Charged dark matter in supersymmetric Twin Higgs models

based on JHEP 10 (2022) 057 by Marcin Badziak, Giovanni Grilli di Cortona, Keisuke Harigaya and MŁ [2202.10488]

Michał Łukawski

Faculty of Physics University of Warsaw

8th Symposium on Prospects in the Physics of Discrete Symmetries

09.11.2022

Summary

1 Twin Higgs mechanism

2 Supersymmetric Twin Higgs

3 Twin stau as DM candidate

- 1. double the particle content adding twin sector (in particular second higgs H')
- 2. impose Z_2 symmetry interchanging particles between sectors
- 3. the scalar potential is SU(4) invariant due to Z_2 symmetry

$$V(\mathcal{H}) = -m_{\mathcal{H}}^2 \left(H^2 + H'^2\right) + \lambda \left(H^2 + H'^2\right)^2 = -m_{\mathcal{H}}^2 \mathcal{H}^{\dagger} \mathcal{H} + \lambda \left(\mathcal{H}^{\dagger} \mathcal{H}\right)$$

- where $\mathcal{H} = (H, H')^T$
- 4. spontaneous symmetry breaking of $SU(4) \rightarrow SU(3)$ generates SM Higgs as one of Nambu-Goldstone bosons
- 5. Quadratically divergent gauge contributions to the potential
 - SU(4) symmetric!

- 1. double the particle content adding twin sector (in particular second higgs H^\prime)
- 2. impose Z_2 symmetry interchanging particles between sectors
- . The scalar potential is SO(4) invariant due to Z_2 symmetry $V(\mathcal{H})=-m_*^2.(H^2\pm H'^2)\pm\lambda(H^2\pm H'^2)^2=-m_*^2.\mathcal{H}^\dagger\mathcal{H}\pm\lambda(\mathcal{H}^\dagger\mathcal{H})$

where
$$\mathcal{H} = (H, H')^T$$

- 4. spontaneous symmetry breaking of $SU(4) \rightarrow SU(3)$ generates SM Higgs as one of Nambu-Goldstone bosons
- 5. Quadratically divergent gauge contributions to the potential

- 1. double the particle content adding twin sector (in particular second higgs H')
- 2. impose Z_2 symmetry interchanging particles between sectors
- 3. the scalar potential is SU(4) invariant due to \mathbb{Z}_2 symmetry

$$V(\mathcal{H}) = -m_{\mathcal{H}}^2 \big(H^2 + H'^2\big) + \lambda \big(H^2 + H'^2\big)^2 = -m_{\mathcal{H}}^2 \mathcal{H}^\dagger \mathcal{H} + \lambda \big(\mathcal{H}^\dagger \mathcal{H}\big)^2$$
 where $\mathcal{H} = (H, H')^T$

- 4. spontaneous symmetry breaking of $SU(4) \rightarrow SU(3)$ generates SI Higgs as one of Nambu-Goldstone bosons
- 5. Quadratically divergent gauge contributions to the potential

$$\delta V = rac{9 \Lambda^2 g^2}{64 \pi^2} (H^\dagger H + H'^\dagger H') = rac{9 g^2 \Lambda^2}{64 \pi^2} \mathcal{H}^\dagger \mathcal{H}$$
 $SU(4)$ symmetric!

- 1. double the particle content adding twin sector (in particular second higgs H')
- 2. impose Z_2 symmetry interchanging particles between sectors
- 3. the scalar potential is SU(4) invariant due to Z_2 symmetry $V(\mathcal{H}) = -m_{\mathcal{H}}^2 \big(H^2 + H'^2\big) + \lambda \big(H^2 + H'^2\big)^2 = -m_{\mathcal{H}}^2 \mathcal{H}^\dagger \mathcal{H} + \lambda \big(\mathcal{H}^\dagger \mathcal{H}\big)^2$

where
$$\mathcal{H} = (H, H')^T$$

4. spontaneous symmetry breaking of $SU(4) \rightarrow SU(3)$ generates SM Higgs as one of Nambu-Goldstone bosons

