## First direct tests of T and CPT symmetries in transitions of neutral kaons from KLOE-2



## Michał Silarski Jagiellonian University on behalf of the KLOE-2 collaboration

DISCRETE 2022, 07-11.11.2022, Baden-Baden





- CPT conservation: Lorentz invariance, Locality, Unitarity
- Particles and antiparticles: equality of masses and widths, opposite charges and magnetic moments.
- Any experimental evidence of the CPT violation would point to Physics beyond the Standard Model
- CPT tests in the kaon system:
  - ♦ CPLEAR ( $K^0 \overline{K}^0$  semileptonic decay rate asymmetry),
  - ★ KTEV ( $\eta_{\pm -} \eta_{00}$  in the  $K_s K_L \rightarrow 2\pi$  interference experiment; A<sub>L</sub>semileptonic asymmetry)
  - ★ KLOE: (A<sub>s</sub> semileptonic asymmetry, decoherence, and Lorentz violation tests with  $2(\pi^+\pi^-)$  interferometry)

★ T symmetry tests (CPLEAR): 
$$R = \frac{P(\overline{K}_0 \to K^0) - P(K^0 \to \overline{K}_0)}{P(\overline{K}_0 \to K^0) + P(K^0 \to \overline{K}_0)}$$

- Tests in neutral mesons transitions (motion-reversal before the decay).
- The decay tags the initial state and filters the final one (e.g. exploiting maximum entanglement for neutral meson-antimeson pairs)





- Comparison between transitions of CP and flavor states
- ✤ Kaon decays used as a filter for selected flavour and CP states



$$K^{0} \longrightarrow K_{-} \stackrel{CPT}{\Longleftrightarrow} K_{-} \longrightarrow \overline{K}^{0}$$
$$\overline{K}^{0} \longrightarrow K_{-} \stackrel{T}{\Leftrightarrow} K_{-} \longrightarrow K^{0}$$

A clean and model-independent test of T and CPT via asymmetry ratios as a function of difference Δt between the two kaon decays
 [J. Bernabeu, A. Di Domenico et al. Nucl. Phys. B868, 102 (2013), JHEP 10, 139 (2015)]

★ Asymptotic shapes of  $R_{2,T}(\Delta t)$  and  $R_{4,T}(\Delta t)$  are sensitive to T violation ( $\Delta t >> \tau_S$ ) while:  $\frac{R_{2,CPT}(\Delta t \gg \tau_S)}{R_{4,CPT}(\Delta t \gg \tau_S)} = 1 - 8Re(\delta_K) - 8Re(x_-)$ 



## **The DAΦNE Φ-factory**



- □  $e^+e^-$  collider @  $\sqrt{s} = M_{\phi} = 1019.4$  MeV □ LAB momentum  $p_{\phi} \sim 15$  MeV/c
- $\Box \ \sigma_{\text{peak}} \sim 3 \ \mu b$
- Separate e<sup>+</sup>e<sup>-</sup> rings to reduce beam-beam interaction
- Beams crossing angle: 15 mrad
- $\Box$  Peak luminosity 1.5×10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup>

## **KLOE run:**

- □ Daily performance: 7-8 pb<sup>-1</sup>
- □ Best month  $\int L dt \sim 200 \text{ pb}^{-1}$
- □ Total KLOE:
  - $\int L dt \sim 2500 \text{ pb}^{-1} \text{ at } \varphi \text{ mass peak}$ + 250 pb<sup>-1</sup> off peak ( @ 1 GeV)

| BR's for main $\phi$ decays   |       |  |  |  |  |
|-------------------------------|-------|--|--|--|--|
| K⁺K⁻                          | 48.9% |  |  |  |  |
| K <sub>S</sub> K <sub>L</sub> | 34.2% |  |  |  |  |
| ρπ + π⁺π⁻π <sup>0</sup>       | 15.3% |  |  |  |  |
| ηγ                            | 1.3%  |  |  |  |  |





