

Higgs measurements from CMS

Nicolò Trevisani KIT - Karlsruhe Institute of Technology

Discrete2022: 8th Symposium on Prospects in the Physics of Discrete Symmetries 7-11 Nov 2022, Baden-Baden (Germany)

The Higgs Boson Turns 10

About 7.7 millions Higgs bosons produced during Run 2

Enough data for precision measurements and search for rare decays:

- Main production modes and decay channels studied in detail
 - Decays to bosons and third-generation fermions
 - Fiducial, differential measurements, and STXS
- Rare final states now accessible (e.g., $H \rightarrow Z\gamma$)
- Going beyond mass and cross-section measurements
 - Couplings to muons and charm quarks
 - CP properties
- Double Higgs production
 - Key to study self-coupling and the structure of the scalar Higgs field potential

10.1016/j.physletb.2020.135425

Higgs Mass

Only Higgs free parameter, fixes all other properties

- Measured using the golden channels
 - They provide the best resolution
 - Good signal to background ratio
- Energy and momentum calibrations are key
 - Detector calibration and alignment
 - Constraints to Z mass
- Combination of $H \to ZZ\;$ and $H \to \gamma\gamma$ results using Run 1 and 2016 data
 - 125.38 ± 0.14 GeV
 - Most precise result so far (0.11% uncertainty)

Higgs Width

Full Run 2 results:

- Evidence for off-shell production (3.6 σ)
- Ratio of off-shell and on-shell events sensitive to $\Gamma_{\rm H} = 3.2^{+2.4}_{-1.7} \,\text{MeV}$

Simplified Template Cross-Section (STXS)

Main goals of the STXS framework:

- Increase the re-interpretability of the precision H boson measurements
- Minimize the theory dependence

This is achieved by defining exclusive kinematic regions in the H boson production phase space

Simplified Template Cross-Section (STXS)

Fine binning, allowing measurement of many production modes:

• ggH, VBF, VH, ttH, tH

Higgs Rare Decays: $H \to Z \gamma$

Sensitive to new physics:

- $B(H\rightarrow Z\gamma) / B(H\rightarrow \gamma\gamma)$
- Leading-order diagrams contain loops
- Anomalous trilinear Higgs self-coupling

Full Run 2 results for $H \to Z\gamma \to \ell \ell \gamma$:

• 2.7 σ obs (2.1 σ exp)

arXiv:2204.12945

Higgs Rare Decays: $H \rightarrow \mu\mu$

Evidence for Higgs coupling to second-generation fermions

- Fit to data to distinguish the signal peak above the dominant $Z \rightarrow \mu\mu$ smoothly-falling distribution
- Plus MC template-based approach for the VBF category extracting signal strength from DNN distributions
- Significance: 3.0 σ obs. (2.5 σ exp.)

Ę

Nicolò Trevisani - Higgs measurements from CMS - Discrete 2022 7-11/11/2022

IHEP01 (2021) 148 35.9-137 fb⁻¹ (13 TeV)

Higgs Rare Decays: $H \rightarrow cc$

Targeting VH associate production to trigger interesting events and suppress backgrounds:

- $ZH \rightarrow vvcc, WH \rightarrow lvcc, and ZH \rightarrow llcc$
- Resolved and merged categories
- State of the art graph neural network for boosted $H \rightarrow cc$ topology

Same approach used in VZ(\rightarrow cc) channel:

- Simultaneous fit to VZ and VH processes
- First observation of $Z \rightarrow cc$ at a hadron collider

Upper limits:

- $\sigma(VH) \ge BR(H \rightarrow cc) < 14 (7.6^{+3.4}_{-2.3})$ SM at 95% CL
- $1.1 < |k_c| < 5.5 (|k_c| < 3.4)$ at 95% CL

CP Properties: ttH

arXiv:2208.02686

Effective Lagrangian for Yukawa coupling to top quarks parameterized by **CP-even** and **CP-odd** components:

$$\mathcal{L}_{t\bar{t}H} = \frac{m_t}{v} \bar{\psi}_t (\underline{\kappa}_t + \underline{i\gamma_5 \widetilde{\kappa}_t}) \psi_t H$$

Scenario	α
Purely <i>CP</i> -even	0° or 180°
Purely CP-odd	90°
Mixed	$ eq 0^\circ, eq 90^\circ, eq 180^\circ$

- $|\sin^2 \alpha| = 0.28$ with $|\sin^2 \alpha| < 0.55$ at 68% CL
- Pure CP-odd coupling excluded at 3.7 σ

