatrix} 0\\ 0\\ 0\\ \frac{v_1}{\sqrt{2}} \end{pmatrix}, \quad \langle \Omega_{15} \rangle = \frac{1}{2\sqrt{6}} diag(1, 1, 1, -3)v_{15}$$

The choice $v_3 \gg v_1$ leads to $M_{g'} \approx \sqrt{2} M_{U_1}$ (phenomenologically motivated).

 $H(\bar{4},\bar{2},1;4,2,1) \to H_t(\bar{4},3,\bar{2},2/3), \ H_b(\bar{4},3,\bar{2},-1/3), \ H_\tau(\bar{4},1,\bar{2},-1), \ H_{\nu_\tau}(\bar{4},1,\bar{2},0),$ (1)

 $\overline{H}(\bar{4},\bar{2},1;\bar{4},1,\bar{2}) \to H_{c}(4,\bar{3},\bar{2},1/3), \ H_{s}(4,\bar{3},\bar{2},-2/3), \ H_{\mu}(\bar{4},1,\bar{2},0), \ H_{\nu_{\mu}}(\bar{4},1,\bar{2},1),$ (2)

FCNCs in the Higgs basis? ⇒ we assume that only one pair of Higgs doublets, H_u and H_d are light, given by linear combinations of the personal Higgs,

$$H_{u} = \widetilde{\alpha}_{u}H_{t} + \widetilde{\beta}_{u}H_{c} + \widetilde{\gamma}_{u}H_{\nu_{\tau}} + \widetilde{\delta}_{u}H_{\nu_{\mu}}, \ H_{d} = \widetilde{\alpha}_{d}H_{b} + \widetilde{\beta}_{d}H_{s} + \widetilde{\gamma}_{d}H_{\tau} + \widetilde{\delta}_{d}H_{\mu}$$
(3)

where $\tilde{\alpha}_{u,d}$, $\tilde{\beta}_{u,d}$, $\tilde{\gamma}_{u,d}$, $\tilde{\delta}_{u,d}$ are complex elements of two unitary Higgs mixing matrices.

- The orthogonal linear combinations are assumed to be very heavy, well above the TeV scale in order to sufficiently suppress the FCNCs.
- We will further assume that only the light Higgs doublet states get VEVs in order to perform EW symmetry breaking, $\langle H_u \rangle = v_u$, $\langle H_d \rangle = v_d$, while the heavy linear combinations do not, i.e. we assume that in the Higgs basis the linear combinations which do not get VEVs are very heavy.
- The situation is familiar from SO(10) models, where 6 Higgs doublets arise as H_{10} , H_{120} , $H_{\overline{126}}$, two from each, but below the SO(10) breaking scale only two Higgs doublets are assumed to be light, similar to H_u and H_d above. We invert the unitary transformations

$$\begin{aligned} H_t &= \alpha_u H_u + \dots, \quad H_b = \alpha_d H_d + \dots, \quad H_\tau = \gamma_d H_d + \dots, \quad H_{\nu_\tau} &= \gamma_u H_u + \dots, \\ H_c &= \beta_u H_u + \dots, \quad H_s &= \beta_d H_d + \dots, \quad H_\mu = \delta_d H_d + \dots, \quad H_{\nu_\mu} &= \delta_u H_u + \dots, \end{aligned}$$

ignoring the heavy states indicated by dots. When the light Higgs H_u , H_d gain their VEVs, the personal Higgs in the original basis can be thought of as gaining VEVs $\langle H_t \rangle = \alpha_u v_u$, etc...

Backup: Mass matrix, block-diagonalisation

Mario Fernández Navarro

B-anomalies in a twin Pati-Salam theory of flavou

Backup: Mass matrix, block-diagonalisation

Block-diagonalised via (effective mass matrices arise):

$$V_{\psi} = V_{16}^{\psi} V_{35}^{\psi} V_{25}^{\psi} V_{34}^{\psi} V_{45}^{\psi} V_{45}^{\psi^{c}},$$

 $V_{\psi^c} = V_{16}^{\psi^c} V_{35}^{\psi^c} V_{25}^{\psi^c} V_{34}^{\psi^c} V_{24}^{\psi^c} V_{45}^{\psi^c} V_{45}^{\bar{\psi}}.$

