The Weinberg 3HDM potential

Per Osland

University of Bergen

DISCRETE 2022

Baden-Baden, Nov 2022

Robin Plantey, Marius Solberg (both NTNU, Trondheim) Odd Magne Ogreid, Gui Rebelo, P.O.: 2208.13594, 2209.06499

1 Introduction where *V*² and *V*⁰ are insensitive to independent rephasing of the Higgs doublets,

²2) + 13(*†*

11)(*†*

³3) + 22(*†*

²2)

11)(*†*

11)
11) - Johann Barnes
11) - Johann Barnes

Weinberg 3HDM potential (1976) in notation of Ivanov and Nishi: *V* = *V*² + *V*4*,* with *V*⁴ = *V*⁰ + *V*ph*,* (0.1) *V*ph = 1(*†* ²3) ² + 2(*†* ² + 3(*†* ² + h.c. (0.3) *V*⁰ = 11(*†* ¹1) ² + 12(*†* 11)(*†* ²2) + 13(*†* 11)(*†* ³3) + 22(*†*

 $v = v_2 + v_4$, with $v_4 = v_0 + v_{ph}$, $V = V_2 + V_4$, with $V_4 = V_0 + V_{\text{ph}}$, $v = v_2 + v_4$, with $v_4 = v_0 + v_0$, v_0 + 23(*†* 22)(*†* ³3) + 33(*†* ³3)

 $V_2 = -[m_{11}(\phi_1^{\dagger}\phi_1) + m_{22}(\phi_2^{\dagger}\phi_2) + m_{33}(\phi_3^{\dagger}\phi_3)],$ $V_0 = \lambda_{11}(\phi_1^{\dagger}\phi_1)^2 + \lambda_{12}(\phi_1^{\dagger}\phi_1)(\phi_2^{\dagger}\phi_2) + \lambda_{13}(\phi_1^{\dagger}\phi_1)(\phi_3^{\dagger}\phi_3) + \lambda_{22}(\phi_2^{\dagger}\phi_2)^2$ $+ \lambda_{23}(\phi_2^{\dagger}\phi_2)(\phi_3^{\dagger}\phi_3) + \lambda_{33}(\phi_3^{\dagger}\phi_3)^2$ $+ \lambda'_{12}(\phi_1^{\intercal}\phi_2)(\phi_2^{\intercal}\phi_1) + \lambda'_{13}(\phi_1^{\intercal}\phi_3)(\phi_3^{\intercal}\phi_1) + \lambda'_{23}(\phi_2^{\intercal}\phi_3)(\phi_3^{\intercal}\phi_2),$ $V = \int_{\infty}^{\infty} (\phi^{\dagger} \phi) + \infty (\phi^{\dagger} \phi) + \infty (\phi^{\dagger} \phi)$ $\lambda_{23}(\phi_{2}^{\dagger}\phi_{2})(\phi_{3}^{\dagger}\phi_{3}) + \lambda_{33}(\phi_{3}^{\dagger}\phi_{3})$ $(93)^{2}$ ³3) + 22(*†* $+ \lambda'_{12}(\phi_1^{\prime}\phi_2)(\phi_2^{\prime}\phi_1) + \lambda'_{13}(\phi_1^{\prime}\phi_3)(\phi_3^{\prime}\phi_1) + \lambda'_{23}(\phi_2^{\prime}\phi_3)(\phi_3^{\prime}\phi_2),$ $V_2 = -[m_{11}(\phi_1^{\dagger} \phi_1) + m_{22}(\phi_2^{\dagger} \phi_2) + m_{33}(\phi_3^{\dagger} \phi_3)],$ Insensitive to relative phases of fields ϕ_1, ϕ_2, ϕ_3 : $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\mathbf{p}_{\mathbf{H}}$ $\frac{v}{\sqrt{2}}$ $\lambda_{12}(\phi_{1}^{'}\phi_{1})(\phi_{2}^{'}\phi_{2}) + \lambda_{13}(\phi_{1}^{'}\phi_{1})(\phi_{3}^{'}\phi_{3}) + \lambda_{22}(\phi_{2}^{'}\phi_{2})$ \int - h.c. (1)

> + ⁰ 12(*†* 12)(*†* ²1) + ⁰ Sensitive to phases:

 $= \lambda_1(\phi_2^{\dagger} \phi_3)^2 + \lambda_2(\phi_3^{\dagger} \phi_1)^2 + \lambda_3(\phi_1^{\dagger} \phi_2)^2 + \text{ h.c.}$ 13(*†* 13)(*†* ³1) + ⁰ 23(*†* 23)(*†* $V_{\rm ph} = \lambda_1(\phi_2^{\dagger}\phi_3)^2 + \lambda_2(\phi_3^{\dagger}\phi_1)^2 + \lambda_3(\phi_1^{\dagger}\phi_2)^2 + \text{ h.c.}$

Introduction $Introduction$ ²2) + 13(*†* 22)(*†* ³3) + 33(*†* ³3) ³1) + ⁰ 23(*†* 23)(*†* ³2)*,* (0.2b) Insensitive to relative phases of fields 1, 2, 3:

2

11)(*†*

³3) + 22(*†*

²2)

12)(*†* 21) + 01
21) + 02
21) + 02 Weinberg:

³3) + 33(*†*

22)(*†*

+ 23(*†*

12(*†*

*V*⁰ = 11(*†*

13)(*†*

2

³3)

13(*†*

+ 23(*†*

¹1)

Weinberg:
Natural flavour conservation and CPV can be arranged by complex potential. Branco (1980) showed that this could also be achieved with a real potential ford complex represented and the doublets of the Higgs doublets and α *V*₂ = *M*² $\frac{1500}{2000}$ showed that this codid also ³3)]*,* (0.2a) editally Branco (1980) showed that this could also be achieved with a real potential Natural flavour conservation and CPV can be arranged by complex potential. (and complex vevs). Case studied

(and complex vevs). Case studied
\n
$$
V_2 = -[m_{11}(\phi_1^{\dagger}\phi_1) + m_{22}(\phi_2^{\dagger}\phi_2) + m_{33}(\phi_3^{\dagger}\phi_3)],
$$
\n
$$
V_0 = \lambda_{11}(\phi_1^{\dagger}\phi_1)^2 + \lambda_{12}(\phi_1^{\dagger}\phi_1)(\phi_2^{\dagger}\phi_2) + \lambda_{13}(\phi_1^{\dagger}\phi_1)(\phi_3^{\dagger}\phi_3) + \lambda_{22}(\phi_2^{\dagger}\phi_2)^2
$$
\n
$$
+ \lambda_{23}(\phi_2^{\dagger}\phi_2)(\phi_3^{\dagger}\phi_3) + \lambda_{33}(\phi_3^{\dagger}\phi_3)^2
$$
\n
$$
+ \lambda'_{12}(\phi_1^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_1) + \lambda'_{13}(\phi_1^{\dagger}\phi_3)(\phi_3^{\dagger}\phi_1) + \lambda'_{23}(\phi_2^{\dagger}\phi_3)(\phi_3^{\dagger}\phi_2),
$$