5. Quadratically divergent gauge contributions to the potentia

- 1. double the particle content adding twin sector (in particular second higgs H^\prime)
- 2. impose Z_2 symmetry interchanging particles between sectors
- 3. the scalar potential is SU(4) invariant due to Z_2 symmetry $V(\mathcal{H}) = -m_{\mathcal{H}}^2 (H^2 + H'^2) + \lambda (H^2 + H'^2)^2 = -m_{\mathcal{H}}^2 \mathcal{H}^{\dagger} \mathcal{H} + \lambda (\mathcal{H}^{\dagger} \mathcal{H})^2$

where
$$\mathcal{H} = (H, H')^T$$

- 4. spontaneous symmetry breaking of $SU(4) \to SU(3)$ generates SM Higgs as one of Nambu-Goldstone bosons
- 5. Quadratically divergent gauge contributions to the potential

$$\delta V = \frac{9\Lambda^2 g^2}{64\pi^2} (H^\dagger H + H'^\dagger H') = \frac{9g^2\Lambda^2}{64\pi^2} \mathcal{H}^\dagger \mathcal{H}$$

SU(4) symmetric!

Twin Higgs models

General Twin Higgs potential could be written

$$V(H, H') = \lambda (H^2 + H'^2)^2 - m_{\mathcal{H}}^2 (H^2 + H'^2) + \Delta \lambda (H^4 + H'^4) + \Delta m^2 H^2$$

In minimal setting 4 parameters, but we know the mass of Higgs m_h and the EW vev \boldsymbol{v}

We have only two parameters v^\prime/v and the mass of the twin higgs $m_{h^\prime}.$

Fine tuning due to
$$Z_2$$
 breaking $\Delta_{v'/v} = (v'^2/v^2 - 2)/2$

for
$$v^\prime/v=3$$
 fine tuning is 29% for $v^\prime/v=5$ fine tuning is 9%

Twin Higgs models

General Twin Higgs potential could be written

$$V(H, H') = \lambda (H^2 + H'^2)^2 - m_{\mathcal{H}}^2 (H^2 + H'^2) + \Delta \lambda (H^4 + H'^4) + \Delta m^2 H^2$$

In minimal setting 4 parameters, but we know the mass of Higgs m_h and the EW vev \boldsymbol{v}

We have only two parameters v'/v and the mass of the twin higgs $m_{h'}$.

Fine tuning due to Z_2 breaking $\Delta_{v'/v} = (v'^2/v^2 - 2)/2$

for v'/v=3 fine tuning is 29% for v'/v=5 fine tuning is 9%

Twin Higgs models

General Twin Higgs potential could be written

$$V(H, H') = \lambda (H^2 + H'^2)^2 - m_{\mathcal{H}}^2 (H^2 + H'^2) + \Delta \lambda (H^4 + H'^4) + \Delta m^2 H^2$$

In minimal setting 4 parameters, but we know the mass of Higgs m_h and the EW vev \boldsymbol{v}

We have only two parameters v'/v and the mass of the twin higgs $m_{h'}$.

Fine tuning due to
$$Z_2$$
 breaking $\Delta_{v'/v} = (v'^2/v^2 - 2)/2$,

for
$$v'/v=3$$
 fine tuning is 29% for $v'/v=5$ fine tuning is 9%

$$V(H, H') = \lambda (H^2 + H'^2)^2 - m_{\mathcal{H}}^2 (H^2 + H'^2) + \Delta \lambda (H^4 + H'^4) + \Delta m^2 H^2$$
(F. term)
(9. term)

In SUSY the potential is fixed by particle content, gauge interactions and SUSY breaking.

