[Introduction](#page-1-0) [Group search](#page-4-0) [Conclusions](#page-12-0)

KORKARYKERKER POLO

The cyclic symmetries in the representations of unitary discrete subgroups

Darius Jurčiukonis⁽¹⁾, and Luís Lavoura⁽²⁾

(1) Vilnius University, Institute of Theoretical Physics and Astronomy darius.jurciukonis@tfai.vu.lt

 (2) Universidade de Lisboa, Instituto Superior Técnico, CFTP balio@cftp.tecnico.ulisboa.pt

based on e-Print: [2210.12133](https://arxiv.org/abs/1911.05515)

November 8, 2022

Introduction

- • The lightest Dark Matter (DM) particle must be (almost) stable on cosmological timescales.
- If it is stable, then there is an unbroken cyclic \mathbb{Z}_N symmetry such that standard matter is invariant under \mathbb{Z}_N while DM is not; the \mathbb{Z}_N charge different from 1 of the lightest DM particle prevents it from decaying to standard matter, which has \mathbb{Z}_N charge 1.
- The simplest possibility consists in G being a discrete group of order O that is isomorphic to the direct product ${\mathbb Z}_N\times G'$, where G' is a group of order $O/N.$ Standard matter must be placed in the trivial representation of \mathbb{Z}_N while DM is placed in non-trivial representations of \mathbb{Z}_N [e-Print: [1412.5600](https://arxiv.org/abs/1412.5600)], [\[e-Print:](https://arxiv.org/abs/1911.05515) [1911.05515](https://arxiv.org/abs/1911.05515)],...
- However, also discrete groups G that cannot be written as the direct product of a cyclic group and a smaller group may have a non-trivial \mathbb{Z}_N center. If \mathbb{Z}_N remains unbroken when G is broken, and if there are particles with \mathbb{Z}_N charge different from 1, then those particles play the role of DM, while the particles with \mathbb{Z}_N value 1 are standard matter [e-Print: [1205.3442](https://arxiv.org/abs/1205.3442)], [e-Print: [2204.12517](https://arxiv.org/abs/2204.12517)],...

$$
\underset{\circ}{\text{Conclusions}}
$$

SU(3)

The defining representation of $SU(3)$ consists of the 3 \times 3 unitary matrices with determinant 1 and includes the matrix

$$
A_3=\left(\begin{array}{ccc} \omega & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega \end{array}\right)=\omega\times\mathbb{1}_3,\hspace{1.5cm} (1)
$$

where $\omega = \exp(2i\pi/3)$. The Abelian group

$$
\mathbb{Z}_3 = \left\{ 1_3, A_3, (A_3)^2 \right\}.
$$
 (2)

forms the center of $SU(3)$ in the defining representation. The matrix A_3 commutes with all the matrices in the defining representation of $SU(3)$ and satisfies $\left(A_3 \right)^3 = \mathbb{1}_3.$ Therefore, in a D-dimensional irrep of $SU(3)$

$$
A_3 \mapsto \omega^{q_D} \times \mathbb{1}_D,\tag{3}
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

where q_D is an integer that depends on the irrep and may be either 0, 1, or 2 modulo 3.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

SU(3)

- Irreps with $q_D = 0$ (like the octet and the decaplet) have A_3 represented by $\mathbb{1}_D$ and are unfaithful representations of $SU(3)$.
- Irreps with either $q_D = 1$ (like the triplet) or $q_D = 2$ (like the sextet and the anti-triplet) are faithful.
- The q_D -values help determine the tensor products of irreps of the subgroup. This may be used to explain the stability of DM:
	- if Nature had an internal symmetry that was a discrete subgroup of $SU(3)$, that contained the matrix A_3 in its defining representation, and that stayed unbroken, then standard matter would sit in irreps of that subgroup with $q_D = 0$.
	- while DM would be in irreps with either $q_D = 1$ or $q_D = 2$; the lightest DM particle would then automatically be stable.

Motivation

• The defining representation of $SU(D)$ consists of the $D \times D$ unitary matrices with determinant 1. It is obvious that, in this representation, the center of $SU(D)$ is formed by the D diagonal matrices

$$
\Delta \times \mathbb{1}_D, \ \Delta^2 \times \mathbb{1}_D, \ \Delta^3 \times \mathbb{1}_D, \ \ldots, \ \Delta^D \times \mathbb{1}_D = \mathbb{1}_D, \tag{4}
$$

where $\Delta = \exp(2i\pi/D)$. Thus, the center of $SU(D)$ is a \mathbb{Z}_D group.

• On the other hand, discrete subgroups of $U(D)$ do not bear the constraint that the determinants of the matrices in their defining representations should be 1. As a consequence, if

$$
\mathbb{Z}_t = \left\{ \theta \times \mathbb{1}_D, \ \theta^2 \times \mathbb{1}_D, \ \theta^3 \times \mathbb{1}_D, \ \dots, \ \theta^t \times \mathbb{1}_D = \mathbb{1}_D \right\},\tag{5}
$$

where $\theta = \exp(2i\pi/t)$, is the center of a discrete subgroup of $U(D)$, then there appears to be a priori no restriction on t .

Motivated by this observation that discrete subgroups of $U(D)$ may in general have diverse centers, in our work we have surveyed many discrete groups in order to find out their centers and also which groups $U(D)$ they are subgroups of.

