Neutrino mass hierarchy from the **Discrete Dark Matter** model

Omar Medina (in collaboration with...)

IFIC-Universitat de València

arXiv:2301.10811

Consellería de Innovación, Universidades, Ciencia y Sociedad Digital

IN COLLABORATION WITH...

Cesar Bonilla Universidad Católica del Norte Antofagasta, Chile

Johannes Herms Max-Planck-Institut für Kernphysik Heidelberg, Germany

Eduardo Peinado IF-UNAM México City, México

i Elements & Properties

Going BSM

Three drawbacks of the SM that we tackled with this model

Going BSM

Three drawbacks of the SM that we tackled with this model

Going BSM

Three drawbacks of the SM that we tackled with this model

Neutrino mass mechanisms

The seesaw mechanism

- Explains the lightness of neutrinos
- Introduces Heavy Neutral Leptons N^c
- Introduces a new physics scale! (LNV)

Neutrino mass mechanisms

- The scotogenic mechanism
- Additional \mathbb{Z}_2 symmetry and new iso-doublet
- Dark Matter generates neutrino mass.

 $N^c \sim -1, \quad \eta \sim -1 \quad \text{under} \quad \mathbb{Z}_2$

- The \mathscr{L}_{SM} is **built** to be invariant under $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y.$ Electroweak Sector
- The SM gauge group is generation blind, preserves full flavour symmetry

• Yukawa interaction is not based on the gauge principle, and in the SM breaks flavour symmetry

$$-\underline{Y_e^{ij}}\overline{L_i}_L^I \Phi e_j_R^I, \qquad Y_e = \begin{pmatrix} Y_e^{ee} & Y_e^{e\mu} & Y_e^{e\tau} \\ Y_e^{\mu e} & Y_e^{\mu\mu} & Y_e^{\mu\tau} \\ Y_e^{\tau e} & Y_e^{\tau\mu} & Y_e^{\tau\tau} \end{pmatrix}$$

• The CKM matrix and the PMNS matrix **translate flavour symmetry breaking** to the gauge sector

$$U_{CKM}, V_{PMNS}$$

• 22 out of the 27 parameters of the SM are in the Yukawa sector. Not constrained by **symmetry**

• In the lepton sector: Neutrino Oscillation Parameters

• Two orders of magnitude hierarchy $\Delta m_{31}^2 \gg \Delta m_{21}^2$

Flavour Symmetry

• Flavour symmetry at high-energy regime.

$$SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \underbrace{\otimes G}_{Flavour}$$

• Constraining, or relating the Yukawa coupling structure

$$\underbrace{G}_{\text{Symmetry}} \xrightarrow{\text{SSB}} \underbrace{V_{\text{CKM}}, U, \text{ Mass Hierarchy}}_{\text{Flavour Observables}}$$

• An appealling option are Discrete and Non-Abelian Groups

Flavour Symmetry

• The A_4 group

$$A_4 \simeq \left\{ S, T \mid S^2 = T^3 = (ST)^2 = \mathbf{1} \right\},$$

Four Irreps.

Flavour Symmetry

• The A_4 group

$$A_4 \simeq \left\{ S, T \mid S^2 = T^3 = (ST)^2 = \mathbf{1} \right\},$$

Four Irreps.

$$1: S = 1, T = 1, \text{ Generates a } \mathbb{Z}_2 \text{ symmetry}$$

$$1, 1', 1'', 3. 1': S = 1, T = \omega,$$

$$1'': S = 1, T = \omega^2,$$

$$\omega \equiv e^{\frac{2\pi i}{3}}.$$

$$3: See \text{ lvo's talk}$$

$$S = \left(\begin{array}{c} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right), T = \left(\begin{array}{c} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right),$$

• Fields and Symmetries (Lepton sector only)

[Hirsch,2010] [Boucenna,2011]