CP Properties: $H \rightarrow \tau \tau$

JHEP 06 (2022) 012

Effective Lagrangian for Yukawa coupling to tau lepton parameterized by **CP-even** and **CP-odd** components:

$$\mathcal{L}_{\mathrm{Y}} = -\frac{m_{\tau}}{v} \mathrm{H}(\underline{\kappa_{\tau} \overline{\tau} \tau} + \underline{\widetilde{\kappa}_{\tau} \overline{\tau} i \gamma_{5} \tau})$$

Scenario	α
Purely CP-even	0° or 180°
Purely CP-odd	90°
Mixed	$ eq 0^\circ, eq 90^\circ, eq 180^\circ$

- $\alpha = -1^\circ \pm 19^\circ (0^\circ \pm 21^\circ \text{ expected})$
- Pure CP-odd coupling excluded at 3 σ

Double Higgs

Possibility to directly inspect the Higgs self coupling and HHVV coupling

• cross-section values at 13 TeV from <u>LHC HH WG</u>

Double Higgs Results

Combination of many final states:

- One Higgs decaying to bb to exploit high branching ratio
- Second Higgs can decay to bb, γγ, or ττ
- Combined results:
 - κ_{λ} in range (-1.24, 6.49)
 - κ_{2V} in range (0.67, 1.38)
 - $\kappa_{2V} = 0$ is excluded, with a significance of 6.6 σ

Nicolò Trevisani - Higgs measurements from CMS - Discrete 2022 7-11/11/2022

Nature 607 (2022) 60

Is It Really Everything as Expected?

Many results agree with the hypothesis that the Higgs boson is the one predicted by the SM

• Taking a wider look, few discrepancies start to appear

Is It Really Everything as Expected?

Many results agree with the hypothesis that the Higgs boson is the one predicted by the SM

• Taking a wider look, few discrepancies start to appear

Nicolò Trevisani - Higgs measurements from CMS - Discrete 2022 7-11/11/2022

Conclusions

Ten years after the discovery of the Higgs boson, we are in the precision measurement era:

- Mass and width known with uncertainty of ~MeV
- Enough statistics to perform differential measurements
 - Easily re-interpretable thanks to the STXS framework
- Close to measure coupling to second-generation fermions
- Access to CP properties of the Yukawa coupling
- Great progress also in the di-Higgs measurement
- Many results agree with the SM, but still some discrepancies have been observed using Run 2 data

BACK-UP

Index/Summary

- The Higgs turns $10 \rightarrow$ precision measurements
 - <u>mass</u>, <u>width</u>, STXS
- Couplings \rightarrow to c quark ;)
- CP properties: <u>ttH and tautau</u>

ICHEP Higgs talk

Higgs Rare Decays: $H \rightarrow cc$

Use of multivariate analysis techniques to identify jets produced by c quarks

Targeting VH associate production to trigger interesting events and suppress backgrounds:

- $ZH \rightarrow vvcc, WH \rightarrow lvcc, and ZH \rightarrow llcc$
- at least one c tagged jet

Analysis strategy validated in VZ($\rightarrow c\bar{c}$) channel:

• First observation of $Z \rightarrow c\bar{c}$ at a hadron collider

Upper limits:

- $\sigma(VH) \ge BR(H \rightarrow cc) < 26 (31_{-8}) SM at 95\% CL$
- |k_c| < 8.5 (12.4) at 95% CL

Higgs Rare Decays: $\rightarrow \ell \ell \gamma$

Higgs Production Mechanisms at the LHC

Cross-section values at 13 TeV from LHC Higgs WG

Higgs Rare Decays: $H \to Z \gamma$

arXiv:2204.12945

- $B(H \rightarrow Z\gamma) / B(H \rightarrow \gamma\gamma)$
- Anomalous trilinear Higgs self-coupling
- Full Run 2 results for $H \rightarrow Z\gamma \rightarrow \ell \ell \gamma$:
 - 2.7 σ obs (2.1 σ exp)

$\rm HH \rightarrow bb \ bb$

Largest branching fraction (34%)

- Boosted and resolved categories
- Multivariate classifier based on graph convolutional networks to identify signal events
- $-2.3 < \kappa_{\lambda} < 9.4$ (-5.0 < $\kappa_{\lambda} < 12.0$) resolved analysis
- $0.6 < \kappa_{2V}^{2} < 1.4$ (obs and exp) at 95% CL boosted analysis

Nicolò Trevisani - Higgs measurements from CMS - Discrete 2022 7-11/11/2022