KORK ERKER ADAM ADA

Procedure

- • We have surveyed all the discrete groups of order $O < 2000$ in the [SmallGroups](https://www.gap-system.org/Packages/smallgrp.html) library, except the groups of order either 512, 1024, or 1536.
- We have discarded all the groups that are isomorphic to the direct product of a smaller *(i.e.* of lower order) group and a cyclic group.
- We have used [GAP](https://www.gap-system.org/) to find out all the irreps of each remaining group, and then to ascertain whether those irreps are faithful or not.
- We have discarded all the groups that do not have any faithful irreducible representation.
- We have thus obtained 87,349 non-isomorphic groups, that are all listed in our tables available at the site <https://github.com/jurciukonis/GAP-group-search>.

KORK ERKER ADAM ADA

Intersections

- • There are relatively few groups that have firreps with different dimensions. For instance:
	- \bullet A_5 has firreps of dimensions three, four, and five.
	- On the other hand, the group Σ (36 \times 3), that has SmallGroups identifier [108, 15], has irreps of dimensions 1, 3, and 4, but the 1- and 4-dimensional irreps are unfaithful—all the firreps have dimension 3.
- We have found 2787 such discrete groups, out of the total 87,349 groups that we have surveyed.

Example

- • The discrete group $GL(2, 3)$ has order 48 and SmallGroups identifier [48, 29].
- There is a faithful representation through 2×2 unitary matrices:

$$
a\mapsto \frac{1}{3}\left(\begin{array}{cc} i\sqrt{3} & \sqrt{6}\omega \\ -\sqrt{6}\omega^2 & -i\sqrt{3} \end{array}\right),\quad b\mapsto \left(\begin{array}{cc} \omega & 0 \\ 0 & \omega^2 \end{array}\right),\quad c\mapsto \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).
$$

The first two matrices have determinant 1 while the third one has determinant -1 ; hence, we classify $GL(2, 3)$ as a subgroup of $U(2)$, but it is not a subgroup of $SU(2)$.

On the other hand, there is another faithful irrep of $GL(2, 3)$, through 4×4 unitary matrices, all of them with determinant 1:

$$
a\mapsto \frac{1}{9}\left(\begin{array}{cccc} -3\sqrt{3}i & 0 & 6i & -3\sqrt{2} \\ 0 & 3\sqrt{3}i & 3\sqrt{2} & -6i \\ 6i & -3\sqrt{2} & i\sqrt{3} & -2\sqrt{6} \\ 3\sqrt{2} & -6i & 2\sqrt{6} & -i\sqrt{3} \end{array}\right), \quad c\mapsto \left(\begin{array}{cccc} 0 & -\omega^2 & 0 & 0 \\ -\omega & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{array}\right),
$$

and $b\mapsto {\rm diag}\left(\omega,\ \omega^2,\ 1,\ 1\right)$. Therefore, we classify ${\rm GL}\left(2,\ 3\right)$ as a subgroup of both $U(2)$ and $SU(4)$, but $GL(2, 3)$ earns these two classifications through different irreps.**KORKARYKERKER POLO**

[Introduction](#page-1-0) [Group search](#page-4-0) [Conclusions](#page-12-0)

KORK ERKER ADAM ADA

Computing time

- The scan over the SmallGroups library to find the firreps of all possible dimensions constituted a computationally very expensive task.
- Our computations with GAP took about three months.
- Most of the time was consumed in the computation of the irreps of the groups.
- For example, the computation for group $[1320, 15]$, viz. $SL(2, 11)$, took about 320 CPUH running on Intel Xeon CPU @ 1.60GHz or about 46 CPUH in the newer Intel i9-10850K CPU @ 3.60GHz.
- Orders 768, 1280, and 1792 have more than one million non-isomorphic groups of each order and therefore require many CPUH to scan over all of them.

 2990

Database

We have obtained 87,349 non-isomorphic groups, that are all listed in our tables available at the site <https://github.com/jurciukonis/GAP-group-search>.

Database

The groups that have faithful irreducible representations of more than one different dimensions.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q ↓

Database

Number of discrete groups with center \mathbb{Z}_N that have at least one faithful irreducible representation of dimension D

[Introduction](#page-1-0) **[Conclusions](#page-12-0)** [Group search](#page-4-0) **Conclusions**

Conclusions e-Print: [2210.12133](https://arxiv.org/abs/1911.05515)

KORK ERKER ADAM ADA

- In this work we have pointed out that Dark Matter may be stabilized by a \mathbb{Z}_N cyclic group under which it has a non-trivial charge – contrary to standard matter.
- Then we have performed an extensive search for the centers of discrete groups that cannot be written in the form $\mathbb{Z}_N\times G'$ and that have faithful irreducible representations. The following are our conclusions:
	- We have found groups with centers \mathbb{Z}_N for $N < 162$.
	- We have found groups with $N = 2^p \times 3^q$ for all the integers p and q such that $N < 162$.
	- We have found groups with $N = 2^p \times 5$ for $0 \le p \le 3$.
	- We have also found groups with $N = 7$, $N = 11$, $N = 14$, $N = 15$, and $N = 25$.
	- The number N always divides the order O of the group. The integer O/N always has at least two prime factors.

Thanks for your attention!