	L_e	L_{μ}	$L_{ au}$	l_e	l_{μ}	$l_{ au}$	N_T	H	η
SU(2)	2	2	2	1	1	1	1	2	2
$U(1)_Y$	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	-1	-1	-1	0	$\frac{1}{2}$	$\frac{1}{2}$
A_4	1'	1	$1^{\prime\prime}$	1'	1	$1^{\prime\prime}$	3	1	3

RH-Neutrinos

Scalar iso-doublets

 $\eta = (\eta_1, \eta_2, \eta_3)$

$$N_T = (N_1, N_2, N_3)$$

Mass degenerate

• Yukawa Lagrangian invariant under A_4

 $\mathcal{L}_{\text{Yukawa}}^{H} = y_e \overline{L}_e l_e H + y_\mu \overline{L}_\mu l_\mu H + y_\tau \overline{L}_\tau l_\tau H + H.c.$

 $\mathcal{L}_{\text{Yukawa}}^{\eta} = y_1^{\nu} \overline{L}_e [N_T \eta]_{\mathbf{1}} + y_2^{\nu} \overline{L}_{\mu} [N_T \eta]_{\mathbf{1}^{\prime\prime}} + y_3^{\nu} \overline{L}_{\tau} [N_T \eta]_{\mathbf{1}^{\prime}} + M_N [\overline{N_T^c} N_T]_{\mathbf{1}} + H.c.$

• Yukawa Lagrangian invariant under A_4

 $\mathcal{L}_{\text{Yukawa}}^{H} = y_e \overline{L}_e l_e H + y_\mu \overline{L}_\mu l_\mu H + y_\tau \overline{L}_\tau l_\tau H + H.c.$

 $\mathcal{L}_{\text{Yukawa}}^{\eta} = y_1^{\nu} \overline{L}_e [N_T \eta]_{\mathbf{1}} + y_2^{\nu} \overline{L}_{\mu} [N_T \eta]_{\mathbf{1}^{\prime\prime}} + y_3^{\nu} \overline{L}_{\tau} [N_T \eta]_{\mathbf{1}^{\prime}} + M_N [\overline{N_T^c} N_T]_{\mathbf{1}} + H.c.$

• Electroweak and Flavour symmetry breakdown $\langle H^0 \rangle = v_H \neq 0, \quad \langle \eta_1^0 \rangle = v_{\eta_1} \neq 0, \quad \langle \eta_{2,3}^0 \rangle = 0,$

SM Higgs couple to charged leptons

$$v_H Y_l^H = v_H \begin{pmatrix} y_e & 0 & 0 \\ 0 & y_\mu & 0 \\ 0 & 0 & y_\tau \end{pmatrix}$$

$$\left\langle \eta^0 \right\rangle = \begin{pmatrix} v_{\eta_1} \\ 0 \\ 0 \end{pmatrix}$$

• The Active Sector

$$N_1, H, \eta_1$$

$$\hat{H} = \begin{pmatrix} H_0'^+ \\ (v_H + H_0' + iA_0')/\sqrt{2} \end{pmatrix}, \ \eta_1 = \begin{pmatrix} H_1'^+ \\ (v_{\eta_1} + H_1' + iA_1')/\sqrt{2} \end{pmatrix},$$

• Seesaw mechanism (rank 1 matrix)

$$m_{\rm D} = \begin{pmatrix} y_1^{\nu} v_{\eta_1} & 0 & 0 \\ y_2^{\nu} v_{\eta_1} & 0 & 0 \\ y_3^{\nu} v_{\eta_1} & 0 & 0 \end{pmatrix} \qquad m_{\nu}^{\rm Tree} = -\frac{v_{\eta_1}^2}{M} \begin{pmatrix} y_1^{\nu} y_1^{\nu} & y_1^{\nu} y_2^{\nu} & y_1^{\nu} y_3^{\nu} \\ y_1^{\nu} y_2^{\nu} & y_2^{\nu} y_2^{\nu} & y_2^{\nu} y_3^{\nu} \\ y_1^{\nu} y_3^{\nu} & y_2^{\nu} y_3^{\nu} & y_3^{\nu} y_3^{\nu} \end{pmatrix}$$