	($\psi_1^{c'}$	$\psi_2^{c'}$	$\psi_3^{c'}$	$\psi_4^{c'}$	$\psi_5^{c'}$	$\psi_6^{c'}$	$\overline{\psi_4'}$	$\overline{\psi_5'}$	$\overline{\psi_6'}$
	$ \psi_1' $							0	0	0
	$ \psi_2' $							0	0	0
	$ \psi'_3 $							0	0	0
	$ \psi_4' $				$\tilde{y}_{\alpha\beta}^{\prime\psi}$			$ ilde{M}^{\psi}_4$	0	0
$M^{\psi'} =$	$ \psi_5' $							0	\tilde{M}_{5}^{ψ}	0
	ψ_6'							0	0	\tilde{M}_{6}^{ψ}
	$\overline{\psi_4^{c'}}$	0	0	0	$\tilde{M}_4^{\psi^c}$	0	0	0	0	0
	$\overline{\psi_5^{c'}}$	0	0	0	0	$\tilde{M}_5^{\psi^c}$	0	0	0	0
	$\left(\frac{\psi_{6}^{c'}}{\psi_{6}^{c'}}\right)$	0	0	0	0	0	$\tilde{M}_6^{\psi^c}$	0	0	0)

,

Backup: VL-chiral mixing

$$\begin{split} s^{Q}_{34} &= \frac{x^{\psi}_{34} \left(\phi_{3} \right)}{\sqrt{\left(x^{\psi}_{34} \left(\phi_{3} \right) \right)^{2} + \left(M^{Q}_{44} \right)^{2}}}, \qquad s^{L}_{34} &= \frac{x^{\psi}_{34} \left(\phi_{1} \right)}{\sqrt{\left(x^{\psi}_{34} \left(\phi_{1} \right) \right)^{2} + \left(M^{L}_{44} \right)^{2}}}, \\ s^{Q}_{25} &= \frac{x^{\psi}_{25} \left(\phi_{3} \right)}{\sqrt{\left(x^{\psi}_{25} \left(\phi_{3} \right) \right)^{2} + \left(M^{Q}_{55} \right)^{2}}}, \qquad s^{L}_{25} &= \frac{x^{\psi}_{25} \left(\phi_{1} \right)}{\sqrt{\left(x^{\psi}_{25} \left(\phi_{1} \right) \right)^{2} + \left(M^{L}_{55} \right)^{2}}}, \\ s^{Q}_{35} &= \frac{c^{Q}_{34} x^{\psi}_{35} \left(\phi_{3} \right)}{\sqrt{\left(c^{Q}_{34} x^{\psi}_{35} \left(\phi_{3} \right) \right)^{2} + \left(x^{\psi}_{25} \left(\phi_{3} \right) \right)^{2} + \left(M^{Q}_{55} \right)^{2}}}, \qquad s^{L}_{35} &= \frac{c^{L}_{34} x^{\psi}_{35} \left(\phi_{1} \right)}{\sqrt{\left(c^{L}_{34} x^{\psi}_{35} \left(\phi_{1} \right) \right)^{2} + \left(M^{L}_{55} \right)^{2}}}, \\ s^{Q}_{16} &= \frac{x^{\psi}_{16} \left(\phi_{3} \right)}{\sqrt{\left(x^{\psi}_{16} \left(\phi_{3} \right) \right)^{2} + \left(M^{Q}_{55} \right)^{2}}}, \qquad s^{L}_{16} &= \frac{x^{\psi}_{16} \left(\phi_{1} \right)}{\sqrt{\left(x^{\psi}_{16} \left(\phi_{1} \right) \right)^{2} + \left(M^{L}_{55} \right)^{2}}}, \\ \tilde{M}^{Q}_{4} &= \sqrt{\left(x^{\psi}_{34} \left(\phi_{3} \right) \right)^{2} + \left(M^{Q}_{56} \right)^{2}}, \qquad \tilde{M}^{L}_{4} &= \sqrt{\left(x^{\psi}_{34} \left(\phi_{1} \right) \right)^{2} + \left(M^{L}_{44} \right)^{2}}, \\ \tilde{M}^{Q}_{5} &= \sqrt{\left(x^{\psi}_{25} \left(\phi_{3} \right) \right)^{2} + \left(x^{\psi}_{35} \left(\phi_{3} \right) \right)^{2} + \left(M^{Q}_{55} \right)^{2}}, \qquad \tilde{M}^{L}_{5} &= \sqrt{\left(x^{\psi}_{25} \left(\phi_{1} \right) \right)^{2} + \left(M^{L}_{44} \right)^{2}}, \\ \tilde{M}^{Q}_{6} &= \sqrt{\left(x^{\psi}_{16} \left(\phi_{3} \right) \right)^{2} + \left(M^{Q}_{55} \right)^{2}}, \qquad \tilde{M}^{L}_{5} &= \sqrt{\left(x^{\psi}_{25} \left(\phi_{1} \right) \right)^{2} + \left(M^{L}_{55} \right)^{2}}. \end{split}$$

Backup: Effective Yukawa couplings (mass matrices)