## **The KLOE-2 detector**



## Large cylindrical drift chamber

- Uniform tracking and vertexing in all volume
- Helium based gas mixture (90% He – 10% IsoC<sub>4</sub>H<sub>10</sub>)
- □ Stereo wire geometry

$$\sigma_p/p$$
 = 0.4 %

$$\sigma_{xy}$$
 = 150 µm;  $\sigma_z$  = 2 mm

$$\sigma_{\rm vtx} \sim 3 \,\rm mm$$

 $\sigma(M_{\pi\pi}) \sim 1 \text{ MeV}$ 

## Lead/scintillating-fiber calorimeter

- Hermetical coverage
- High efficiency for low-energy photons

$$\sigma_{\rm E}/E = 5.7\% / \sqrt{E}({\rm GeV})$$
  
 $\sigma_{\rm L} = 54 / \sqrt{E}({\rm GeV}) \oplus 100 \text{ ps}$ 







- ★ Assuming  $\Delta S = \Delta Q$  rule semileptonic decays give the flavor of the kaon:  $K^0 \rightarrow \pi^- e^+ \nu$  and  $\overline{K}^0 \rightarrow \pi^+ e^- \nu$
- Two categories of events to be identified:  $\phi \to K_S K_L \to \pi^{\pm} e^{\mp} \nu$ ,  $3\pi^0$ ;  $\phi \to K_S K_L \to \pi^+ \pi^-$ ,  $\pi^{\mp} e^{\pm} \nu$
- ✤ Early semileptonic decay
  - Two tracks from the IP with invariant mass  $m_{\pi\pi} > 490 \text{ MeV/c}^2$  (under the  $\pi^+\pi^-$  hypothesis)
  - ★ Time-Of-Flight analysis for leptons and pions to refine the  $K_S \rightarrow \pi e \nu$  selection

$$\delta t(m_X) = T - \frac{L}{c\beta(m_X)}$$

- The main background sources:
  - $\bigstar \quad K_S \to \pi^+ \; \pi^+(\gamma)$
  - ★  $K_S \rightarrow \pi^+ \pi^+ \rightarrow \pi \mu v$  (π decay before entering the DC)
  - ✤ Pion/muon DC track misidentified as e<sup>+</sup>/e<sup>-</sup>
- Signal purity refinement with Multilayer Perceptron two particle binary classifiers (TMVA)
  - EMC showers structure vs associated track momentum
  - training with data control samples (K<sub>L</sub> decays)





## $\bigstar \ K_L \to 3\pi^0 \to 6\gamma \text{ selection}:$

- ✤ At least 6 EMC clusters with E>20 MeV not associated with tracks
- Total 6 clusters energy:  $350 \text{ MeV/c}^2 < E_{tot} < 700 \text{ MeV/c}^2$
- ★ Dedicated trilateration-based reconstruction of  $K_L \rightarrow 3\pi^0 \rightarrow 6\gamma$ [A. Gajos et al., Acta Phys. Polon. B 46 (2015) 13]
- Main background source:  $K_s \rightarrow 2\pi^0$  + accidental/splitting (suppressed by vertex reconstruction of 4 γ subsets)
- **\*** Selection of the  $K_s K_L \to (\pi^+ \pi^-) (\pi^\pm e^\mp \nu)$  events
- ★ Early  $\pi^+\pi^-$  decay reconstruction: two tracks from the IP with  $|m_{\pi\pi} - m_{K^0}| < 10 \text{ MeV/c}^2$
- Semileptonic decay selection: two(not previously selected) tracks
- Main background channels:  $\pi^+\pi^-\pi^0$  and  $\pi^\pm\mu^\mp\nu$  semileptonic decays

$$m_{\pm}^2 = (E_K - E(\pi)_{\mp} - |\vec{p}_{miss}|)^2 - |\vec{p}_{\pm}|^2$$





#### **Direct test of T and CPT in neutral kaon transitions**





#### **Direct test of T and CPT in neutral kaon transitions**









$$\begin{array}{rcl} R_{2,T} = & 0.991 & \pm 0.017_{stat} \pm 0.014_{syst} \pm 0.012_{D}, \\ R_{4,T} = & 1.015 & \pm 0.018_{stat} \pm 0.015_{syst} \pm 0.012_{D}, \\ R_{2,CPT} = & 1.004 & \pm 0.017_{stat} \pm 0.014_{syst} \pm 0.012_{D}, \\ R_{4,CPT} = & 1.002 & \pm 0.017_{stat} \pm 0.015_{syst} \pm 0.012_{D}, \\ R_{2,CP} = & 0.992 & \pm 0.028_{stat} \pm 0.019_{syst}, \\ R_{4,CP} = & 1.00665 & \pm 0.00093_{stat} \pm 0.00089_{syst}, \\ DR_{T,CP} = & 0.979 & \pm 0.028_{stat} \pm 0.019_{syst}, \\ DR_{CPT} = & 1.005 & \pm 0.029_{stat} \pm 0.019_{syst}. \end{array}$$