• The Dark Sector

$$N_2, N_3, \eta_2, \eta_3$$

$$\eta_2 = \begin{pmatrix} H_2'^+ \\ (H_2' + iA_2')/\sqrt{2} \end{pmatrix}, \qquad \eta_3 = \begin{pmatrix} H_3'^+ \\ (H_3' + iA_3')/\sqrt{2} \end{pmatrix}$$

• **Scotogenic mechanism** (rank 2 matrix)

$$Y^{\eta_2} = \begin{pmatrix} 0 & y_1^{\nu} \omega^2 & 0 \\ 0 & y_2^{\nu} & 0 \\ 0 & y_3^{\nu} \omega & 0 \end{pmatrix}, \quad Y^{\eta_3} = \begin{pmatrix} 0 & 0 & y_1^{\nu} \omega \\ 0 & 0 & y_2^{\nu} \\ 0 & 0 & y_3^{\nu} \omega^2 \end{pmatrix}$$

• Main contribution to:

$$\Delta m_{31}^2$$

(Normal Ordering)

• Active fields (one-loop)

$$N_1, H, \eta_1$$

• Main contribution to:

$$\Delta m_{31}^2$$

(Normal Ordering)

• Main contribution to:

$$\Delta m_{21}^2$$

(Normal Ordering)

- Scalar Sector A_4 invariant (plays crucial role) $V(H,\eta) = \mu_H H^{\dagger} H + \mu_\eta (\eta^{\dagger} \eta)_1 + \lambda_1 (H^{\dagger} H)^2 + \lambda_2 (\eta^{\dagger} \eta)_1 (\eta^{\dagger} \eta)_1 + \lambda_3 (\eta^{\dagger} \eta)_{1'} (\eta^{\dagger} \eta)_{1''}$ $+ \lambda_4 (\eta^{\dagger} \eta)_{(\mathbf{3}_1} (\eta^{\dagger} \eta)_{\mathbf{3}_2)_1} + [\lambda_5 e^{i\varphi_5} (\eta^{\dagger} \eta)_{(\mathbf{3}_1} (\eta^{\dagger} \eta)_{\mathbf{3}_1)_1} + \text{H.c.}]$ $+ \lambda_6 (H^{\dagger} H) (\eta^{\dagger} \eta)_1 + \lambda_7 (H^{\dagger} \eta)_{(\mathbf{3}} (\eta^{\dagger} H)_{\mathbf{3}_1} + [\lambda_8 e^{i\varphi_8} (H^{\dagger} \eta)_{(\mathbf{3}} (H^{\dagger} \eta)_{\mathbf{3}_1} + \text{H.c.}]$ $+ [\lambda_9 e^{i\varphi_9} (\eta^{\dagger} \eta)_{(\mathbf{3}_1} (H^{\dagger} \eta)_{\mathbf{3}_1} + \text{H.c.}] + [\lambda_{10} e^{i\varphi_{10}} (\eta^{\dagger} \eta)_{(\mathbf{3}_2} (H^{\dagger} \eta)_{\mathbf{3}_1} + \text{H.c.}]$
 - **CP-violation** for the dark sector is **necessary** to fit **lepton mixing**

 $\sin^2 \theta^l$

$$M_{\text{neutral}}^{2} = \begin{pmatrix} M_{H'_{0}H'_{1}}^{2} & 0 & 0 & 0 \\ 0 & M_{A'_{0}A'_{1}}^{2} & 0 & 0 \\ 0 & 0 & M_{H'_{2}H'_{3}}^{2} & M_{\text{CPV}}^{2} \\ 0 & 0 & M_{\text{CPV}}^{2} & M_{A'_{2}A'_{3}}^{2} \end{pmatrix} \begin{array}{c} \sin^{2}\theta_{13}^{l} \\ \sin^{2}\theta_{23}^{l} \\ \Delta m_{21}^{2} & \Delta m_{31}^{2} \\ \end{array}$$