 $V_{\rm ph} = \lambda_1(\phi_2^{\dagger} \phi_3)^2 + \lambda_2(\phi_3^{\dagger} \phi_1)^2 + \lambda_3(\phi_1^{\dagger} \phi_2)^2 + \text{ h.c.}$ $\begin{bmatrix} \mathbf{E} & \mathbf{$ γ ph γ γ (γ ₂ γ ₃) $\sqrt{2}$ version of $\sqrt{2}$ $V_{\rm ph}=\lambda_1$ *v*₁(*†* 273) + *'* '2(*†* 371) + ' ''3(*†* 1*†* 2)

ant element: $\mathbb{Z}_2 \times \mathbb{Z}_2$ -symmetry (only even powers of fields) Important element: $\mathbb{Z}_2 \times \mathbb{Z}_2$ -symmetry (only even powers of fields) $\frac{2}{7}$ $\frac{11.0}{7}$ $\phi_i \rightarrow -\phi_i$ for all three ϕ_i . ²3) ³1) ¹2) $\mathcal{L} = \mathcal{L} \mathcal$

Introduction Important element: Z2-symmetry and Z2-symmetry and Z2-symmetry and Z2-symmetry and Z2-symmetry and Z2-symmetry CP violation (good for baryogenesis) generated by <u>Important elements and the symmetry of the sy</u> Important element: Z2-symmetry and Z2-symmetry and Z2-symmetry and Z2-symmetry and Z2-symmetry and Z2-symmetry
The contract of the contract o CP violation (good for baryogenesis) generated by CP violation (good for baryogenesis) generated by ² + 2(*†* ³1) ² + 3(*†*

¹2)

 2×10^{-10} , 2×10^{-10}

Observation 1: O boorvotion 1. *ve*rvation
v

(and complex vevs)

CP violation (good for baryogenesis) generated by $\mathbf v$ CP violation (good for baryogenesis) generated by od for baryogenesis) generated by $\left($ $\begin{array}{c} 2 \ 1 \end{array} \right)$ CP violation (good for baryogenesis) generated by

²3)

<u>Important elements elements and a symmetry of the symmetry of</u>

*V*ph = 1(*†*

 $V_{\rm ph} = \lambda_1 (\phi_2^{\dagger} \phi_3)^2 + \lambda_2 (\phi_3^{\dagger} \phi_1)^2 + \lambda_3 (\phi_1^{\dagger} \phi_2)^2 + \text{ h.c.}$ $v_{\rm ph} = \alpha_1(\varphi_2\varphi_3) + \alpha_2(\varphi_3\varphi_1) + \alpha_3(\varphi_1\varphi_2) + \cdots$

Vant CPV to be small, in view of SM-like Higgs boson at 125 GeV. eV Want CPV to be small, in view of SM-like Higgs boson at 125 GeV. *V*ph ! 0*, {*1*,* 2*,* 3*}* ! 0 (0.5)

Study limit: \mathcal{L}

(and complex vevs)

(only even powers of fields)

 $\{ \lambda_1, \lambda_2, \lambda_3 \} \rightarrow 0$ $V_{\rm ph} \rightarrow 0, \quad {\lambda_1, \lambda_2, \lambda_3} \rightarrow 0$

Observation 2: Ω beemstiep Ω ^{1 $V(1)$} \cdot $V(1)$ \cdot $V(1)$ $V_2 = -[m_{11}(\phi_1^{\dagger}\phi_1) + m_{22}(\phi_2^{\dagger}\phi_2) + m_{33}(\phi_3^{\dagger}\phi_3)],$ $V_2 = -[m_{11}(\varphi_1^{\dagger}\varphi_1) + m_{22}(\varphi_2\varphi_2) + m_{33}(\varphi_3\varphi_3)],$
 $V_0 = \lambda_{11}(\varphi_1^{\dagger}\varphi_1)^2 + \lambda_{12}(\varphi_1^{\dagger}\varphi_1)(\varphi_2^{\dagger}\varphi_2) + \lambda_{13}(\varphi_1^{\dagger}\varphi_1)(\varphi_3^{\dagger}\varphi_3) + \lambda_{22}(\varphi_2^{\dagger}\varphi_2)^2$ $+ \lambda_{23}(\phi_2^{\dagger}\phi_2)(\phi_3^{\dagger}\phi_3) + \lambda_{33}(\phi_3^{\dagger}\phi_3)^2$ $+\lambda'_{12}(\phi_1^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_1)+\lambda'_{13}(\phi_1^{\dagger}\phi_3)(\phi_3^{\dagger}\phi_1)+\lambda'_{23}(\phi_2^{\dagger}\phi_3)(\phi_3^{\dagger}\phi_2),$ $V(1) \times U(1) \times U(1)$ symmetry $U = \frac{\lambda_{12}(\varphi_1\varphi_1)(\varphi_2\varphi_2) + \lambda_{13}(\varphi_1\varphi_1)(\varphi_3\varphi_3) + \lambda_{22}(\varphi_2\varphi_2)}{\mu_1\mu_2\mu_3}$ $U_{1}^{1}(\varphi_{1}\varphi_{1}) + m_{22}(\varphi_{2}\varphi_{2}) + m_{33}(\varphi_{3}\varphi_{3})$, $U(1) \times U(1) \times U(1)$ symmetry

Introduction *V*ph ! 0*, {*1*,* 2*,* 3*}* ! 0 (0.5) *V*ph ! 0*, {*1*,* 2*,* 3*}* ! 0 (0.5)

Observation 2 cont: \mathcal{V} contracting (1) \mathcal{V}

 $V_2 + V_0$ is invariant under $V + V$ is inv $+$ V_0 is invariant under

¹ ! *^eⁱ*↵¹ 1*,* ² ! *^eⁱ*↵² 2*,* ³ ! *^eⁱ*↵³ 3*,* (0.7) $\phi_1 \rightarrow e^{i\alpha_1}\phi_1, \quad \phi_2 \rightarrow e^{i\alpha_2}\phi_2, \quad \phi_3 \rightarrow e^{i\alpha_3}\phi_3$ $\frac{i\alpha_2}{\alpha_3}$ $\frac{i\alpha_3}{\alpha_4}$ $\varphi_1 \to e^{i\alpha_1} \varphi_1, \quad \varphi_2 \to e^{i\alpha_2} \varphi_2, \quad \varphi_3 \to e^{i\alpha_3} \varphi_3$ U_{1} \vdots U_{n} \vdots

Observation 3:

Actually, one $U(1)$ factor is combined with the hypercharge, we are left with two Goldstone bosons when the $U(1) \times U(1)$ symmetry is broken by the vacuum,

Conjecture: $A(\mathbf{r})$ factor is combined with the hypercharge, \mathbf{r} we are left with two Goldstone bosons with two Goldstone bosons with the contract of the contr $A_n = \frac{1}{n}$ for $n = 1$ ye are left with two Goldstone bosons with two Goldstone bosons with two Goldstone bosons with two Goldstone bo *<u>1* $\frac{1}{2}$ *= 0 6* $\frac{1}{2}$ *= 0* $\frac{1}{2}$ *= 0 \frac{1}{2* $$

With $V_{\text{ph}} \neq 0$, or $\{\lambda_1, \lambda_2, \lambda_3\} \neq 0$, two light states with a significant CP-odd content?

two light states with a significant CP-odd content?

