

A TWO-COMPONENT DARK MATTER MODEL WITH EXTENDED SEESSAW MECHANISM

FRANCESCO COSTA IN COLLABORATION WITH: SARIF KHAN AND JINSU KIM ARXIV: 2209.13653

DISCRETE 2022, 08.11.2022

This project has received funding/support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860881-HIDDeN

Missing pieces in the SM

- The nature of Dark Matter
- Small neutrino masses

Missing pieces in the SM

- The nature of Dark Matter
- Small neutrino masses

Features of the model

- Two components DM, WIMP W_D and FIMP S₃.
- Gravitational waves from First
 Order Phase Transition (FOPT)

Π					_				
Gauge	Baryon Fields			Lepton I	ls		Scalar Fields		
Group	$Q_L^i = (u_L^i, d_L^i)^T$	u_R^i	d_R^i	$L_L^i = (\nu_L^i, e_L^i)^T$	e_R^i	N_L^i	S_L^i	ϕ_h	ϕ_D
$SU(2)_L$	2	1	1	2	1	1	1	2	1
$U(1)_Y$	1/6	2/3	-1/3	-1/2	-1	0	0	1/2	0
$U(1)_D$	0	0	0	0	0	0	0	0	1

Table 1. Particle contents and their corresponding charges under gauge groups.

Baryon Fi	Lepton Fields					lar Fields		
$Q_L^i = (u_L^i, d_L^i)^T$	u_R^i	d_R^i	$L_L^i = (\nu_L^i, e_L^i)^T$	e_R^i	N_L^i	S_L^i	ϕ_h	ϕ_D
2	1	1	2	1	1	1	2	1
1/6	2/3	-1/3	-1/2	-1	0	0	1/:	0
0	0	0	0	0	0	0	0	1
		$\begin{tabular}{ c c c c c c } \hline Baryon Fields \\ \hline $Q_L^i = (u_L^i, d_L^i)^T$ u_R^i \\ \hline 2 1 \\ \hline $1/6$ $2/3$ \\ \hline 0 0 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline Baryon Fields \\ \hline $Q_L^i = (u_L^i, d_L^i)^T$ u_R^i d_R^i \\ \hline 2 1 1 \\ \hline $1/6$ $2/3$ $-1/3$ \\ \hline 0 0 0 \\ \hline 0 \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c } \hline Baryon \ Fields & Lepton \ Fields \\ \hline Q_L^i = (u_L^i, d_L^i)^T & u_R^i & d_R^i \\ \hline 2 & 1 & 1 \\ \hline 1/6 & 2/3 & -1/3 \\ \hline 0 & 0 & 0 \\ \hline \end{array} \begin{tabular}{ c c c c c c c } \hline Lepton \ Fields \\ \hline L_L^i = (\nu_L^i, e_L^i)^T & e_R^i & N_L^i \\ \hline L_L^i = (\nu_L^i, e_L^i)^T & e_R^i & N_L^i \\ \hline 1 & -1/2 & -1 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c c c } \hline Baryon \ Fields & Lepton \ Fields \\ \hline Q_L^i = (u_L^i, d_L^i)^T & u_R^i & d_R^i \\ \hline 2 & 1 & 1 \\ \hline 1/6 & 2/3 & -1/3 \\ \hline 0 & 0 & 0 \\ \hline \end{array} \begin{tabular}{ c c c c c c c c } \hline Lepton \ Fields \\ \hline L_L^i = (\nu_L^i, e_L^i)^T & e_R^i & N_L^i & S_L^i \\ \hline L_L^i = (\nu_L^i, e_L^i)^T & e_R^i & N_L^i & S_L^i \\ \hline 1/6 & 2/3 & -1/3 & -1/2 & -1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{tabular}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

 Table 1. Particle contents and their corresponding charges under gauge groups.

FIELD CONTENT AND SYMMETRIES

Table 1. Particle contents and their corresponding charges under gauge groups.