The SU(4) invariant λ -term may be generated in two ways, F-term and $^{ ext{[1703-02122]}}$ D-term

The SU(4) breaking term generated by EW D-term $\Delta\lambda \simeq rac{g^2+g'^2}{8}\cos(2eta)$

Naturalness prefers large aneta and it is possible to have 10% FT for $m_{ ilde{s}}=2$ TeV (v'/v=3)

$$V(H, H') = \lambda (H^2 + H'^2)^2 - m_{\mathcal{H}}^2 (H^2 + H'^2) + \Delta \lambda (H^4 + H'^4) + \Delta m^2 H^2$$
(F-term)
(D-term)

In SUSY the potential is fixed by particle content, gauge interactions and SUSY breaking.

The SU(4) invariant λ -term may be generated in two ways, F-term and [1703.02122] D-term

The SU(4) breaking term generated by EW D-term $\Delta\lambda \simeq rac{g^2+g'^2}{8}\cos(2eta)$

Naturalness prefers large an eta and it is possible to have 10% FT for $m_{ ilde{ au}}=2$ TeV (v'/v=3)

$$V(H, H') = \lambda (H^2 + H'^2)^2 - m_{\mathcal{H}}^2 (H^2 + H'^2) + \Delta \lambda (H^4 + H'^4) + \Delta m^2 H^2$$
(5 torm)
(7 torm)

In SUSY the potential is fixed by particle content, gauge interactions and SUSY breaking.

The SU(4) invariant λ -term may be generated in two ways, F-term and [1703.02122] D-term

The SU(4) breaking term generated by EW D-term $\Delta\lambda \simeq \frac{g^2+g'^2}{8}\cos(2\beta)$

Naturalness prefers large an eta and it is possible to have 10% FT for $m_{ ilde{ au}}=2$ TeV (v'/v=3)

$$V(H, H') = \lambda (H^2 + H'^2)^2 - m_{\mathcal{H}}^2 (H^2 + H'^2) + \Delta \lambda (H^4 + H'^4) + \Delta m^2 H^2$$
(F-term)
(D-term)

In SUSY the potential is fixed by particle content, gauge interactions and SUSY breaking.

The SU(4) invariant λ -term may be generated in two ways, F-term and [1703.02122] D-term

The SU(4) breaking term generated by EW D-term $\Delta\lambda \simeq \frac{g^2+g'^2}{8}\cos(2\beta)$

Naturalness prefers large $\tan\beta$ and it is possible to have 10% FT for $m_{\tilde t}=2$ TeV (v'/v=3)

DM is TH models

```
Charged Twin DM candidates: [1505.07109] twin tau, m_{\tau'}\approx 65-130 GeV, [1908.03559] twin electrons, m_{e'}\approx 2-5 MeV, [1506.03520] twin baryons, m_{\rm baryon}\approx 5 GeV,
```

Twin electromagnetism necessarily broken!

Self-interactions of DM are constrained and for coupling $g=g_{em}$ we have $m_{
m DM} {\gtrsim}~200$ GeV. [1610.04611]

Observation:

SUSY partners with large soft masses and can escape that bound, while preserving unbroken $U_{\rm em}'(1)$

DM is TH models

```
Charged Twin DM candidates: [1505.07109] twin tau, m_{\tau'}\approx 65-130 GeV, [1908.03559] twin electrons, m_{e'}\approx 2-5 MeV, [1506.03520] twin baryons, m_{\rm baryon}\approx 5 GeV,
```

Twin electromagnetism necessarily broken!

Self-interactions of DM are constrained and for coupling $g=g_{em}$ we have $m_{\rm DM} {\gtrsim}~200$ GeV. $_{\rm [1610.04611]}$

Observation:

SUSY partners with large soft masses and can escape that bound, while preserving unbroken $U'_{\rm em}(1)$

DM is TH models

```
Charged Twin DM candidates: [1505.07109] twin tau, m_{\tau'}\approx 65-130 GeV, [1908.03559] twin electrons, m_{e'}\approx 2-5 MeV, [1506.03520] twin baryons, m_{\rm baryon}\approx 5 GeV,
```

Twin electromagnetism necessarily broken!