Minimization *{w*1*, w*2*, w*3*}* ⁼ *{v*1*, v*² *^eⁱ*✓² *, v*³ *^eⁱ*✓³ *}.* (0.8) *{w*1*, w*2*, w*3*}* ⁼ *{v*1*, v*² *^eⁱ*✓² *, v*³ *^eⁱ*✓³ *}.* (0.8) *{w*1*, w*2*, w*3*}* ⁼ *{v*1*, v*² *^eⁱ*✓² *, v*³ *^eⁱ*✓³ *}.* (0.8)

 N_{α} tat Notation:

 $c_x =$

$$
\phi_i = e^{i\theta_i} \left(\frac{\phi_i^+}{(v_i + \eta_i + i\chi_i)/\sqrt{2}} \right), \quad i = 1, 2, 3
$$

$$
\{w_1, w_2, w_3\} = \{v_1, v_2 e^{i\theta_2}, v_3 e^{i\theta_3}\}
$$

 T , and the minimization conditions with respect to \mathcal{L} and \mathcal{L} and \mathcal{L} Three minimization conditions with respect to moduli

Three minimization conditions with respect to moduli
\n
$$
m_{11} = \lambda_{11}v_1^2 + \frac{1}{2}\overline{\lambda}_{12}v_2^2 + \frac{1}{2}\overline{\lambda}_{13}v_3^2 + \lambda_2c_{2\theta_3}v_3^2 + \lambda_3c_{2\theta_2}v_2^2,
$$
\n
$$
m_{22} = \lambda_{22}v_2^2 + \frac{1}{2}\overline{\lambda}_{12}v_1^2 + \frac{1}{2}\overline{\lambda}_{23}v_3^2 + \lambda_1c_{(2\theta_3 - 2\theta_2)}v_3^2 + \lambda_3c_{2\theta_2}v_1^2,
$$
\n
$$
m_{33} = \lambda_{33}v_3^2 + \frac{1}{2}\overline{\lambda}_{13}v_1^2 + \frac{1}{2}\overline{\lambda}_{23}v_2^2 + \lambda_1c_{(2\theta_3 - 2\theta_2)}v_2^2 + \lambda_2c_{2\theta_3}v_1^2,
$$
\n
$$
c_x \equiv \cos x
$$

$$
\bar{\lambda}_{12}\equiv\lambda_{12}+\lambda'_{12},\quad \bar{\lambda}_{13}\equiv\lambda_{13}+\lambda'_{13},\quad \bar{\lambda}_{23}\equiv\lambda_{23}+\lambda'_{23}
$$

Minimization ¹²*,* ¯¹³ ⌘ ¹³ ⁺ ⁰ Minimize with respect to phases: ¯¹² ⌘ ¹² ⁺ ⁰ ¹²*,* ¯¹³ ⌘ ¹³ ⁺ ⁰ ¹³*,* ¯²³ ⌘ ²³ ⁺ ⁰ ¹²*,* ¯¹³ ⌘ ¹³ ⁺ ⁰ Minimize with respect to phases: <u>120, Minimization</u>

¹³*,* ¯²³ ⌘ ²³ ⁺ ⁰

¹³*,* ¯²³ ⌘ ²³ ⁺ ⁰

¹³*,* ¯²³ ⌘ ²³ ⁺ ⁰

²³*.* (0.13)

²³*.* (0.13)

Minimize with respect to phases: $M_{\rm eff}$ and $M_{\rm eff}$ with respect to phases: $\mu_{\rm eff}$ $\frac{1}{2}$ Minimize with respect to phases: Minimize with respect to phases: Minimize with respect to phases:

¯¹² ⌘ ¹² ⁺ ⁰

¯¹² ⌘ ¹² ⁺ ⁰

$$
\lambda_1 v_3^2 \sin(2\theta_2 - 2\theta_3) + \lambda_3 v_1^2 \sin 2\theta_2 = 0,
$$

\n
$$
\lambda_1 v_2^2 \sin(2\theta_3 - 2\theta_2) + \lambda_2 v_1^2 \sin 2\theta_3 = 0.
$$

Phases are related: Phases are related:

¯¹² ⌘ ¹² ⁺ ⁰

 $M_{\rm eff}$ minimize \sim 10 μ minimizes: μ minimizes: μ

$$
\lambda_3 v_2^2 \sin 2\theta_2 + \lambda_2 v_3^2 \sin 2\theta_3 = 0.
$$

of $\sin 2\theta_2$ and $\sin 2\theta_3$ is opposite of that of λ_2/λ_3 . Branco (1980)
 $\frac{1980}{2000}$ Branco (1980)
^{1⊥1 and a}^{1⊥}2 and ²¹ Relative sign of sin 2✓² and sin 2✓³ is opposite of that of 2*/*3. Relative sign of sin 2✓² and sin 2✓³ is opposite of that of 2*/*3. Relative sign of $\sin 2\theta_2$ and $\sin 2\theta_3$ is opposite of that of λ_2/λ_3 . Branco (1980) Branco (1980)

$$
\cos 2\theta_2 = \frac{1}{2} \left[\frac{D_{23}D_{31}}{D_{12}^2} - \frac{D_{31}}{D_{23}} - \frac{D_{23}}{D_{31}} \right]
$$

\n
$$
\cos 2\theta_3 = \frac{1}{2} \left[\frac{D_{23}D_{12}}{D_{31}^2} - \frac{D_{12}}{D_{23}} - \frac{D_{23}}{D_{12}} \right]
$$

\n
$$
D_{12} = \lambda_3 (v_1 v_2)^2, \quad D_{23} = \lambda_1 (v_2 v_3)^2, \quad D_{31} = \lambda_2 (v_3 v_1)^2
$$

Minimization *D*² 31 *D*¹² = 3(*v*1*v*2) *, D*²³ = 1(*v*2*v*3) *D*²³ 2

*D*12

. (0.20)

*, D*³¹ = 2(*v*3*v*1)

2

 $\frac{1}{2}$ (*p*²) approach (*vetains sign information*) 2 Free input: v_1 , v_2 , v_3 , θ_2 , θ_3 Other (our) approach (retains sign information)

2

$$
\lambda_2 = \frac{\lambda_1 v_2^2 \sin(2\theta_2 - 2\theta_3)}{v_1^2 \sin 2\theta_3},
$$

$$
\lambda_3 = -\frac{\lambda_1 v_3^2 \sin(2\theta_2 - 2\theta_3)}{v_1^2 \sin 2\theta_2}.
$$

Next: masses

1.2 Neutral sector Masses

¹ *v*⁶

2*v*8

1*v*4

2*v*¹⁰

³ *w*² sin² 2✓² sin⁸ 2✓3*F*˜2*,*⁸

³ sin³ 2✓² sin⁷ 2✓³ *F*˜3*,*⁷

Neutral sector (5×5) :

 $\frac{D}{2}$ and $\frac{D}{2}$ and $\frac{D}{2}$ It is also instructive to study the determinant: It is instructive to study the determinant:

$$
D_{5\times 5} = \frac{\lambda_1^2 \sin^2(2\theta_2 - 2\theta_3)}{v^2 v_1^4 (v_2^2 + v_3^2)^5 \sin^5 2\theta_2 \sin^5 2\theta_3} F(\theta_2, \theta_3, \ldots),
$$