• Zeroes enforced by Z_4 :

$$\begin{split} M^{\mu}_{\mathrm{eff}} &= \begin{pmatrix} & \frac{u_{1}^{c'} & u_{2}^{c'} & u_{3}^{c'} \\ Q_{1}'| & 0 & 0 & 0 \\ Q_{2}'| & 0 & 0 & s_{25}^{Q} y_{53}^{\psi} \\ Q_{3}'| & 0 & 0 & s_{34}^{Q} y_{43}^{\psi} \end{pmatrix} \langle H_{t} \rangle + \begin{pmatrix} & \frac{u_{1}^{c'} & u_{2}^{c'} & u_{3}^{c'} \\ Q_{1}'| & 0 & 0 & 0 \\ Q_{2}'| & 0 & c_{25}^{Q} s_{24}^{Q} y_{24}^{\psi} & c_{25}^{Q} s_{34}^{Q} y_{24}^{\psi} \\ Q_{3}'| & 0 & c_{34}^{Q} s_{24}^{\psi} y_{34}^{\psi} & c_{34}^{Q} s_{34}^{\varphi} y_{34}^{\psi} \end{pmatrix} \langle H_{c} \rangle + \mathrm{h.c.} \, , \\ \\ M^{d}_{\mathrm{eff}} &= \begin{pmatrix} & \frac{d_{1}^{c'} & d_{2}^{c'} & d_{3}^{c'} \\ Q_{1}'| & 0 & 0 & s_{34}^{Q} y_{43}^{\psi} \end{pmatrix} \langle H_{b} \rangle + \begin{pmatrix} & \frac{d_{1}^{c'} & d_{2}^{c'} & d_{3}^{c'} \\ Q_{1}'| & 0 & 0 & 0 \\ Q_{2}'| & 0 & 0 & s_{34}^{Q} y_{43}^{\psi} \end{pmatrix} \langle H_{b} \rangle + \begin{pmatrix} & \frac{d_{1}^{c'} & d_{2}^{c'} & d_{3}^{c'} \\ Q_{1}'| & 0 & 0 & 0 \\ Q_{2}'| & 0 & c_{25}^{Q} s_{4}^{Q} y_{24}^{\psi} & c_{25}^{Q} s_{3}^{Q} y_{24}^{\psi} \\ Q_{3}'| & 0 & c_{34}^{Q} s_{4}^{Q} y_{34}^{\psi} & d_{34}^{Q} s_{4}^{\varphi} y_{4}^{\psi} \end{pmatrix} \langle H_{s} \rangle + \mathrm{h.c.} \, , \\ \\ M^{e}_{\mathrm{eff}} &= \begin{pmatrix} & \frac{e_{1}^{c'} & e_{2}^{c'} & e_{3}^{c'} \\ U_{1}'| & 0 & 0 & 0 \\ U_{2}'| & 0 & c_{25}^{Q} s_{4}^{Q} y_{24}^{\psi} & c_{25}^{Q} s_{3}^{Q} s_{24}^{\psi} \\ U_{3}'| & 0 & c_{25}^{Q} s_{4}^{Q} y_{34}^{\psi} & c_{25}^{Q} s_{4}^{Q} y_{34}^{\psi} \end{pmatrix} \langle H_{\mu} \rangle + \mathrm{h.c.} \, , \\ \\ M^{e}_{\mathrm{eff}} &= \begin{pmatrix} & \frac{e_{1}^{c'} & e_{2}^{c'} & e_{3}^{c'} \\ U_{1}'| & 0 & 0 & 0 \\ U_{2}'| & 0 & c_{25}^{Q} s_{4}^{Q} y_{44}^{\psi} & c_{25}^{Q} s_{4}^{Q} y_{44}^{\psi} \end{pmatrix} \langle H_{\mu} \rangle + \mathrm{h.c.} \, , \\ \\ \end{pmatrix} \end{cases}$$

• CKM down alligned if

$$\begin{split} & \Rightarrow \begin{cases} \theta_{25}^Q \psi_{53}^\psi \left< H_b \right> + c_{25}^Q s_{34}^q y_{24}^\psi \left< H_s \right> \approx 0 \Rightarrow y_{53}^\psi \approx (-)\mathcal{O}(0.1 - 0.5) \Rightarrow \theta_{23}^d \approx 0 \\ & \Rightarrow \begin{cases} \theta_{23}^u \approx \frac{-s_{25}^Q |y_{53}^\psi| \left< H_t \right> + c_{25}^Q s_{34}^q y_{24}^\psi \left< H_c \right>}{s_{34}^Q y_{43}^\psi \left< H_c \right>} \approx s_{25}^Q \left| y_{53}^\psi \right| \approx \mathcal{O}(V_{cb}) \,, \\ & \theta_{23}^e \approx \frac{-s_{25}^L |y_{53}^\psi| \left< H_\tau \right> + c_{25}^L s_{54}^e y_{24}^\psi \left< H_\mu \right>}{s_{44}^Q y_{43}^\psi \left< H_\tau \right>} \approx \mathcal{O}(V_{cb} - 4V_{cb}) \end{cases} \end{split}$$

Backup: Top mass

In good approximation, the mass of the top quark is given by the (3,3) entry in M_{eff}^{u} , i.e.