EXTENDED DOUBLE SEESAW MECHANISM

Neutrino Lagrangian,

$$\mathcal{L}_{NM} = -rac{1}{2} egin{pmatrix}
u_L & S_L & N_L \end{pmatrix} egin{pmatrix} 0 & 0 & M_D^T \ 0 & \mu & M_S^T \ M_D & M_S & M_R \end{pmatrix} egin{pmatrix}
u_L \ S_L \ N_L \end{pmatrix} + ext{h.c.}$$

Mass Hierarchy,

$$M_R > M_S > M_D \gg \mu$$
, $\mu < M_S^T M_R^{-1} M_S$.

Neutrino mass matrices,

$$m_{\nu} \simeq M_D^T (M_S^T)^{-1} \mu M_S^{-1} M_D$$

$$m_S \simeq -M_S^T M_R^{-1} M_S ,$$

$$m_N \simeq M_R .$$

FIMP mass

$$\begin{pmatrix} S_m^3 \\ N_m^3 \end{pmatrix} \simeq \begin{pmatrix} 1 & \frac{M'_{SN}^{33}}{M_R^{333}} \\ -\frac{M'_{SN}^{33}}{M_R^{333}} & 1 \end{pmatrix} \begin{pmatrix} S_L^3 \\ N_L^3 \end{pmatrix}$$

Manimala Mitra et al. In: Nucl. Phys. B 856 (2012). arXiv: 1108.0004.

BOUNDS ON THE NEUTRINOS PARAMETERS I

Dirac matrix,

$$M^D = \begin{pmatrix} m_D^{e1} \\ m_D^{e2R} + im_D^{e2I} \end{pmatrix}$$

with

$$m_D^{ij} = y_{ij} v / \sqrt{2}$$

neutrino sector,

$$\mathcal{L} \supset \sum_{i=e,\mu,\tau,j=1,2} \bar{L}_i M_{ij}^D N_j + \text{h.c.}$$

Active neutrino mass

 $(M_D/M_S)^2 \mu < 10^{-11} \text{ GeV}$

BOUNDS ON THE NEUTRINOS PARAMETERS II

Taking into account neutrino oscillation and LFV data

Regime: only κ coupling is active

Lawrence J. Hall et al. In: JHEP 03 (2010). arXiv: 0911.1120.

m

DM BOUNDS

Constraints:

- DM relic density
- Direct detection
- Indirect detection
- Higgs invisible decay
- Higgs signal strength

GW PRODUCTION I

Including only the thermal correction to the potential \rightarrow strong FOPT

Marcela Carena et al. In: JHEP 08 (2020). arXiv: 1911.10206.

0.12

0.10

GW Production II

The one-loop scalar effective potential

 $\Omega_{\rm GW} h^2 \simeq \Omega_{\rm col} h^2 + \Omega_{\rm sw} h^2 + \Omega_{\rm turb} h^2$

LAGRANGIAN

Neutrino sector,

$$\mathcal{L}_{N} = \sum_{i=1,2} \frac{i}{2} \bar{N}_{L}^{i} \gamma^{\mu} D_{\mu}^{N} N_{L}^{i} + \sum_{i=1,2} \frac{i}{2} \bar{S}_{L}^{i} \gamma^{\mu} D_{\mu}^{S} S_{L}^{i} - \sum_{i,j=1,2} \mu_{ij} S_{L}^{i} S_{L}^{j} - \sum_{i,j=1,2} M_{S}^{ij} S_{L}^{i} N_{L}^{j} - \sum_{i=e,\,\mu,\,\tau,j=1,2} y_{ij} \bar{L}_{i} \tilde{\phi}_{h} N_{j} + \text{h.c.}$$

Dark sector,

$$\begin{split} \mathcal{L}_{\rm DM} &= \frac{i}{2} \bar{N}_{L}^{3} \gamma^{\mu} \partial_{\mu} N_{L}^{3} + \frac{i}{2} \bar{S}_{L}^{3} \gamma^{\mu} \partial_{\mu} S_{L}^{3} - \mu_{33} S_{L}^{3} S_{L}^{3} - M_{S}^{33} S_{L}^{3} N_{L}^{3} - M_{R}^{33} N_{L}^{3} N_{L}^{3} N_{L}^{3} \\ &+ \frac{\kappa}{\Lambda} S_{L}^{3} S_{L}^{3} (\phi_{h}^{\dagger} \phi_{h}) + \frac{\kappa'}{\Lambda} S_{L}^{3} S_{L}^{3} (\phi_{D}^{\dagger} \phi_{D}) + \frac{\xi}{\Lambda} N_{L}^{3} N_{L}^{3} (\phi_{h}^{\dagger} \phi_{h}) + \frac{\xi'}{\Lambda} N_{L}^{3} N_{L}^{3} (\phi_{D}^{\dagger} \phi_{D}) \\ &+ \frac{\alpha}{\Lambda} N_{L}^{3} S_{L}^{3} (\phi_{h}^{\dagger} \phi_{h}) + \frac{\alpha'}{\Lambda} N_{L}^{3} S_{L}^{3} (\phi_{D}^{\dagger} \phi_{D}) + \text{h.c.} \,. \end{split}$$