Self-interactions of DM are constrained and for coupling $g=g_{em}$ we have $m_{\rm DM} {\gtrsim}~200$ GeV. $_{\rm [1610.04611]}$

Observation:

SUSY partners with large soft masses and can escape that bound, while preserving unbroken $U_{\rm em}^\prime(1)$

- lacksquare assume Z_2 symmetric soft SUSY breaking and an eta
- R-parity is conserved: lightest supersymmetric particle (LSP) is stable
- The mass matrix of twin stau is given by

$$m_{\tilde{\tau}'}^2 = \begin{pmatrix} m_{L_3}^2 + \Delta_{\tilde{\tau}'_L} + m_{\tau'}^2 & -\mu v' y_{\tau} \sin \beta \\ -\mu v' y_{\tau} \sin \beta & m_{\tilde{e}_3}^2 + \Delta_{\tilde{\tau}'_R} + m_{\tau'}^2 \end{pmatrix}$$

- for pure $\tilde{\tau}'_{L}$ $(m_{3L} \ll m_{3R})$ and $\tilde{\tau}'_{R}$ $(m_{3R} \ll m_{3L})$ visible stau is lighter
- off-diagonal term is larger in twin sector, for mixed state twin staumay be LSP

- lacksquare assume Z_2 symmetric soft SUSY breaking and aneta
- R-parity is conserved: lightest supersymmetric particle (LSP) is stable
- The mass matrix of twin stau is given by

$$m_{\tilde{\tau}'}^2 = \begin{pmatrix} m_{L_3}^2 + \Delta_{\tilde{\tau}'_L} + m_{\tau'}^2 & -\mu v' y_{\tau} \sin \beta \\ -\mu v' y_{\tau} \sin \beta & m_{\bar{e}_3}^2 + \Delta_{\tilde{\tau}'_R} + m_{\tau'}^2 \end{pmatrix}$$

- lacksquare for pure $ilde{ au}'_L$ $(m_{3L} \ll m_{3R})$ and $ilde{ au}'_R$ $(m_{3R} \ll m_{3L})$ visible stau is lighte
- off-diagonal term is larger in twin sector, for mixed state twin staumav be ISP

- lacksquare assume Z_2 symmetric soft SUSY breaking and aneta
- R-parity is conserved: lightest supersymmetric particle (LSP) is stable
- The mass matrix of twin stau is given by

$$m_{\tilde{\tau}'}^2 = \begin{pmatrix} m_{L_3}^2 + \Delta_{\tilde{\tau}'_L} + m_{\tau'}^2 & -\mu v' y_{\tau} \sin \beta \\ -\mu v' y_{\tau} \sin \beta & m_{\tilde{e}_3}^2 + \Delta_{\tilde{\tau}'_R} + m_{\tau'}^2 \end{pmatrix}$$

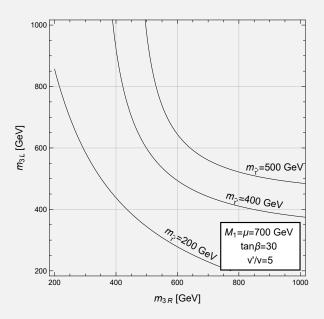
- for pure $\tilde{\tau}'_L$ $(m_{3L} \ll m_{3R})$ and $\tilde{\tau}'_R$ $(m_{3R} \ll m_{3L})$ visible stau is lighter
- off-diagonal term is larger in twin sector, for mixed state twin sta

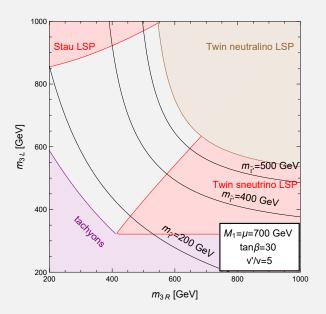
- lacksquare assume Z_2 symmetric soft SUSY breaking and aneta
- R-parity is conserved: lightest supersymmetric particle (LSP) is stable
- The mass matrix of twin stau is given by

