Improved test of CPT invariance in ortho-positronium decays at J-PET

Neha Chug On behalf of the J-PET collaboration Jagiellonian University, Krakow, Poland

9 November, 2022

CPT symmetry test in o-Ps→3γ decay

Search for CPT Symmetry violation in *ortho-positronium decays*

Testing CPT symmetry using the **angular correlations** between spin and decay plane of oPs $\rightarrow 3\gamma$.

Searching for non-zero expectation value of **CPT odd** angular correlation operators.

$$e^+e^-
ightarrow o$$
- $Ps
ightarrow 3\gamma$

Operator	С	Р	Т	СР	СРТ
$ec{S}\cdot \overrightarrow{k_1}$	+	-	+	-	-
$ec{S} \cdot (ec{k_1} imes ec{k_2})$	+	+	-	+	-
$(ec{S}\cdotec{k_1})(ec{S}\cdot(ec{k_1} imesec{k_2}))$	+	-	-	-	+

 $< O_{CPT}^{(-)} > \stackrel{?}{=} 0$

 $|\overrightarrow{k_1}| > |\overrightarrow{k_2}| > |\overrightarrow{k_3}|$

09.11.2022

CPT symmetry test in o-Ps→3γ decay

Experimental search for CPT violating decay processes in positronium using $\vec{S} \cdot (\vec{k_1} \times \vec{k_2})$

Gammasphere detector Search for CPT violation $C_{CPT} \sim 10^{-3}$ (PRL 91, 263401)

• 2003

J-PET Search for CPT violation $C_{CPT} \sim 10^{-4}$

Nat. Commun 12, 5658

J-PET To extend the sensitivity to 10⁻⁵

In future

CPT odd operator study with J-PET

²²Na source

 $^{22}Na
ightarrow ^{22}Ne^{st} + e^+ +
u$

Geometrical representation of annihilation chamber inside the J-PET detector

Jagiellonian Positron Emission Tomograph

- □ A cost-effective PET scanner built from **192 plastic** scintillators.
- □ Time resolution $\sim 250 \text{ ps } \&$ Angular resolution $\sim 1^{\circ}$

Talk by Eryk Czerwiński

Annihilation chamber

- $\square \quad \beta^+ \text{ emitter source placed at the center of chamber.}$
- Coating of porous silica on the inner walls of chamber to enhance positronium (Ps) formation.
- Annihilation chamber is vacuumized

CPT odd operator study with J-PET

$$e^+e^- o o ext{-}Ps o 3\gamma$$

- Trilateration method: o-Ps annihilation point
- Spin of o-Ps is estimated event by event
- Direction of photons' momenta
- $\vec{S} \cdot (\vec{k_1} \times \vec{k_2})$: CPT violation sensitive operator

5

CPT odd operator study with J-PET

$$O_{CPT} = \hat{S}. \, rac{(\overrightarrow{k_1} imes \overrightarrow{k_2})}{|\overrightarrow{k_1} imes \overrightarrow{k_2}|} = cos heta$$

$$C_{CPT} = rac{\langle O_{CPT}
angle}{P}$$

$$e^+e^- o o ext{-} Ps o 3\gamma$$

- Trilateration method: o-Ps annihilation point
- Spin of o-Ps is estimated event by event
- Direction of photons' momenta
- $\vec{S} \cdot (\vec{k_1} \times \vec{k_2})$: CPT violation sensitive operator

P: Analyzing power (dominated by polarization)

Testing CPT invariance in o-Ps \rightarrow 3y decay with J-PET

J-PET

Cylindrical annihilation chamber

10 MBq source activity

26 days of measurement

$$O_{CPT} = \hat{S}. rac{(ec{k_1} imes ec{k_2})}{|ec{k_1} imes ec{k_2}|} = cos heta$$

P. Moskal et al., Nature Commun., 12, 5658 (2021)

Testing CPT invariance in o-Ps→3y decay with J-PET

J-PET

- 10 MBq source activity
- 26 days of measurement

 $O_{CPT} = \hat{S}. \, rac{(ec{k_1} imes ec{k_2})}{ec{k_1} imes ec{k_2}ec{k_2}} = cos heta$

Improved CPT test with J-PET

 \succ

 \succ

Spherical annihilation chamber

is used to increase positronium formation

- 4 MBq source activity
- Around 1 year of data taking

Total Efficiency of registration of o-Ps events in J-PET

P. Moskal et al., Nature Commun., 12, 5658 (2021)

Studies with spherical annihilation chamber + J-PET detector

09.11.2022

9

CPT-asymmetric angular correlation operator plot (MC)

09.11.2022

Improving the sensitivity for CPT symmetry tests to 10⁻⁵

- Modular J-PET Detector: 24 modules of densely packed plastic scintillators with SiPM readout.
- Increase the detection efficiency for registration of annihilation photons from o-Ps.
- Reconfigured in to multiple layers
- > A portable device

Improving the sensitivity for CPT symmetry tests to 10⁻⁵

- Modular J-PET Detector: 24 modules of densely packed plastic scintillators with SiPM readout.
- Increase the detection efficiency for registration of annihilation photons from o-Ps.
- Reconfigured in to multiple layers
- ➤ A portable device

*Secondary background: Fraction of secondary scattering events (based on MC simulations) *Efficiency of registration of o-Ps \rightarrow 3 χ events in detector (based on MC simulations)

Outlook

Thank You