$$m_t \approx s_{34}^Q y_{43}^\psi \langle H_t \rangle = s_{34}^Q y_{43}^\psi \alpha_u \frac{1}{\sqrt{1 + \tan^{-2} \beta}} \frac{v_{\rm SM}}{\sqrt{2}} \,,$$

where $v_{\rm SM}=246\,{
m GeV}$ and we have applied $\langle {\cal H}_t
angle=lpha_u v_u$, where

$$v_u = rac{v_{\mathrm{SM}}}{\sqrt{2}} \sineta = rac{1}{\sqrt{1+ an^{-2}eta}} rac{v_{\mathrm{SM}}}{\sqrt{2}} \,,$$

as in usual 2HDM. If we consider tan $\beta \approx 10$ and $\alpha_u \approx 1^1$, then we obtain

$$m_t \approx s_{34}^Q y_{43}^\psi \frac{v_{\rm SM}}{\sqrt{2}} \equiv y_t \frac{v_{\rm SM}}{\sqrt{2}} \,.$$

¹This choice preserves $\langle H_t \rangle$ at the EW scale, larger values would break the decoupling approximation that we have assumed during the diagonalisation of the full mass matrix.

Backup: 1st family masses

 Add one VL family split across both PS groups, take advantage of scalars performing high scale breaking, Z₄ still provides flavour structure

$$\mathcal{M}_{\rm eff} = \begin{pmatrix} \frac{\psi_1^{c'} & \psi_2^{c'} & \psi_3^{c'} \\ \psi_1^{c'} & 1 & \frac{2}{2} & 1 & \frac{4}{4} & 1 & 1 & 1 \\ \frac{\psi_7}{\psi_7} & 1 & \frac{2}{2} & 1 & \frac{4}{4} & \frac{1}{2} & \frac{1}{2} & 1 \\ \frac{\psi_7}{\psi_7} & 1 & \frac{2}{2} & 1 & \frac{4}{4} & \frac{1}{2} & \frac{1}{2} & 1 \\ \frac{\psi_7}{\psi_7} & 1 & \frac{2}{2} & 1 & \frac{4}{4} & \frac{1}{2} & \frac{1}{2} & 1 \\ \frac{\psi_7}{\psi_7} & 1 & \frac{2}{2} & 1 & \frac{4}{4} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 1 \\ \frac{\psi_7}{\psi_7} & 1 & \frac{2}{2} & 1 & \frac{4}{4} & \frac{1}{2} & \frac{2}{2} & 1 \\ \frac{\psi_7}{\psi_7} & 1 & \frac{2}{2} & 1 & \frac{4}{4} & \frac{1}{2} & \frac{2}{2} & 1 \\ \frac{\psi_7}{\psi_7} & 1 & \frac{1}{2} & 1 & 1 & \frac{1}{4} & \frac{2}{2} & \frac{2}{2} & 1 \\ \frac{\psi_7}{\psi_7} & 1 & \frac{1}{2} & 1 & 1 & \frac{1}{4} & \frac{2}{2} & \frac{2}{2} & 1 \\ \frac{\psi_7}{\psi_7} & 1 & \frac{1}{2} & 1 & 1 & \frac{1}{4} & \frac{2}{2} & \frac{1}{2} & 1 \\ \frac{\psi_7}{\psi_7} & 1 & \frac{1}{2} & 1 & 1 & \frac{1}{4} & \frac{2}{2} & \frac{1}{2} & 1 \\ \frac{\psi_7}{\psi_7} & 1 & \frac{1}{2} & 1 & 1 & \frac{1}{4} & \frac{1}{2} & \frac{2}{2} & 1 \\ \frac{\psi_7}{\psi_7} & 1 & \frac{1}{2} & 1 & 1 & \frac{1}{4} & \frac{1}{2} & \frac{2}{2} & 1 \\ \frac{\psi_7}{\psi_7} & 1 & \frac{1}{2} & 1 & 1 & \frac{1}{4} & \frac{1}{2} & \frac{2}{2} & 1 \\ \frac{\psi_7}{\psi_7} & 1 & \frac{1}{2} & 1 & \frac{1}{4} & \frac{1}{2} & \frac{2}{2} & 1 \\ \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} \\ \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} \\ \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} \\ \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} \\ \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} \\ \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} \\ \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} \\ \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} \\ \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} \\ \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} \\ \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} \\ \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} \\ \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} \\ \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} & \frac{\psi_7}{\psi_7} \\ \frac{\psi_7}{\psi_7} &$$

• VL masses splitted via Ω_{15} . Texture zero and up-alligned structure in the (1-2) CKM sector.