The neutrino mass matrix

$$(m_{\nu})_{\alpha\beta} = (m_{\nu}^{\text{Active}})_{\alpha\beta} + (m_{\nu}^{\text{Dark}})_{\alpha\beta},$$

Active contribution

$$m_{\nu}^{\text{Active}} = m_{\nu}^{\text{Tree}} + m_{\nu,N_1}^{\text{One-loop}} + m_{\nu,Z}^{\text{One-loop}}$$

$$m_{\nu}^{\text{Tree}} = -\frac{v_{\eta_1}^2}{M} \begin{pmatrix} y_1^{\nu} y_1^{\nu} & y_1^{\nu} y_2^{\nu} & y_1^{\nu} y_3^{\nu} \\ y_1^{\nu} y_2^{\nu} & y_2^{\nu} y_2^{\nu} & y_2^{\nu} y_3^{\nu} \\ y_1^{\nu} y_3^{\nu} & y_2^{\nu} y_3^{\nu} & y_3^{\nu} y_3^{\nu} \end{pmatrix}$$

$$(m_{\nu,Z}^{\rm One-loop})_{\alpha\beta} = \frac{3}{16\pi^2} \frac{m_Z^2}{v^2} \log\left(\frac{m_Z^2}{m_N^2}\right) (m_\nu^{\rm Tree})_{\alpha\beta},$$

$$(m_{\nu,N_1}^{\text{One-loop}})_{\alpha\beta} = -\frac{1}{32\pi^2} \sum m_N Y_{\alpha N_1}^a Y_{N_1\beta}^a B_0(0, m_a^2, m_N), \qquad a = h, H_0, G, A_0,$$
[Escribano,2020]
Passarino-Veltman reduction
Mass-eigenstates

The neutrino mass matrix

$$(m_{\nu})_{\alpha\beta} = (m_{\nu}^{\text{Active}})_{\alpha\beta} + (m_{\nu}^{\text{Dark}})_{\alpha\beta},$$

Dark contribution

Numerical Result

With the **CP-symmetry conservation** in the scalar potential

	-			-			
Parameter	Value]	Obsemuchle	I	Data	Madal bast fit	
y_e	-2.420×10^{-6}]	Observable	Central value	1σ range	Model best fit	• 20
y_{μ}	5.108×10^{-4}		$\sin^2 \theta_{12}/10^{-1}$	3.18	$3.02 \rightarrow 3.34$	1.46	$\sin^2\theta_{12}$
y_{τ}	8.684×10^{-3}		$\sin^2 \theta_{13} / 10^{-2}$ (NO)	2.200	$2.138 \rightarrow 2.269$	2.314	Eveluded
y_1^{ν}	2.127×10^{-6}		$\sin^2 \theta_{23} / 10^{-1}$ (NO)	5.74	$5.60 \rightarrow 5.88$	6.2	LACIUUCU
$y_2^{ u}$	-1.046×10^{-5}		δ^{ℓ} / π (NO)	1.08	$0.96 \rightarrow 1.21$	1.0	
y_3^{ν}	-1.172×10^{-5}		$\Delta m_{21}^2 / (10^{-5} {\rm eV}^2)$	7.50	$7.30 \rightarrow 7.72$	7.49	
v_{η_1}/GeV	142.243		$\Delta m_{31}^2 / (10^{-3} \mathrm{eV}^2)$ (NO)	2.55	$2.52 \rightarrow 2.57$	2.55	
$v_H/{ m GeV}$	201.079		$m_{\text{lightest}}^{\nu}$ /meV (NO)			2.03	
M_N/GeV	9.997×10^4		m_2^{ν} /meV			8.89	
λ_1	2.0		m_3^{ν} /meV			50.54	
λ_2	2.0		ϕ_{12}/π			1.5	
λ_3	-0.42		ϕ_{13}/π			1.5	
λ_4	0.578		ϕ_{23}/π			1.0	
λ_5	-0.486		m_e /MeV	0.486	$0.486 \rightarrow 0.486$	0.486	
λ_6	2.0		m_{μ} /GeV	0.102	$0.102 \rightarrow 0.102$	0.102	
λ_7	-1.984		m_{τ} /GeV	1.746	$1.743 \rightarrow 1.747$	1.746	
λ_8	-0.369		M_H/GeV (Higgs boson)	125.25	$125.08 \rightarrow 125.42$	125.25	
λο	1.198		M_{DM}/GeV (lightest dark scalar)			87.0	
λ_{10}	-1.191		$M_N/{\rm GeV}$			9.997×10^4	
<i>φ</i> ₅	0		χ^2			128.99	