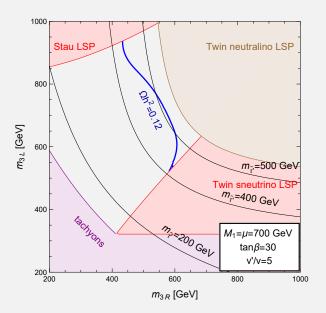
$$m_{\tilde{\tau}'}^2 = \begin{pmatrix} m_{L_3}^2 + \Delta_{\tilde{\tau}'_L} + m_{\tau'}^2 & -\mu v' y_{\tau} \sin \beta \\ -\mu v' y_{\tau} \sin \beta & m_{\tilde{e}_3}^2 + \Delta_{\tilde{\tau}'_R} + m_{\tau'}^2 \end{pmatrix}$$

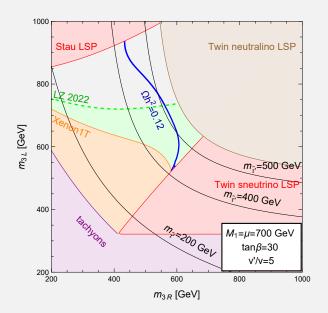
- lacksquare for pure $ilde{ au}_L'$ $(m_{3L} \ll m_{3R})$ and $ilde{ au}_R'$ $(m_{3R} \ll m_{3L})$ visible stau is lighter
- off-diagonal term is larger in twin sector, for mixed state twin stau
 may be LSP

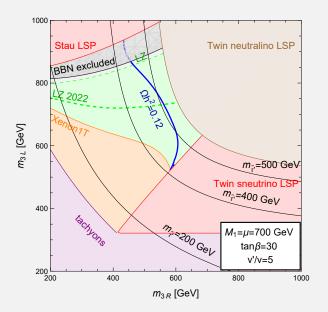
- lacksquare assume Z_2 symmetric soft SUSY breaking and aneta
- R-parity is conserved: lightest supersymmetric particle (LSP) is stable
- The mass matrix of twin stau is given by

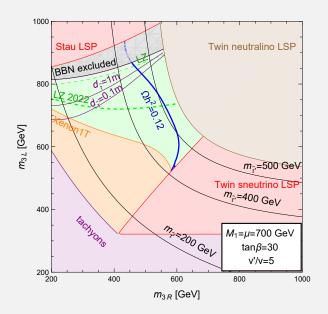

$$m_{\tilde{\tau}'}^2 = \begin{pmatrix} m_{L_3}^2 + \Delta_{\tilde{\tau}'_L} + m_{\tau'}^2 & -\mu v' y_{\tau} \sin \beta \\ -\mu v' y_{\tau} \sin \beta & m_{\tilde{e}_3}^2 + \Delta_{\tilde{\tau}'_R} + m_{\tau'}^2 \end{pmatrix}$$

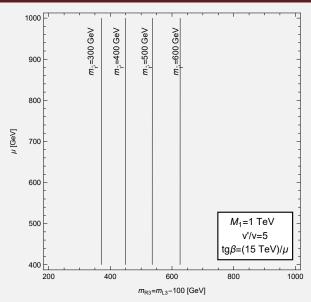

- lacksquare for pure $ilde{ au}_L'$ $(m_{3L} \ll m_{3R})$ and $ilde{ au}_R'$ $(m_{3R} \ll m_{3L})$ visible stau is lighter
- off-diagonal term is larger in twin sector, for mixed state twin stau
 may be LSP

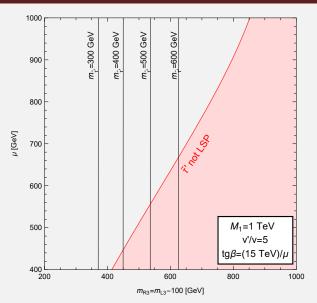

- lacksquare assume Z_2 symmetric soft SUSY breaking and aneta
- R-parity is conserved: lightest supersymmetric particle (LSP) is stable
- The mass matrix of twin stau is given by