\n
$$
F(\theta_2, \theta_3, \ldots) = 64 \lambda_1^3 v_2^6 v_3^{10} w^2 \sin^2 2\theta_2 \sin^8 2\theta_3 \tilde{F}_{2,8}
$$

\n
$$
+ \lambda_1^2 v_2^4 v_3^8 \sin^3 2\theta_2 \sin^7 2\theta_3 \tilde{F}_{3,7}
$$

\n
$$
+ \lambda_1 v_2^2 v_3^6 \sin^4 2\theta_2 \sin^6 2\theta_3 \tilde{F}_{4,6}
$$

\n
$$
+ v_2^4 v_3^4 \sin^5 2\theta_2 \sin^5 2\theta_3 \tilde{F}_{5,5}
$$

\n
$$
+ \{(\theta_2, \nu_2, \lambda_{22}, \bar{\lambda}_{12}) \leftrightarrow (\theta_3, \nu_3, \lambda_{33}, \bar{\lambda}_{13})\}
$$

Two t *vws*2✓² *s*2✓³ λ_1 for two lig with *F*˜*mn* regular, homogeneous expansions in the 's and powers of the vevs, as well as Two powers of λ_1 for two light masses 2^{*x*} two light masses ³ sin⁵ 2✓² sin⁵ 2✓³ *F*˜5*,*⁵ (2✓² 2✓3). Two powers of λ_1 for two light masses

Masses 1.2 Neutral sector BBBB@ *XXX* 0 *x x* 123557 F^{max} and M and M and M we have M

*^M*²

⌘HB

HB

i
L ī

CCCCA

neut =

l
L ī

 BBBB@

XXX x 0

C

l ⌘HB

HB

0 *x* 0 *x x*

Neutral sector (5×5) : $\begin{pmatrix} X & X & X \\ X & X & X \end{pmatrix}$ $\begin{bmatrix} 0 \\ x \end{bmatrix}$ $\begin{bmatrix} \eta_1^{\text{m}} \\ \eta_2^{\text{h}} \end{bmatrix}$ *v*₂ 0 η_3^{HB}
 η_3^{HB} $\begin{bmatrix} X & X & X & 0 & 0 \\ X & X & X & 0 & 0 \end{bmatrix}$ \mathbf{J} $\left| \chi_3^{\text{HB}} \right|$ (0 0 0 *v*) general case $\theta_2 = \theta_3$ $\mathcal{M}^2_{\rm neut} =$ $\sqrt{ }$ $\overline{}$ *XXX* 0 0 *XXX* 0 *x XXX x* 0 0 0 *x x x* 0 *x* 0 *x x* \setminus $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\eta_1^{\rm HB}$ $\eta_{2}^{\rm HB}$ $\eta_{3}^{\rm HB}$ $\chi^{\rm HB}_{2}$ χ_3^HB $\begin{array}{c} \hline \end{array}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} 1 & X & X & X & 0 \ X & X & X & 0 \ X & X & X & 0 \end{bmatrix}$ N eutral sector (5×5) $\begin{pmatrix} X & X & X & 0 & 0 \ X & X & X & 0 & 0 \ X & X & X & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ $\theta_2=\theta_3$ *X X X X* 0 0 $0 \t 0 \t 0 \t 0 \t 0$ $\begin{pmatrix} 0 & 0 & 0 & 0 & x \\ 0 & 0 & 0 & 0 & x \end{pmatrix}$ $\theta_2 = \theta_3$ X $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ *XXX* 0 0 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ *x* 1 $\frac{1}{2}$ *x x* (5×5) : eneut)
45 $\frac{1}{2}$ *x*₂*x*₃*x*₃ *s*₂ $\theta_2 = \theta_3$
 $\theta_3 = \theta_3$
 $\theta_1 = \theta_3$
 $\theta_2 = \theta_3$ $\mathcal{M}^2_{\text{neut}} = \begin{bmatrix} X & 1 \\ X & 1 \end{bmatrix}$ *s*¹**b**¹*s***₂ s**² $\left($ **b**² $\left($ **b**² $\left($ **b**² $\left($ **b**² $\left($ **b**² $\left($ **b**² $\left($ **c**² $\left($ $\begin{bmatrix} X & x & 0 \\ x & x & x \\ x^{\text{HB}} & x^{\text{HB}} \end{bmatrix}$ $\begin{bmatrix} \tilde{m} \\ \tilde{m} \\ \tilde{m} \end{bmatrix}$ $\begin{bmatrix} X & X & X & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ sector (5×5) : $\sqrt{ }$ $\overline{}$ *XXX* 0 0 *XXX* 0 0 *XXX* 0 0 $0 \t 0 \t 0 \t 0$ 0 0 00 *x* \setminus $\begin{array}{c} \hline \end{array}$ $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ $\begin{bmatrix} X & X & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} \eta_1^{\text{HB}} \\ \eta_2^{\text{HB}} \end{bmatrix}$ $\left[\begin{array}{ccc}X & X & 0 & x \X & X & x & 0\end{array}\right] = \left[\begin{array}{c}\eta_2 \\ \eta_2^{\text{HB}}\end{array}\right].$ ⌘HB $\begin{pmatrix} X \\ Y \end{pmatrix}$ $\begin{bmatrix} X & A \\ X & A \end{bmatrix}$ $\frac{1}{2}$ \tilde{X} X
V $\frac{X}{X}$ χ $\left(\begin{matrix} 0 & x & 0 & x & x \end{matrix} \right)$ $\left| \chi_3^{\text{m}} \right|$ and $\left| \begin{matrix} 0 & 0 & 0 & x \end{matrix} \right|$ which is also block diagonal, having interchanged rows (and columns) 3 and 5, i.e., $\sum_{i=1}^{n}$ \mathbb{R}^{HB}_3 and $\left(0 \quad 0 \quad 0 \quad 0 \quad x\right)$

*^M*²

1
1
1

 χ denotes a term vanishing χ V ² where $\mathbf x$ denotes a term vanishing with $\mathbf x$ where x denotes a term vanishing with λ_1 swapped ⌘HB $3 \cdot 1$ sning with λ

*s*2✓22✓³ *,*

BBBB@

neut)³⁴ ⁼ 21*vv*2*v*³

 $\frac{1}{2}$

Finally, for the "simple model" we have

$$
m_1 < m_2 < m_3 < m_4 < m_5
$$
 $h_i = O_{ij} \varphi^{\rm HB}_j$ O only known numerically
Which one is 125 GeV?