Backup: Neutrino masses

Single right-handed neutrino dominance

$$M_{\nu}^{M} = \begin{pmatrix} \tilde{\xi}^{2} & \tilde{\xi}^{5} & \tilde{\xi}^{4} \\ \tilde{\xi}^{5} & \tilde{\xi}^{2} & \tilde{\xi} \\ \tilde{\xi}^{4} & \tilde{\xi} & 1 \end{pmatrix} \frac{\langle H' \rangle \langle H' \rangle}{\Lambda} \simeq \begin{pmatrix} M_{1}^{M} & 0 & 0 \\ 0 & M_{2}^{M} & \tilde{\xi} \\ 0 & \tilde{\xi} & M_{3}^{M} \end{pmatrix},$$
(5)

$$M_1^M \simeq M_2^M \simeq \tilde{\xi}^2 M_3^M \,, \tag{6}$$

$$M_3^M = \frac{\langle H' \rangle \langle H' \rangle}{\Lambda} \,. \tag{7}$$

$$M_{\nu}^{D} = \begin{pmatrix} 0 & a & a' \\ e & b & b' \\ f & c & c' \end{pmatrix} .$$

$$\tag{8}$$

Now we apply the seesaw formula:

$$m_{\nu} = M_{\nu}^{D} \left(M_{\nu}^{M} \right)^{-1} \left(M_{\nu}^{D} \right)^{T} .$$
⁽⁹⁾

If we neglect the off-diagonal $\tilde{\xi}$ terms

$$m_{\nu} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & e^2 & ef \\ 0 & ef & f^2 \end{pmatrix} \frac{1}{M_1^M} + \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix} \frac{1}{M_2^M} + \begin{pmatrix} a'^2 & a'b' & a'c' \\ a'b' & b'^2 & b'c' \\ a'c' & b'c' & c'^2 \end{pmatrix} \frac{1}{M_3^M} .$$
(10)

Backup: Benchmark

	Benchm	Output					
<i>g</i> 4	3.5	λ_{15}^{44}	-0.5	s ₃₄ ^Q	0.978	$M_{g'}$	3782.9 GeV
g 3,2,1	1, 0.65, 0.36	$\lambda_{15}^{55},\lambda_{15}^{66}$	2.5, 1.1	s ^L ₃₄	0.977	$M_{Z'}$	2414.3 GeV
x_{34}^{ψ}	2	$x_{42}^{\psi^{c}}$	0.4	$s^Q_{25} = s^Q_{16}$	0.1986	s ₂₃ ^u	0.042556
$x_{25}^{\psi} = x_{16}^{\psi}$	0.41	$x_{43}^{\psi^{c}}$	1	$s_{25}^L = s_{16}^L$	0.1455	s_{23}^d	0.001497
M_{44}^ψ	320 GeV	$M_{44}^{\psi^c}$	5 TeV	$s_{\theta_{LQ}}$	0.7097	s^e_{23}	-0.111
M^{ψ}_{55}	780 GeV	$y^{\psi}_{53,43,34,24}$	-0.3, 1, 1, 1	\widetilde{M}_{4}^{Q}	1226.8 GeV	V_{cb}	0.04106
M^ψ_{66}	1120 GeV	$\langle H_t \rangle$	177.2 GeV	\widetilde{M}_{5}^{Q}	1238.7 GeV	mt	172.91 GeV
M_{45}^{ψ}	-700 GeV	$\langle H_c \rangle$	26.8 GeV	\widetilde{M}_{4}^{L}	614.04 GeV	m _c	1.270 GeV
M_{54}^{ψ}	50 GeV	$\langle H_b \rangle$	4.25 GeV	\widetilde{M}_{5}^{L}	845.26 GeV	m _b	4.180 GeV
$\langle \phi_3 \rangle$	0.6 TeV	$\langle H_s \rangle$	2.1 GeV	\widetilde{M}_{6}^{Q}	1234.6 GeV	m_s	0.0987 GeV
$\langle \phi_1 \rangle$	0.3 TeV	$\langle H_{\tau} \rangle$	1.75 GeV	\widetilde{M}_{6}^{L}	859.4 GeV	m_{τ}	1.7765 GeV
$\langle \Omega_{15} \rangle$	0.4 TeV	$\langle H_{\mu} \rangle$	4.58 GeV	M_{U_1}	2987.1 GeV	m_{μ}	105.65 MeV

Table 1: Input and output parameters for the benchmark point (BP).