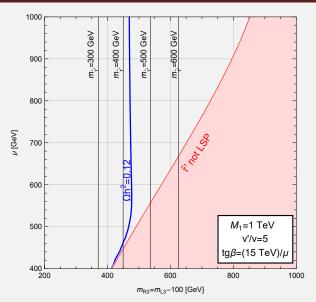

$$m_{\tilde{\tau}'}^2 = \begin{pmatrix} m_{L_3}^2 + \Delta_{\tilde{\tau}'_L} + m_{\tau'}^2 & -\mu v' y_{\tau} \sin \beta \\ -\mu v' y_{\tau} \sin \beta & m_{\tilde{e}_3}^2 + \Delta_{\tilde{\tau}'_R} + m_{\tau'}^2 \end{pmatrix}$$

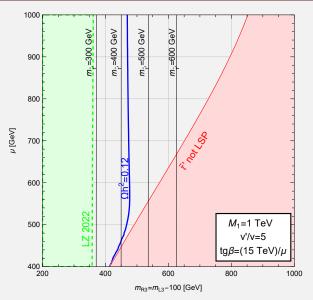

- for pure $\tilde{\tau}'_L$ $(m_{3L} \ll m_{3R})$ and $\tilde{\tau}'_R$ $(m_{3R} \ll m_{3L})$ visible stau is lighter
- off-diagonal term is larger in twin sector, for mixed state twin stau may be LSP

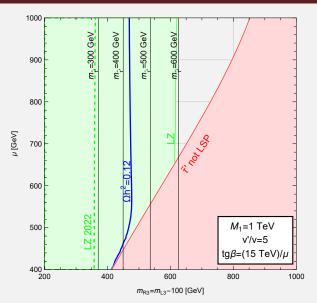


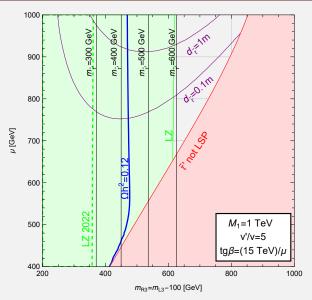












Conclusions

- \blacksquare Supersymmetric Twin Higgs models allow for naturally low EW scale, stable under the quantum corrections, FT $\approx 10\%$ with $m_{\tilde{t}}=2$ TeV
- in TH models usually one needs to break the twin electromagnetism to obtain DM
- with SUSY completion, large soft masses allow for interacting DM charged under unbroken twin EM
- light stau may be observed at LHC as a long lived particle or a disappearing track
- twin stau DM will be probed by L7 experiment

- Supersymmetric Twin Higgs models allow for naturally low EW scale, stable under the quantum corrections, FT $\approx 10\%$ with $m_{\tilde{t}}=2$ TeV
- in TH models usually one needs to break the twin electromagnetism to obtain DM
- with SUSY completion, large soft masses allow for interacting DM charged under unbroken twin EM
- light stau may be observed at LHC as a long lived particle or a disappearing track
- twin stau DM will be probed by LZ experiment

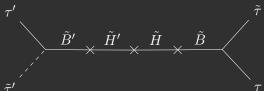
- Supersymmetric Twin Higgs models allow for naturally low EW scale, stable under the quantum corrections, FT $\approx 10\%$ with $m_{\tilde{t}}=2$ TeV
- in TH models usually one needs to break the twin electromagnetism to obtain DM
- with SUSY completion, large soft masses allow for interacting DM charged under unbroken twin EM
- light stau may be observed at LHC as a long lived particle or a disappearing track
- twin stau DM will be probed by LZ experiment

- Supersymmetric Twin Higgs models allow for naturally low EW scale, stable under the quantum corrections, FT $\approx 10\%$ with $m_{\tilde{t}}=2$ TeV
- in TH models usually one needs to break the twin electromagnetism to obtain DM
- with SUSY completion, large soft masses allow for interacting DM charged under unbroken twin EM
- light stau may be observed at LHC as a long lived particle or a disappearing track
- twin stau DM will be probed by L7 experiment