Finally, for the "simple model" we have

*^M*² $rac{1}{\sqrt{2}}$ Which one is 125 GeV? *XXX* 0 0

Masses 1.2 Neutral sector 1.2 Ne 0 **x** Masses *x* 123557 F^{max} and M and M and M we have M

Neutral sector (5×5) : N eutral sector (5×5) $\frac{1}{2}$ *x x* (5×5) : $\text{sector } (5 \times 5)$:

*s*2✓22✓³ *,*

neut)³⁴ ⁼ 21*vv*2*v*³

 $\frac{1}{2}$

Finally, for the "simple model" we have

 $m_1 < m_2 <$

BBBB@

x
De car x denotes a term vanis⁷
ase: $\lambda_2 = +\lambda_2$, $\theta_2 = \pm \theta_2$. $v_3, \theta_2 = \mp \theta_3, v_2$ λ_2 and λ_3 (*s*₂ = $\pm \lambda_3$, *b*₂ = $\mp \theta_3$, *v*₂ = *v*₃, $\lambda_{ii} = \lambda_{jj}$, $\bar{\lambda}_{ij} = \bar{\lambda}_{12}$ where $\mathbf x$ denotes a term vanishing with $\mathbf x$ where *x* denotes a term vanishing with λ_1 $= +c$ ble case: $\lambda_2 = \pm \lambda_3$, $\theta_2 = \mp \theta_3$, $v_2 = v_3$, $\lambda_{ii} = \lambda_{jj}$, $\bar{\lambda}_{ij} = \bar{\lambda}_{12}$ Finally, $\sigma_2 = \pm \lambda_3$, $\sigma_2 = \pm \sigma_3$, $\sigma_2 = \sigma_3$, $\lambda_{ii} = \lambda_{jj}$, $\lambda_{ij} = \lambda_{12}$ simple case: $\lambda_2 = \pm \lambda_3$, $\theta_2 = \mp \theta_3$, $v_2 = v_3$, $\lambda_{ii} = \lambda_{jj}$, $\bar{\lambda}_{ij} = \bar{\lambda}_{12}$ swapped ⌘HB ³ and HB ³ . where x d motos a torm vanishing with). \overline{X} \overline{X} $\mathbf{x}, \lambda_{ii} - \lambda_{jj}, \lambda_{ij}$ $\overline{\cdot}$ $\bar{\lambda}$ $\bigg)$ $\frac{1}{10}$ $\frac{12}{2}$ $\frac{115}{8}$ with λ $\frac{3}{1}$. $v_3,\,\lambda_{ii}=$ $\frac{1}{2}$ = $\frac{1}{3}$, $\frac{1}{2}$ = $\frac{1}{3}$, $\frac{1}{2}$ = $\frac{1}{3}$, $\frac{1}{2}$ = $\frac{1}{2}$ swapped ⌘HB $3 \cdot 1$ sning with λ $\lambda_{i}, v_{2} = v_{3}, \lambda_{ii} = \lambda_{jj}, \bar{\lambda}_{ij} = \bar{\lambda}_{12}$

*^M*²

1
1
1

⌘HB

$$
m_1 < m_2 < m_3 < m_4 < m_5
$$
\n
$$
m_1 < m_2 < m_3 < m_4 < m_5
$$
\nWhich one is 125 GeV?

*^M*²

i
L ī

*^M*²

⌘HB

HB

neut = 1
neutralis

CCCCA

HB

neut =

0

BBBB@

i
L ī

 BBBB@

XXX 0 0

XXX 0 0

XXX x 0

1

 \overline{a}

⌘HB 1

 \overline{a}

⌘HB 3

 C

l ⌘HB

HB

0 *x* 0 *x x*

CCCCA

 $\frac{1}{2}$ Which one is 125 GeV? *XXX* 0 0

Gauge couplings *i*=1*,*2*,*3 (*Dµi*) *†* (*D^µi*)*.* (2.1) *<u>Rauge coupling</u>* **L**
L
Gaud *i*=1*,*2*,*3 (*Dµi*) *†* (*D^µi*)*.* (2.1) *gm^W W*⁺ *<u>µ <i>w w w w w w y v w w y a*</u> *ZµZ^µ*

ZµZ^µ

→
XX
XX

*Oi*1*hi,* (2.2)

*Oi*1*hi,* (2.2)

Cubic gauge-gauge-scalar part: Cubic gauge-gauge-scalar part: *LVVh* =

Cubic gauge-gauge-scalar part:

$$
\mathcal{L}_{VVh} = \left(g m_W W^+_\mu W^{\mu -}_\mu + \frac{g m_Z}{2 \cos \theta_W} Z_\mu Z^\mu\right) \sum_{i=1}^5 O_{i1} h_i
$$

white gauge-statal-statal strills. Cubic gauge-scalar-scalar terms: cubic gauge-scalar-scalar term

LVVh =

✓

$$
\mathcal{L}_{Vhh} = -\frac{g}{2\cos\theta_{W}} \sum_{i=1}^{5} \sum_{j=1}^{5} (O_{i2}O_{j4} + O_{i3}O_{j5})(h_{i}\overleftrightarrow{\partial_{\mu}}h_{j})Z^{\mu} \n+ \frac{g}{2} \sum_{i=1}^{5} \sum_{j=1}^{2} [(iO_{i j+1} + O_{i j+3}) \sum_{k=1}^{2} U_{jk}(h_{k}^{+} \overleftrightarrow{\partial_{\mu}}h_{i})W^{\mu-} + \text{h.c.}] \n+ \left(ieA^{\mu} + \frac{ig\cos 2\theta_{W}}{2\cos\theta_{W}} Z^{\mu} \right) \sum_{j=1}^{2} (h_{j}^{+} \overleftrightarrow{\partial_{\mu}}h_{j}^{-}),
$$

Gauge couplings *Gauc* ◆X X *Ujkhih H Gauge* <u>a cos </u> *W*⁺ *^µ Z^µ* $\overline{\text{base}}$ *i*=1 *^AµA^µ* ⁺ *^g*² cos² ²✓*^W ^ZµZ^µ* ⁺ *eg* cos 2✓*^W*

2 cos ✓*^W*

5

XII
XIII
XIII

2

i=1

j,k=1

AµZ^µ

^k (*Oij*+1 ⁺ *iOij*+3) + h.c.

→
XX
XX

h+

^k (*Oij*+1 ⁺ *iOij*+3) + h.c.

The *hjWW* (and *hjZZ*) coupling is given by *Oj*¹ How to measure different CP content? How to measure different \cup P content? \overline{U} \overline{V} $\overline{V$ r ✓*eg* $\ddot{}$ ر
aure different C ₂ i U i L *<i>P* co ntant? 5 2 *^k* (*Oij*+1 ⁺ *iOij*+3) + h.c.