- ❑ Novel Crab-Waist interaction scheme with large Piwinski angle
- Generate e<sup>+</sup>e<sup>−</sup> rings to reduce beam-beam interaction
- Peak luminosity  $2.4 \times 10^{32}$  cm<sup>-2</sup>s<sup>-1</sup>
- Largest sample ever collected at the φ(1020) peak in e<sup>+</sup>e<sup>-</sup> collisions: L<sub>int</sub> = 8 fb<sup>-1</sup> (KLOE-2: 5.5 fb<sup>-1</sup>, KLOE: 2.5 fb<sup>-1</sup>)







## **The KLOE-2 detector**

#### **QCALT**

Tungsten slabs + scintillator tiles read out by SiPM's Low-beta quadrupole coverage for KL decays

QCALT: NIMA 617, 105 (2010); Acta Phys. Pol. B 46, 87 (2015)



## INNER TRACKER

First cylindrical GEM detector 4 layers with 700 mm active length Better vertex reconstruction near IP Larger acceptance for low p<sub>t</sub> tracks



Increased sensitivity for the kaon interferometry measurements IT: Acta Phys. Pol. B 46, 73 (2015); NIMA 628 (2011),194

#### **CCALT**

LYSO crystals+ SiPM read-out Increased acceptance for  $\gamma$ 's from IP (24° $\rightarrow$ 11°)



CCALT: NIM A 718,81 (2013)

## **KLOE upgrades: γγ taggers**



Taggers for leptons momenta measurement in the  $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-X$  reaction

## LET: $E_e \sim 150-400 \text{ MeV}$

- Inside KLOE detector
- 20 LYSO crystals in a matrix of
   6 x 7.5 x 12 cm<sup>3</sup> readout by SiPM
- $\sigma_{\rm E}/{\rm E} < 10\%$  for E>150 MeV

## **HET: E**<sub>e</sub> > **400 MeV**

- Plastic scintillator hodoscopes
- Placed after first dipoles (11 m from IP)
- Capable to resolve the RF frequency online and cross-correlate the signal with KLOE trigger
- $\sigma_{\rm E} \sim 2.5$  MeV;  $\sigma_{\rm T} \sim 200$  ps

Acta Phys. Pol. B 46, 81 (2015) NIM A 617, 266 (2010) NIM A 617, 81 (2010)







## KLOE & KLOE-2 gathered an unique data sample: $L_{int} \approx 8 \text{ fb}^{-1}$ (2.4 x 10<sup>10</sup> $\phi$ decays)



 $\succ \pi^0$  width and  $\pi^0 \rightarrow \gamma \gamma^*$  transition form factor in the space-like region

#### Light meson spectroscopy

- Properties of scalar/vector mesons
- $\succ$  Rare  $\eta$  decays
- $\succ$  η' physics

### **Kaon physics**

- Test of CPT (and QM) in correlated kaon decays
- ➤ Tests of CP & CPT in K<sub>s</sub> decays
- Test of SM (CKM unitarity, lepton universality)
- ➢ Test of ChPT (K<sub>s</sub> decays)

**Dark forces searches** (Light bosons @ 0(1 GeV))

Hadronic cross section (  $\alpha_{em}(M_Z)$  and contribution to (g-2) )





- The entangled neutral kaon system at a f-factory is a unique laboratory for the study of discrete symmetries.
- KLOE-2 collected, together with the previous KLOE run, an unique data sample at the φ meson mass energy.
- We have performed the first direct test of T and CPT in neutral kaon transitions with a precision of few percent on the corresponding observables
- ✤ No evidence of T and CPT symmetries violation.
- CP violation in transitions observed with a significance of  $5.2\sigma$  (consistent with the known CP violation in the neutral kaons mixing)