0

All Other observables in global fit 3-sigma range

Numerical Result

With the **CP-symmetry breaking** in the scalar potential, all oscillation parameter and scalar sector observables are fitted without tensions.

Parameter	Value		Observable	Γ	Madal bast 6t	
y_e	-2.136×10^{-6}		Observable	Central value	1σ range	Model best fit
y_{μ}	4.509×10^{-4}		$\sin^2 \theta_{12}/10^{-1}$	3.18	$3.02 \rightarrow 3.34$	3.14
y_{τ}	7.665×10^{-3}	/	$\sin^2 \theta_{13}/10^{-2}$ (NO)	2.200	$2.138 \rightarrow 2.269$	2.201
y_1^{ν}	5.193×10^{-6}		$\sin^2 \theta_{23}/10^{-1}$ (NO)	5.74	$5.60 \rightarrow 5.88$	5.75
y_2^{ν}	-3.404×10^{-5}		δ^{ℓ} / π (NO)	1.08	$0.96 \rightarrow 1.21$	1.0
y_3^{ν}	-7.540×10^{-5}		$\Delta m_{21}^2 / (10^{-5} {\rm eV}^2)$	7.50	$7.30 \rightarrow 7.72$	7.48
v_{η_1}/GeV	93.447		$\Delta m_{31}^2 / (10^{-3} \mathrm{eV^2}) \;(\mathrm{NO})$	2.55	$2.52 \rightarrow 2.57$	2.55
v_H/GeV	227.799		$m_{\text{lightest}}^{\nu}$ /meV (NO)			6.21
M_N/GeV	1.088×10^6		m_2^{ν} /meV			10.65
λ_1	1.772		m_3^{ν} /meV			50.87
λ_2	2.0		ϕ_{12}/π			0.5
λ_3	-0.057		ϕ_{13}/π			0.5
λ_4	1.782		ϕ_{23}/π			1.0
λ_5	-1.644		m_e /MeV	0.486	$0.486 \rightarrow 0.486$	0.486
λ_{6}	2.0		m_{μ} /GeV	0.102	$0.102 \rightarrow 0.102$	0.102
λ_7	-1.466		m_{τ} /GeV	1.746	$1.743 \rightarrow 1.747$	1.746
λο	-0.392		M_H/GeV (Higgs boson)	125.25	$125.08 \rightarrow 125.42$	125.25
λο	1.171		$M_{DM}/{\rm GeV}$ (lightest dark scalar)			87.6
λ10	-1.154		M_N/GeV			1.09×10^{6}
<i>ω</i> π	1.764		M_{H_0}/GeV (Heavy Higgs)			449.57
ω	0.059		M_{A_0}/GeV (Heavy Pseudoscalar)			435.98
φ ₁₀	6.228		$M_{H_0}^+/\text{GeV}$ (Charged Active)			373.5
710	0.110		$M_{H_a}^+$ /GeV (Charged Dark)			345.5
			$M_{H_b}^+/\text{GeV}$ (Charged Dark)			347.7
			$M_{H_a}^0/\text{GeV}$ (Neutral Dark)			109.47
			$M_{H_b}^0/\text{GeV}$ (Neutral Dark)			411.36
			$M_{H_c}^0/\text{GeV}$ (Neutral Dark)			413.1
			χ^2			0.52

 Δm_{31}^2

Both generated

Conclusions

The Discrete Dark Matter ModelFrom a A_4 symmetric origin:arXiv:2-soon

• Reproduces lepton masses and mixings.

$$\sin^2 \theta_{12}, \quad \sin^2 \theta_{12}, \quad \sin^2 \theta_{23} \qquad \delta_l^{CP} \sim \pi \qquad (Normal Ordering)$$

• Scotogenic-Seesaw mass mechanism for neutrinos.