 \boldsymbol{Z} is odd under CP, study the trilinear coupling $h_ih_j\boldsymbol{Z}$

2

8 cos² ✓*^W*

2 cos ✓*^W*

^µ W^µ + *e*²

*^µ ^A^µ ^g*² sin² ✓*^W*

W⁺

⁴ *^W*⁺

2

✓*eg*

✓*g*²

✓*eg*

2

W⁺

$$
P_{ij} = (O_{i2}O_{j4} + O_{i3}O_{j5}) - (i \leftrightarrow j)
$$

In the 2HDM, allowing for CP violation, the $h_i h_j Z$ couplings are essentially α In the zindivity, and will generally violation, the $n_i n_j z$ couplings are essentially the same as the $h_k ZZ$ couplings, with i, i, k all different Not the case in a 3HDM. In the 2HDM, allowing for CP violation, the *hihjZ* couplings are essentially the same as the h_kZZ couplings, with i, j, k all different

Scan

Scan over model parameters: 5 Parameter scans 5 Parameter scans

Want the Higgs-gauge coupling *h*SM*WW* to be close to unity

 $\overline{}$

Want the Higgs-gauge coupling $h_{\text{SM}}WW$ to be close to unity Want the Higgs-gauge coupling $h_{SM}WW$ to be close to unity

> *|Oj*1*|* ' 1*,* for some *j.* (5.1) $|O_{j1}| \simeq 1$, for some *j.*

$$
v_i \in [0, v], \t i = 1, 2, 3, \t with v_1^2 + v_2^2 + v_3^2 = v^2,
$$

$$
\theta_i \in [-\pi, \pi], \t i = 2, 3,
$$

$$
\lambda_{ii}, \lambda_{ij}, \lambda'_{ij}, \lambda_1 \in [-4\pi, 4\pi], \t i, j = 1, 2, 3.
$$

Scan them. The neutral mass eigenvalues are ordered as $\mathcal{C}_{\mathsf{CQCD}}$ From these parameters one can reconstruct the mass-squared matrices and diagonalize the neutral mass eigenvalues are ordered as \sim From these parameters one can reconstruct the mass-squared matrices and diagonalize them. The neutral mass eigenvalues are ordered as $\mathsf{S}\mathsf{c}$ 1. check if the coupling *Oj*¹ to *WW* (or *ZZ*) is compatible with LHC measurements, 1. check if the coupling *Oj*¹ to *WW* (or *ZZ*) is compatible with LHC measurements,

Scan over model parameters: *m*¹ *< m*² *< m*³ *< m*⁴ *< m*5*.* (5.5) *m*¹ *< m*² *< m*³ *< m*⁴ *< m*5*.* (5.5) \overline{c}

For each $j = 1$ to 5: For each $i = 1$ to For each $j = 1$ to 5:

For each *j* = 1 to 5:

- 1. check if the coupling O_j ¹ to *WW* (or *ZZ*) is compatible with LHC measurements,
 3σ ($\sigma = 0.12$) tolerance. 1. check if the coupling O_{j1} to WW (or ZZ) is compatible with LHC measurements, 3σ ($\sigma = 0.12$) tolerance, 1. check if the coupling O_{11} to WW (or ZZ) is compatible with LHC measurements $3\sigma (\sigma = 0.12)$ tolerance,
- 3 (= 0*.*12) tolerance, 2. rescale all λ s such that $m_j = m_{\text{SM}} = 125.25 \text{ GeV}$ [footnote] 2. rescale all λ s such that $m_j = m_{\text{SM}} = 125.25 \text{ GeV}$ [for
	- 3. check if all rescaled λ s (including λ_2 and λ_3) are within the perturbative range, σ . Check it all research λ s (meruding λ_2
- 4. check if the lightest charged scalar is above 80 GeV.

[footnote] masses squared are linear in λ s
 $\sum_{i=1}^{n}$ of $\sum_{i=1}^{n}$ of $\sum_{i=1}^{n}$ of $\sum_{i=1}^{n}$ of λ

 $\sum_{i=1}^{\infty}$ check if the lightest charged scalar is above $\sum_{i=1}^{\infty}$ is above $\sum_{i=1}^{\infty}$ Distribution [in $\%$] of SM-like h_j

*h*¹ *h*² *h*³ *h*⁴ *h*⁵

Z affinity The *hjWW* (and *hjZZ*) coupling is given by *Oj*¹

 $\sum_{i=1}^{n}$ The quantity

$$
P_{ij} = (O_{i2}O_{j4} + O_{i3}O_{j5}) - (i \leftrightarrow j)
$$

measures how "different" two states h_i and h_j are in terms of CP. Recall the CP-conserving 2HDM: full-strength HAZ coupling, no hHZ coupling
Because of alignment, no hAZ coupling either Because of alignment, no *hAZ* coupling either

Because of anginiem, no *1812* coupling entier SM-like Higgs constraints As a reference, we analysed parameter points that were not subject to the experimental
CM ii. II: light states, as determined from the gauge couplings, and the gauge couplings, and then subsequently study then subsequently s SM-like Higgs constraints As a reference we analysed parameter points

 $\ddot{\text{line}}$ or this study we defin For this study, we define a "hear $U(1) \times U(1)$ symmetry" condition For this study, we define a "near $U(1) \times U(1)$ symmetry" condition For this study, we define a "near *U*(1) ⇥ *U*(1) symmetry" condition For this study, we define a "near $U(1) \times U(1)$ symmetry" condition

 $\max(|\lambda_1|, |\lambda_2|, |\lambda_3|) = 0.01$ max(*|*1*|, |*2*|, |*3*|*)=0*.*01 (4.6)

Z affinity measures how "di↵erent" two states *hⁱ* and *h^j* are in terms of CP. measures how "di↵erent" two states *hⁱ* and *h^j* are in terms of CP. The quantity

The quantity

 $\frac{u_{\text{noor}}}{\sqrt{1}} I(1) \times I(1)$ symmetry". h and h have similar CP. Likewise, h_3 , h_4 and h_5 have similar CP $\frac{1}{2}$, $\frac{1}{2}$ "near $U(1) \times U(1)$ symmetry": h_1 and h_2 have low *Z*-affinity:

No particular constraints on λ_1 , λ_2 , λ_3

Near the $U(1) \times U(1)$ *limit we have two neutral states that are approximately odd under* CP , and three that are approximately even. $\mathcal{L} = \mathcal{L} \times \mathcal{N}$, $\mathcal{L} = \mathcal{L} \times \mathcal{N}$, $\mathcal{L} = \mathcal{L} \times \mathcal{N}$, $\mathcal{L} = \mathcal{L} \times \mathcal{N}$ *CP, and three that are approximately even.* $neutral\ states\ that\ are\ approximately\ odd\ under$ \overline{n} .

Z affinity *Near the U*(1) ⇥ *U*(1) *limit we have two neutral states that are approximately odd under CP, and three that are approximately even.* No particular constraints on 1, 2, ³ *Near the U*(1) ⇥ *U*(1) *limit we have two neutral states that are approximately odd under*

Consider the CP-conserving 2HDM: *H* and *A* have opposite CP (*Z* affinity = 1), as do *h* and *A* (but *Z* affinity = 0). Alignment! *CP, and three that are approximately even.*

It is instructive to consider how the Z affinity is affected by alignment. Let h_j be "aligned", meaning its coupling to *WW* is maximal, $O_{j1} = 1$. By orthogonality, it follows that $O_{k1} = 0$ for $k \neq j$ and $O_{jk} = 0$, for $k \neq 1$. Then

$$
P_{ij} = P_{ji} = 0 \quad \text{for all } i
$$

Z affinity Not "near *U*(1) ⇥ *U*(1) symme-

have similar CP

Alignment examples

Scan points where h_2 (left) and h_3 (right) satisfy LHC SM constraint

Z affinity *Pij* = (*Oi*2*Oj*⁴ + *Oi*3*Oj*5) (*i* \$ *j*)*.* (2.5) *Z* is odd under CP, study the trilinear coupling *hihjZ Pij* = (*Oi*2*Oj*⁴ + *Oi*3*Oj*5) (*i* \$ *j*)*.* (2.5) *Z* is odd under CP, study the trilinear coupling *hihjZ*