Backup: $R_{K^{(*)}}$ and $R_{D^{(*)}}$

$$\mathcal{L}_{\rm eff} \supset C^{U_1}_{bs\mu\mu} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{\mu}_L \gamma^\mu \mu_L \right) + C^{U_1}_{bc\tau\nu} \left(\bar{c}_L \gamma_\mu b_L \right) \left(\bar{\tau}_L \gamma^\mu \nu_{\tau L} \right) + {\rm h.c.} \,,$$

$$\begin{split} C^{U_1}_{bs\mu\mu} &= -\frac{g_4^2}{2M_{U_1}^2} \beta^*_{b\mu} \beta_{s\mu} = \frac{g_4^2}{2M_{U_1}^2} c_{\theta_{LQ}} s_{\theta_{LQ}} s_{25}^Q s_{34}^Q \left(s_{25}^L\right)^2 ,\\ C^{U_1}_{bc\tau\nu_\tau} &= -\frac{g_4^2}{2M_{U_1}^2} \beta^*_{b\tau} \beta_{c\nu_\tau} = -\frac{g_4^2}{2M_{U_1}^2} c_{\theta_{LQ}} s_{\theta_{LQ}} s_{25}^Q s_{34}^Q \left(s_{34}^L\right)^2 , \end{split}$$

in order to fit

$$C_{bs\mu\mu}^{U_1} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha}{4\pi} 2\delta C_L^\mu , \qquad \delta C_L^\mu = -0.40^{+0.08}_{-0.09} ,$$

$$C_{cb au
u_{ au}}^{U_1} = -2\sqrt{2}G_F V_{cb}g_{V_L}, \qquad g_{V_L} = 0.07 \pm 0.02,$$

at the matching scale $\mu \sim m_b$, provided that small corrections over the Wilson coefficients above due to RGE from the U_1 scale are at the percent level and can be safely neglected. In particular, δC_L^{μ} provides a good fit of R_K , R_{K^*} and $B_s \rightarrow \mu \overline{\mu}$ data, while g_{V_L} provides a good fit of R_D and R_{D^*} , imposing $\mathcal{B}(B_c \rightarrow \overline{\tau}\nu) \leq 30$ %.

Backup: ΔM_s

$$\delta(\Delta M_s) \equiv \frac{\Delta M_s - \Delta M_s^{\rm SM}}{\Delta M_s^{\rm SM}} = \left| 1 + \frac{C_{bs}^{\rm NP}}{C_{bs}^{\rm SM}} \right| - 1 = \frac{C_{bs}^{\rm NP}}{C_{bs}^{\rm SM}} \lesssim 0.11$$
(11)

$$C_{bs}^{\rm NP-loop} = \frac{g_4^4}{\left(8\pi M_{U_1}\right)^2} \sum_{\alpha,\beta} \left(\beta_{s\alpha}^* \beta_{b\alpha}\right) \left(\beta_{s\beta}^* \beta_{b\beta}\right) F(x_\alpha, x_\beta) \tag{12}$$

where $\alpha, \beta = \mu, \tau, E_4, E_5$ run for all charged leptons, including the vector-like partners, and $x_{\alpha} = (m_{\alpha}/M_U)^2$. We have generalised the loop function in [Fuentes-Martin et al, 2009.11296] to the case of more than one VL families,

$$F(x_{\alpha}, x_{\beta}) = \left(1 + \frac{x_{\alpha} x_{\beta}}{4}\right) B(x_{\alpha}, x_{\beta}), \qquad (13)$$

where

$$B(x_{\alpha}, x_{\beta}) = \frac{1}{(1 - x_{\alpha})(1 - x_{\beta})} + \frac{x_{\alpha}^{2} \log x_{\alpha}}{(x_{\beta} - x_{\alpha})(1 - x_{\alpha}^{2})} + \frac{x_{\beta}^{2} \log x_{\beta}}{(x_{\alpha} - x_{\beta})\left(1 - x_{\beta}^{2}\right)}.$$
(14)

The product of couplings $\beta_{s\alpha}^* \beta_{b\alpha}$ has the fundamental property

$$\sum_{\alpha} \beta_{s\alpha}^* \beta_{b\alpha} = 0.$$
 (15)

Backup: Perturbativity

The low-energy 4321 theory must remain perturbative until the high scale of the twin Pati-Salam symmetry.

B-anomalies in a twin Pati-Salam theory of flavour

Backup: Gauge bosons couplings

$$\mathcal{L}_{U_{1}}^{\text{gauge}} = \frac{g_{4}}{\sqrt{2}} Q_{i}^{\dagger'} \gamma_{\mu} \begin{pmatrix} s_{16}^{Q} s_{16}^{L} \epsilon & 0 & 0 \\ 0 & c_{\theta_{LQ}} s_{25}^{Q} s_{25}^{L} & s_{\theta_{LQ}} s_{25}^{Q} s_{34}^{L} \\ 0 & -s_{\theta_{LQ}} s_{34}^{Q} s_{35}^{L} & c_{\theta_{LQ}} s_{25}^{Q} s_{34}^{L} \end{pmatrix} L_{j}^{\prime} U_{1}^{\mu} + \text{h.c.},$$