 $2 \lessapprox m_1^{\nu} \lessapprox 8 [meV] \qquad \langle m_{\beta\beta} \rangle \sim 0.2 [meV]$

• Naturally explains the hierarchy (seesaw dominates over scotogenic):

$$\Delta m_{31}^2 \gg \Delta m_{21}^2$$

• Rich scalar sector: with CP-violation which Includes a Scalar Dark Matter candidate stabilized by a remnant

$$A_4 \longrightarrow \mathbb{Z}_2$$

Back-up Slides

Dark scalars mass matrices

$$M_{H_2'H_3'}^2 = \begin{pmatrix} v_{\eta_1}^2 \left(-\frac{3}{2}\lambda_3 + \frac{1}{2}\lambda_4 + \lambda_5\cos\varphi_5 \right) & 6v_{\eta_1}v_s \left(\lambda_{10}\cos\varphi_{10} + \lambda_9\cos\varphi_9\right) \\ 6v_{\eta_1}v_s \left(\lambda_{10}\cos\varphi_{10} + \lambda_9\cos\varphi_9\right) & v_{\eta_1}^2 \left(-\frac{3}{2}\lambda_3 + \frac{1}{2}\lambda_4 + \lambda_5\cos\varphi_5 \right) \end{pmatrix},$$

$$M_{A_{2}'A_{3}'}^{2} = \begin{pmatrix} v_{\eta_{1}}^{2} \left(-\frac{3}{2}\lambda_{3} + \frac{1}{2}\lambda_{4} - \lambda_{5}\cos\varphi_{5}\right) - v_{s}^{2}\left(8\lambda_{8}\right) & 2v_{\eta_{1}}v_{s}\left(\lambda_{9}\cos\varphi_{9} + \lambda_{10}\cos\varphi_{10}\right) \\ 2v_{\eta_{1}}v_{s}\left(\lambda_{9}\cos\varphi_{9} + \lambda_{10}\cos\varphi_{10}\right) & v_{\eta_{1}}^{2} \left(-\frac{3}{2}\lambda_{3} + \frac{1}{2}\lambda_{4} - \lambda_{5}\cos\varphi_{5}\right) - v_{s}^{2}\left(8\lambda_{8}\right) \end{pmatrix},$$

$$M_{\rm CPV}^2 = \begin{pmatrix} -v_{\eta_1}^2 \left(\lambda_5 \sin\varphi_5\right) & -2v_{\eta_1}v_s \left(\lambda_9 \sin\varphi_9 + \lambda_{10}\sin\varphi_{10}\right) \\ -2v_{\eta_1}v_s \left(\lambda_9 \sin\varphi_9 + \lambda_{10}\sin\varphi_{10}\right) & v_{\eta_1}^2 \left(\lambda_5 \sin\varphi_5\right) \end{pmatrix}$$

Back-up Slides

Yukawa couplings under basis change

 $Y_{n\alpha}^{a} = (O_{hH_{0}}^{T})_{k}^{a} Y_{n\alpha}^{k}, \quad \text{for} \quad a = h, H_{0} \quad \text{and} \quad k = H_{1}',$

 $Y_{n\alpha}^{a} = \left(O_{GA_{0}}^{T}\right)_{k}^{a} Y_{n\alpha}^{k}, \quad \text{for} \quad a = G, A_{0} \quad \text{and} \quad k = A_{1}',$

 $Y_{n\alpha}^{a} = \left(O_{\chi}^{T}\right)_{\ k}^{a} Y_{n\alpha}^{k}, \quad \text{for} \quad a = \chi_{1}^{D}, ..., \chi_{4}^{D}, \quad \text{and} \quad k = H_{2}', H_{3}', A_{2}', A_{3}'.$