Attempt to circumvent the "alignment prol Not the case in a 3HDM. the same as the *hkZZ* couplings, with *i, j, k* all di↵erent Attempt to circumvent the "alignment problem"

Normalized to the squared sum of even and odd couplings. N_{orm} alized to the squared sum of even and odd malized to the squared sum of even and odd coupling

$$
\hat{P}_{ij} = \frac{P_{ij}}{\sqrt{\min(O_{i1}^2, O_{j1}^2) + P_{ij}^2}}
$$

with O_i ¹ representing the CP-even ZZn_i coupling. with O_{i1} representing the CP-even ZZh_i coupling.

h_2 as hsm

Complex vevs $v_2 e^{i\theta_2}/v$ and $v_3 e^{i\theta_3}/v$, for $h_2 = h_{\text{SM}}$. Yellow is high, dark blue is low. Arbitrary normalization.

h_2 as hsm

Relative strength of the h_2h_jZ couplings, in units of $g/(2\cos\theta_W)$ (root-mean-square, averaged over the scan).

h_3 as hsm 6.1 *h*² as *h*SM

Complex vevs $v_2e^{i\theta_2}/v$ and $v_3e^{i\theta_3}/v$, for $h_3 = h_{\text{SM}}$. Yellow is high, dark blue is low. Arbitrary normalization.

S_{S} as hSM as hSM as hSM as hSM as how in figure S_{S} as how in figure S_{S} as hSM as S_{S} as hSM as S_{S} and S_{S} and S_{S} are distributed by $\mathsf{S}_{$ butions of the complex vevs *v*2*eⁱ*✓² and *v*3*eⁱ*✓³ . Superimposed on circular structures with

(root-mean-square, averaged over the scan).

Relative strength of the h_3h_jZ couplings, in units of $g/(2\cos\theta_W)$.

THE SERVICE SE Y yukawa couplings of Y 3 Yukawa couplings ¹ : (+1*,* +1) ² : (1*,* +1) ³ : (+1*,* 1) (3.1) *u^R* : (+1*,* +1) *d^R* : (1*,* +1) *e^R* : (+1*,* 1) (3.2)

Example $\mathbb{Z}_2 \times \mathbb{Z}_2$ charges: Example \mathbb{Z} Example $\mathbb{Z}_2 \times \mathbb{Z}$ $\text{Liam}_{\mathcal{F}} \times \mathbb{Z}_2 \times \mathbb{Z}_2$ charges. Ω : $\mathbb{Z}_2 \times \mathbb{Z}_2$ charges: $1e \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ charges *Example* $\mathbb{Z}_2 \times \mathbb{Z}_2$ charges:

$$
\begin{array}{cccc}\n\phi_1: (+1, +1) & \phi_2: (-1, +1) & \phi_3: (+1, -1) \\
u_R: (+1, +1) & d_R: (-1, +1) & e_R: (+1, -1)\n\end{array}
$$
\nValues for a graph of the following equations:

u^R : (+1*,* +1) *d^R* : (1*,* +1) *e^R* : (+1*,* 1) (3.2) Yukawa Lagrangian *Q*¯*L*2*d^R* + *Y ^e ^L^Y* ⁼ *^Y ^uQ*¯*L*˜1*u^R* ⁺ *^Y ^d* physical fermion fields, we obtain

3 Yukawa couplings

 $\mathbb{E}\left[\mathbb$

 $\mathbb{E}\left[\mathbb$

Example Z² ⇥ Z² charges:

 $\mathcal{L}_Y = Y^u \bar{Q}_L \tilde{\phi}_1 u_R + Y^d \bar{Q}_L \phi_2 d_R + Y^e \bar{E}_L \phi_3 e_R + \text{h.c.}$ $\frac{1}{2}$ $\mathcal{L} = \nabla \phi^2 \cos \phi^2$ neutral interactions \overline{v} $\mathcal{L}_Y = Y^u \bar{Q}_L \tilde{\phi}_1 u_R + Y^d \bar{Q}_L \phi_2 d_R + Y^e \bar{E}_L \phi_3 e_R + \text{h.c.}$ $E = \frac{1}{\sqrt{2}}$ $\mathcal L_Y=Y$ " $Q_L \rho_1 u_R$ r al interactions $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$

neutral interactions
\n
$$
\mathcal{L}_Y^{\text{neutral}} = \frac{1}{v_1} \bar{u} M^u (\eta_1 + i \chi_1 \gamma_5) u + \frac{1}{v_2} \bar{d} M^d (\eta_2 + i \chi_2 \gamma_5) d + \frac{1}{v_3} \bar{e} M^e (\eta_3 + i \chi_3 \gamma_5) e.
$$

^Y = The η_i and χ_i fields will mix. *v*1 $\frac{u}{u}$ and λ_i notes with interests h_i α *d*_{*d*} α is the multimum.
 d α fermion *f*: The η_i and χ_i fields will mix. The η_i and χ_i fields will mix. Neutral physical scalar h_i and a fermion f: The η_i and χ_i fields will mix.
Neutral physical scalar *h* and a fermion

$$
\mathcal{L}_{hiff} = \frac{m_f}{v} h_i(\kappa^{h_i ff} \bar{f} f + i \tilde{\kappa}^{h_i ff} \bar{f} \gamma_5 f)
$$

Yukawa couplings Neutral physical scalar *hⁱ* and a fermion *f*: *L^hif f* = *m^f hi*(*^hif f* ¯*ff* + *i*˜*^hif f* ¯*f*5*f*)*.* (3.5) *hi*(*^hif f* ¯*ff* + *i*˜*^hif f* ¯*f*5*f*)*.* (3.5) by "undoing" the transformation to the Higgs basis, Eq. (1.26), writing the inverse, for with R ² given by Eq. (1.27). Next, the R ² given by Eq. (1.27). Next, the R according to Eq. (1.29), can be expressed in terms of the physical states \mathbf{r} via Eq. (1.32). The physical states \mathbf{r}

ⁱ and HB

ⁱ , collectively referred to as 'HB

$$
\mathcal{L}_{hiff} = \frac{m_f}{v} h_i (\kappa^{h_i ff} \bar{f} f + i \tilde{\kappa}^{h_i ff} \bar{f} \gamma_5 f)
$$

by "undoing" the transformation to the Higgs basis, Eq. (1.26), writing the inverse, for

TOF 77 IIIIal states, CIVIS has constrained inixing $\tan \alpha^{h_{\text{SMTT}}} = \frac{K^{h_{\text{SMTT}}}}{h_{\text{SMTT}}}$ For $\tau\bar{\tau}$ final states, CMS has constrained mixing t_{SMT} ⁷ For $\tau\bar{\tau}$ final states, CMS has constrained m $\tilde{\kappa}^{h_{\text{SM}}\tau\tau}$ $\frac{h}{\kappa h_{\text{SMTT}}}$ $\tan \alpha^{h_{\rm SM} \tau \tau} = \frac{\tilde{\kappa}^{h_{\rm SM} \tau \tau}}{h_{\rm max}}$ $\kappa^{h_{\rm SM}\tau\tau}$ $\tan \alpha^{h_{\text{SMTT}}} = \frac{\ddot{K}^{h_{\text{SMTT}}}}{h_{\text{SMTT}}}$ $\kappa^{n_{\rm SM}\tau\tau}$ $v \sim \frac{1}{2}$, $v \sim \frac{1}{2}$ $\tan \alpha^{h_{\text{SM}}\tau\tau} = \frac{\kappa^{h_{\text{SM}}}}{h}$