PHASE TRANSITION

Thermal Potential

The rate of tunneling per unit volume in a radiation dom. universe

 $\Gamma = \Gamma_0 \exp\left\{-\frac{S_3(T)}{T}\right\}$

For a spherical bubble

$$S_3(T) = 4\pi \int dr r^2 \left[\frac{1}{2} \left(\frac{d\phi_b}{dr} \right)^2 + V(\phi_b, T) \right]$$

Riccardo Apreda et al. arXiv: gr-qc/0107033.

Over/under shooting method

Bubble Profile

The temperature at which the transition starts

$$\int_0^{t_*} \frac{\Gamma}{H^3} dt \sim 1$$

GW Production

Collision of bubble walls, the sound wave in the plasma, and the magneto-hydrodynamic turbulence contributions to GW production

 $\Omega_{\rm GW} h^2 \simeq \Omega_{\rm col} h^2 + \Omega_{\rm sw} h^2 + \Omega_{\rm turb} h^2 \,,$

where

$$\Omega_{\rm col}h^2 = 1.67 \times 10^{-5} \left(\frac{H_*}{\beta}\right)^2 \left(\frac{\kappa_{\phi}\alpha}{1+\alpha}\right)^2 \left(\frac{100}{g_*}\right)^{\frac{1}{3}} \left(\frac{0.11v_w^3}{0.42+v_w^2}\right) \left(\frac{3.8\left(f/f_{\rm col}\right)^{2.8}}{1+2.8\left(f/f_{\rm col}\right)^{3.8}}\right) \,,$$

$$\Omega_{\rm sw}h^2 = 2.65 \times 10^{-6} \left(\frac{H_*}{\beta}\right) \left(\frac{\kappa_v \alpha}{1+\alpha}\right)^2 \left(\frac{100}{g_*}\right)^{\frac{1}{3}} v_w \left(f/f_{\rm sw}\right)^3 \left(\frac{7}{4+3 \left(f/f_{\rm sw}\right)^2}\right)^{\frac{7}{2}},$$

and

$$\Omega_{\rm turb}h^2 = 3.35 \times 10^{-4} \left(\frac{H_*}{\beta}\right) \left(\frac{\kappa_{\rm turb}\alpha}{1+\alpha}\right)^{\frac{3}{2}} \left(\frac{100}{g_*}\right)^{\frac{1}{3}} \left(\frac{v_w \left(f/f_{\rm turb}\right)^3}{\left[1 + (f/f_{\rm turb})\right]^{\frac{11}{3}} \left(1 + 8\pi f/h_*\right)}\right) \,,$$

Chiara Caprini et al. In: JCAP 03 (2020), p. 024. arXiv: 1910.13125.

BP	v_D [TeV]	M_{H_2} [GeV]	$\sin \theta$	$g_D \ [10^{-4}]$	α	$\frac{\beta}{H_*}$	T_n [GeV]	$\frac{v_c}{T_c}$	$\frac{\Omega_{\rm WIMP}}{\Omega_{\rm Tot}}$	$\frac{\Omega_{\rm FIMP}}{\Omega_{\rm Tot}}$
1	3.37	2.21	0.082	3.1	0.238	13671	34.43	4.67	0.46	0.54
2	0.673	2.77	-0.076	19.7	0.139	6760.0	46.67	3.56	0.044	0.956
3	4.63	1.0	0.060	1.0	0.461	13820	21.58	6.76	0.87	0.13

Constraint II