$$\mathcal{L}_{g'}^{\text{gauge}} = \frac{g_{4}g_{5}}{g_{3}} Q_{i}^{\dagger'} \gamma^{\mu} T^{\vartheta} \begin{pmatrix} \left(s_{16}^{Q}\right)^{2} - \left(c_{16}^{Q}\right)^{2} \frac{g_{3}^{2}}{g_{4}^{2}} & 0 & 0 \\ 0 & \left(s_{25}^{Q}\right)^{2} - \left(c_{25}^{Q}\right)^{2} \frac{g_{3}^{2}}{g_{4}^{2}} & 0 \\ 0 & 0 & \left(s_{34}^{Q}\right)^{2} - \left(c_{34}^{Q}\right)^{2} \frac{g_{3}^{2}}{g_{4}^{2}} \end{pmatrix} Q_{j}^{\prime} g_{\mu}^{s'}.$$

$$\mathcal{L}_{Z',\ell}^{\text{gauge}} = -\frac{\sqrt{3}}{\sqrt{2}} \frac{g_{4}g_{Y}}{g_{1}} L_{i}^{\dagger'} \gamma^{\mu} \begin{pmatrix} \frac{1}{2} \left(s_{16}^{L}\right)^{2} - \left(c_{16}^{L}\right)^{2} \frac{g_{1}^{2}}{g_{4}^{2}} & 0 & 0 \\ 0 & \frac{1}{2} \left(s_{25}^{L}\right)^{2} - \left(c_{25}^{L}\right)^{2} \frac{g_{1}^{2}}{g_{4}^{2}} & 0 \\ 0 & 0 & \frac{1}{2} \left(s_{34}^{L}\right)^{2} - \left(c_{34}^{L}\right)^{2} \frac{g_{1}^{2}}{g_{4}^{2}} \end{pmatrix} L_{j}^{\prime} Z_{\mu}^{\prime}.$$

Backup: $B \rightarrow K \nu \bar{\nu}$

$$\mathcal{L}_{b \rightarrow s \nu \nu} = - C_{\nu}^{\tau \tau} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{\nu}_{L\tau} \gamma^\mu \nu_{L\tau} \right) \;,\; C_{\nu}^{\tau \tau} = C_{\nu, \mathrm{NP}}^{\tau \tau} + C_{\nu, \mathrm{SM}} \,. \label{eq:Lagrangian}$$

We parameterise corrections to the SM branching fraction as

$$\delta \mathcal{B}(B \to K^{(*)} \nu \bar{\nu}) = \frac{\mathcal{B}(B \to K^{(*)} \nu \bar{\nu})}{\mathcal{B}(B \to K^{(*)} \nu \bar{\nu})_{\text{SM}}} - 1 \approx \frac{1}{3} \left| \frac{C_{\nu\nu}^{\text{NP}} - C_{\nu\nu}^{\text{SM}}}{C_{\nu\nu}^{\text{SM}}} \right|^2 - \frac{1}{3} \,.$$

We split the NP effects into Z'-mediated and U_1 -mediated contributions as follows

$$C_{\nu,{\rm NP}}^{\tau\tau} = C_{\nu,Z'}^{\tau\tau} + C_{\nu,U}^{\tau\tau} \, . \label{eq:constraint}$$

The U_1 contribution at NLO accuracy reads

$$C_{\nu,U}^{\tau\tau} \approx C_{\nu,U}^{\text{RGE}} + \frac{g_4^4}{32\pi^2 M_{U_1}^2} \sum_{\alpha,j} \left(\beta_{s\alpha}^* \beta_{b\alpha}\right) \left(\beta_{j\nu_{\tau}}\right)^2 F(x_{\alpha}, x_j),$$

where the second term arises from the semileptonic box diagram and the first term encodes the RGE-induced contribution from the tree-level leptoquark-mediated operator ($\bar{s}_L \gamma_\mu b_L$) ($\bar{\tau}_L \gamma^\mu \tau_L$),

$$\begin{split} C^{\rm RGE}_{\nu,U} &= -0.047 \frac{g_4^2}{2M_{U_1}^2} \beta_{b\tau} \beta_{s\tau} \; . \\ C^{\tau\tau}_{\nu,Z'} &\approx \frac{3g_4^2}{2M_{Z'}^2} \left[\xi_{bs} \xi_{\nu\tau \, \nu\tau} \left(1 + \frac{3}{2} \frac{g_4^2}{16\pi^2} \xi_{\nu\tau \, \nu\tau}^2 \right) + \frac{g_4^2}{16\pi^2} \beta_{sE_5}^* \beta_{bE_5} \, G_{\Delta Q=1}(x_{E_5}, x_{Z'}, x_R) \right] \; , \end{split}$$

where $x_{E_5} \equiv (M_5^L)^2/M_U^2$, $x_{Z'} \equiv M_{Z'}^2/M_U^2$ and $x_R \equiv M_R^2/M_U^2$ with M_R being a scale associated to the radial mode $h_U(3, 1, 2/3)$ arising from $\phi_{3,1}$. The loop function [Fuentes-Martin et al, 2009.11296]

$${\cal G}_{\Delta Q=1}(x_1,x_2,x_3) \approx \frac{5}{4} x_1 + \frac{x_1}{2} \left(x_2 - \frac{3}{2}\right) \left(\ln x_3 - \frac{5}{2}\right) \,,$$