# SPARES





| Effect                                                    | $R_{2,T}$        | $R_{4,T}$        | $R_{2,CPT}$      | $R_{4,CPT}$      | $DR_{T,CP}$      | $DR_{CPT}$       | $R_{2,CP}$       | $R_{4,CP}$       |
|-----------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                                                           | $\times 10^{-3}$ |
| Background model                                          | 2.74             | 4.62             | 2.79             | 4.43             | 4.43             | 4.41             | 4.37             | _                |
| Efficiency smoothing                                      | 2.46             | 5.31             | 2.43             | 5.26             | 6.70             | 6.83             | 6.76             | 0.17             |
| $\Delta t$ bin width                                      | 8.00             | 5.00             | 7.50             | 5.50             | 9.00             | 9.00             | 8.90             | 0.03             |
| Fit range                                                 | 7.33             | 8.88             | 7.32             | 8.84             | 7.95             | 7.60             | 7.78             | 0.41             |
| Effects of cuts in the $(\pi e\nu)(3\pi^0)$ se            | lection          |                  |                  |                  |                  |                  |                  |                  |
| $K_S$ vertex location cuts                                | 0.57             | 2.31             | 0.58             | 2.27             | 2.36             | 2.41             | 2.39             | -                |
| $M(\pi,\pi)$ cut                                          | 2.48             | 1.34             | 2.52             | 1.31             | 1.56             | 1.63             | 1.60             | -                |
| TOF cuts                                                  | 6.08             | 5.32             | 6.19             | 5.23             | 6.40             | 6.58             | 6.49             | -                |
| $e/\pi/\mu$ classification                                | 4.78             | 4.40             | 4.85             | 4.33             | 9.33             | 9.59             | 9.46             | -                |
| Effects of cuts in the $(\pi^+\pi^-)(\pi e\nu)$ selection |                  |                  |                  |                  |                  |                  |                  |                  |
| $K_S$ vertex location cuts                                | 0.007            | 0.004            | 0.004            | 0.007            | 0.004            | 0.004            | -                | 0.005            |
| $M(\pi,\pi)$ and $ \vec{p} $ cuts                         | 2.14             | 1.68             | 1.67             | 2.17             | 0.70             | 0.72             | -                | 0.74             |
| $m_{+}^2 + m_{-}^2$ cut                                   | 1.48             | 1.32             | 1.31             | 1.49             | 0.20             | 0.21             | _                | 0.21             |
| TOF cuts                                                  | 2.14             | 1.68             | 1.67             | 2.17             | 0.70             | 0.72             | -                | 0.74             |
| Total systematic uncertainty                              | <b>14</b>        | 15               | <b>14</b>        | 15               | 19               | 19               | 19               | 0.89             |
| D factor total uncertainty                                | 12               | 12               | 12               | 12               | -                | -                | -                | -                |





#### A $\Phi$ -factory offers the possibility to select pure kaon beams:



 $K_s$  tagged by  $K_L$  interaction in EmC Efficiency ~ 30%  $K_s$  angular resolution: ~ 1° (0.3° in  $\varphi$ )  $K_s$  momentum resolution: ~ 2 MeV



 $K_L$  tagged by  $K_S \rightarrow \pi^+\pi^-$  vertex at IP Efficiency ~ 70%  $K_L$  angular resolution: ~ 1°  $K_L$  momentum resolution: ~ 2 MeV Kaon interferometry at the Φ-factory

 $\succ \phi$  decays provide entangled kaons pairs:

 $|\phi\rangle = \frac{1}{\sqrt{2}} \left( |K^0\rangle |\overline{K^0}\rangle - |\overline{K^0}\rangle |K^0\rangle \right) = N(|K_S(\vec{p})\rangle |K_L(-\vec{p})\rangle - |K_S(-\vec{p})\rangle |K_L(\vec{p})\rangle)$ 

$$N = \frac{\sqrt{(1 + |\varepsilon_S|^2)(1 + |\varepsilon_L|^2)}}{(1 - \varepsilon_S \varepsilon_L)}$$

Complete destructive quantum interference prevents the two kaons from decaying into the same final state at the same time

Interference patterns for different kaon decays provide studies of different symmetries:

$$\phi \to K_S K_L \to \pi^+ \pi^- \pi^0 \pi^0 \Longrightarrow \frac{\varepsilon'}{\varepsilon} \text{ (CPV)}$$
  

$$\phi \to K_S K_L \to \pi^\pm l^\pm \nu \pi^0 \pi^0 \pi^0, \pi\pi \Longrightarrow \text{T violation}$$
  

$$\phi \to K_S K_L \to \pi^- l^+ \nu \pi^+ l^- \bar{\nu} \Longrightarrow \text{CPT and } \Delta S = \Delta Q \text{ rule}$$
  

$$\phi \to K_S K_L \to \pi^\pm l^\mp \nu \pi \pi \Longrightarrow \text{CPT and } \Delta S = \Delta Q \text{ rule}$$
  

$$\phi \to K_S K_L \to \pi^+ \pi^- \pi^+ \pi^- \text{CPT, Quantum Mechanics}$$

PLB 642(2006) 315 J.Phys.Conf.Ser.171(2009) 012008