- Supersymmetric Twin Higgs models allow for naturally low EW scale, stable under the quantum corrections, FT $\approx 10\%$ with $m_{\tilde{t}}=2$ TeV
- in TH models usually one needs to break the twin electromagnetism to obtain DM
- with SUSY completion, large soft masses allow for interacting DM charged under unbroken twin EM
- light stau may be observed at LHC as a long lived particle or a disappearing track
- twin stau DM will be probed by LZ experiment

Thank you

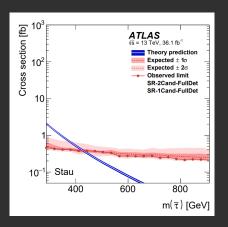
Direct detection


Twin stau can interact with nucleons from visible sector via Higgs portal. The relevant coupling in decoupling limit is

$$\lambda_{h\tilde{\tau}'\tilde{\tau}'} = \frac{g}{m_{W'}} \left[\left(\frac{1}{2} c_{\theta_{\tilde{\tau}'}}^2 - s_W^2 c_{2\theta_{\tilde{\tau}'}} \right) m_{Z'}^2 c_{2\beta} - m_{\tau'}^2 + \frac{m_{\tau'}}{2} \mu \tan \beta s_{2\theta_{\tilde{\tau}'}} \right] \frac{v}{v'}$$

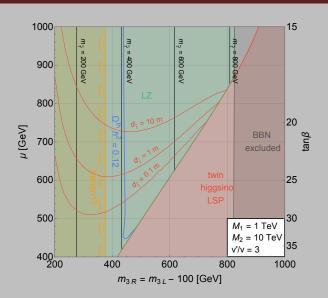
Lifetime of stau

Effective $\tilde{\tau}\tilde{\tau}'^{\dagger}\tau\tau'$ operator from diagram:

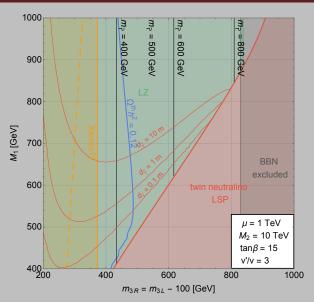


$$\frac{1}{M}\tilde{\tau}\tilde{\tau}'^{\dagger}\tau\tau' = \frac{g'^4vv'\varepsilon_{\tilde{H}}m_{\tilde{\tau}}^2(M_1^2 + m_{\tilde{\tau}}^2)}{(M_1^2 - m_{\tilde{\tau}}^2)^2(\mu^2 - m_{\tilde{\tau}}^2)^2}\tilde{\tau}\tilde{\tau}'^{\dagger}\tau\tau'$$

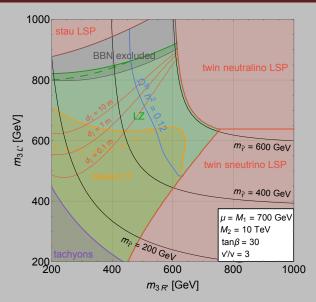
$$d_{\tilde{\tau}} \simeq 2.7 \,\mathrm{m} \left(\frac{m_{\tilde{\tau}}}{300 \,\mathrm{GeV}}\right)^2 \left(\frac{M}{10^6 \,\mathrm{GeV}}\right)^2 \left(\frac{10 \,\mathrm{GeV}}{m_{\tilde{\tau}} - m_{\tilde{\tau}'}}\right)^5$$

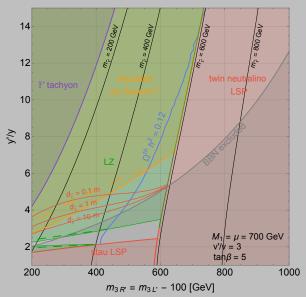

Collider

Due to Z_2 , this scenario predicts light stau, which might be long-lived ($c\tau\simeq \mathcal{O}(1)$ m) 1902.01636



disappearing tracks (c $au \simeq 0.1-1$ m) are poorly constrained


Light Higgsino


Light bino

Light higgsino and bino

Breaking Z_2 in Yukawa