Backup: Tests of universality in leptonic τ decays

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)_{\ell} = 1 + \frac{9}{12}C_{Z'}\left(\left|\xi_{\tau e}\right|^{2} - \left|\xi_{\mu e}\right|^{2}\right) - \eta C_{U}\left(\left|\beta_{b\tau}\right|^{2} - \left|\beta_{b\mu}\right|^{2}\right),$$
(16)

$$\left(\frac{g_{\tau}}{g_{e}}\right)_{\ell} = 1 + \frac{9}{12}C_{Z'}\left(\left|\xi_{\tau\mu}\right|^{2} - \left|\xi_{\mu e}\right|^{2}\right) - \eta C_{U}\left(\left|\beta_{b\tau}\right|^{2} - \left|\beta_{be}\right|^{2}\right),\tag{17}$$

where $\eta = 0.079$ parameterises the running from $\Lambda = 2$ TeV. Due to the hierarchy in leptoquark couplings, we find $\beta_{b\tau} \gg \beta_{b\mu}$ and $\beta_{be} \approx 0$, hence in good approximation both ratios receive the same contribution proportional to $\beta_{b\tau}$, so we can approximate

$$\left(\frac{g_{\tau}}{g_{\mu,e}}\right)_{\ell+\pi+K} \approx 1 - \eta C_U \left|\beta_{b\tau}\right|^2 \,, \tag{18}$$

$$C_U = \frac{g_4^2 v_{\rm SM}^2}{4 M_{U_1}^2} \,, \quad C_{Z'} = \frac{3}{4} \frac{g_4^2 g_Y^2}{g_1^2} \frac{v_{\rm SM}^2}{M_{Z'}^2} \,.$$

Backup: $K_L \rightarrow \mu e$

The LFV process $K_L \rightarrow \mu e$ sets a strong constraint over all models featuring a vector leptoquark U_1 with first and second family couplings,

$$\mathcal{B}\left(\mathcal{K}_L
ightarrow \mu e
ight) = rac{ au_{\mathcal{K}_L} G_F^2 f_K^2 m_\mu^2 m_K}{8\pi} \left(1-rac{m_\mu^2}{m_K^2}
ight)^2 C_U^2 \left|eta_{de}eta_{s\mu}^*
ight|^2 \,.$$

The first family coupling β_{de} can be diluted via mixing with vector-like fermions, which we parameterised via the effective parameter ϵ , so that $\beta_{se} \approx s_{16}^Q s_{16}^L \epsilon$.

Backup: $K_L \rightarrow \mu e$ (cont.)

field	<i>Z</i> ₂		
$\overline{\psi}_6$, ψ_6	1, 1		
${\bar\psi'}_6$, ψ'_6	-1, -1		
χ	-1		

$$\mathcal{L}_{\text{mix}} = x_{66} \chi \bar{\psi}_6 \psi'_6 + x'_{66} \chi^* \bar{\psi}'_6 \psi_6 + \text{h.c.}$$
(19)

$$\mathcal{L}_{\text{mass}} = (M_{66}^{\psi} + \lambda_{15}^{66} T_{15} \Omega_{15}) \bar{\psi}_6 \psi_6 + (M_{66'}^{\psi} + \lambda_{15}^{66'} T_{15} \Omega_{15}) \bar{\psi}_6' \psi_6' + \text{h.c.}$$
(20)

Then for LQ couplings

$$\mathcal{L}_{U_{1}} = \frac{g_{4}}{\sqrt{2}} \left(\begin{array}{c} Q_{6}^{\dagger} & Q_{6}^{\dagger} \end{array} \right) \gamma_{\mu} V_{66'}^{Q} \operatorname{diag}(1,1) V_{66'}^{L^{\dagger}} \left(\begin{array}{c} L_{6}^{\prime} \\ L_{6}^{\prime} \end{array} \right) U_{1}^{\mu} + \mathrm{h.c.}$$
(21)

If we define

$$V_{66'}^Q V_{66'}^{L\dagger} \equiv \begin{pmatrix} \cos\theta_6 & \sin\theta_6 \\ -\sin\theta_6 & \cos\theta_6 \end{pmatrix},$$
(22)

then the $Q_6^{\dagger} L_6 U_1$ coupling receives a suppression via $\cos \theta_6$ as

$$\beta_{de} = s_{16}^Q s_{16}^L \cos \theta_6 \,. \tag{23}$$

which is identified with the suppression parameter ϵ ,

$$\epsilon \equiv \cos \theta_6.$$
 (24)

B-anomalies in a twin Pati-Salam theory of flavour