The ⌘*ⁱ* and *ⁱ* fields will mix.

the neutral fields, in the form $\mathcal{O}(n)$ is the form of $\mathcal{O}(n)$

L^hif f =

ia Higgs basis *h* $\frac{1}{2}$ *k h* and *m sical neids:*
 \approx $\frac{6}{1}$ In order the in η_k and χ_k , was neglected the fields to physical fields. Rotate from η_k and χ_k , via Higgs basis fields to physical fields: χ _{*l*} , via Higgs basis fields to *v* rsical field
 i α *, (3.9) ,* α

$$
Z_i^{(k)} = \tilde{\mathcal{R}}_{1k}O_{i1} + \tilde{\mathcal{R}}_{2k}(O_{i2} + iO_{i4}) + \tilde{\mathcal{R}}_{3k}(O_{i3} + iO_{i5})
$$

$$
\alpha^{h_i \tau \tau} = \arg(Z_i^{(3)})
$$

Yukawa couplings

having imposed cut on α for hs_M

EXPERIMENTAL ISSUE

If h_2 or h_3 plays the role of h_{SM} at 125 GeV

Why have not h_1 or h_2 been observed?

1. Reduced coupling for Bjorken process (LEP) 2. Reduced gamma-gamma BR

However, note suggestions by Heinemeyer et al, 96 GeV 2105.11189, 2203.13180, 2204.05975

CONCLUSIONS

We have reviewed the Weinberg 3HDM potential

- accommodates CP violation and NFC
- consequence: light states with a significant CP-
odd content (below 125 GeV)
- Plea for LHC: keep searching!

BACKUP

Appendix: Limits of CPC conservation of CP conserva

In special cases, no CP violation. Study CP-odd invariants At the lowest non-trivial order, the invariants can be expanded in terms of At the lowest non-trivial order in terms of the invariants can be expanded in terms of the international can be expanded in terms of the international can be expanded in terms of the international can be expanded in terms *', the invariants can be expanded in terms* Acted and a CD wiclotion Ctudy CD add *s* the invariants can be expanded in the In special cases, no CP violation. Study CP -odd invariants \blacksquare

$$
S = \sin(2\theta_2 - 2\theta_3)
$$

and

and
$$
X_a = \lambda_{11}(\lambda_{12} - \lambda_{13}) + \lambda_{22}(\lambda_{23} - \lambda_{12}) + \lambda_{33}(\lambda_{13} - \lambda_{23})
$$

$$
X_b = \lambda_{11}(\lambda'_{12} - \lambda'_{13}) + \lambda_{22}(\lambda'_{23} - \lambda'_{12}) + \lambda_{33}(\lambda'_{13} - \lambda'_{23})
$$

$$
X_c = \lambda_{12}(\lambda'_{13} - \lambda'_{23}) + \lambda_{13}(\lambda'_{23} - \lambda'_{12}) + \lambda_{23}(\lambda'_{12} - \lambda'_{13})
$$

$$
W_{a} = (\lambda_{23} - \lambda_{13})v_{1}^{4}v_{2}^{4}\sin^{2}2\theta_{2} + (\lambda_{13} - \lambda_{12})v_{2}^{4}v_{3}^{4}\sin^{2}(2\theta_{2} - 2\theta_{3})
$$

+ $(\lambda_{12} - \lambda_{23})v_{1}^{4}v_{3}^{4}\sin^{2}2\theta_{3},$

$$
W_{b} = (\lambda'_{23} - \lambda'_{13})v_{1}^{4}v_{2}^{4}\sin^{2}2\theta_{2} + (\lambda'_{13} - \lambda'_{12})v_{2}^{4}v_{3}^{4}\sin^{2}(2\theta_{2} - 2\theta_{3})
$$

+ $(\lambda'_{12} - \lambda'_{23})v_{1}^{4}v_{3}^{4}\sin^{2}2\theta_{3},$

$$
W_{c} = (\lambda_{11} - \lambda_{22})v_{1}^{4}v_{2}^{4}\sin^{2}2\theta_{2} + (\lambda_{22} - \lambda_{33})v_{2}^{4}v_{3}^{4}\sin^{2}(2\theta_{2} - 2\theta_{3})
$$

+ $(\lambda_{33} - \lambda_{11})v_{1}^{4}v_{3}^{4}\sin^{2}3\theta_{3}.$ **must all vanish...**

Higgs basis *eⁱ*✓² *v*² \overline{P} $\overline{}$ $\overline{\mathbf{s}}$ $\overline{}$

A *.* (0.23)

$$
\mathcal{R}_2 \mathcal{R}_1 \begin{pmatrix} v_1 \\ e^{i\theta_2} v_2 \\ e^{i\theta_3} v_3 \end{pmatrix} = \begin{pmatrix} v \\ 0 \\ 0 \end{pmatrix}
$$

$$
\mathcal{R}_1 = \begin{pmatrix} 1 & 0 \\ 0 & R_1 \end{pmatrix}, \quad R_1 = \frac{1}{w} \begin{pmatrix} v_2 e^{-i\theta_2} & v_3 e^{-i\theta_3} \\ -v_3 e^{-i\theta_2} & v_2 e^{-i\theta_3} \end{pmatrix}, \quad w = \sqrt{v_2^2 + v_3^2}
$$

0.1 Rotating to a Higgs basis

 $A \rightarrow \infty$ suitable Higgs basis is reached by the transformation

Higgs basis *eⁱ*✓² *v*² \overline{P} $\overline{}$ $\overline{\mathbf{s}}$ $\overline{}$ A *.* (0.23) *, R*¹ = *v*3 *basis* Thus, the Higgs basis (with SU(2) doublets *H*1, *H*² and *H*3) is reached by *R* ⌘ *R*2*R*1,

, w =

*v*2

² + *v*²

*H*¹

1
1
1

0
1900
1900

³*,* (0.24)

$$
\mathcal{R}_{2}\mathcal{R}_{1}\begin{pmatrix}v_{1} \\ e^{i\theta_{2}}v_{2} \\ e^{i\theta_{3}}v_{3}\end{pmatrix} = \begin{pmatrix}v_{1} \\ 0 \\ 0\end{pmatrix} \n\mathcal{R}_{1} = \begin{pmatrix}1 & 0 \\ 0 & R_{1}\end{pmatrix}, \quad R_{1} = \frac{1}{w}\begin{pmatrix}v_{2}e^{-i\theta_{2}} & v_{3}e^{-i\theta_{3}} \\ -v_{3}e^{-i\theta_{2}} & v_{2}e^{-i\theta_{3}}\end{pmatrix}, \quad w = \sqrt{v_{2}^{2} + v_{3}^{2}} \n\mathcal{R}_{2} = \frac{1}{v}\begin{pmatrix}v_{1} & w & 0 \\ -w & v_{1} & 0 \\ 0 & 0 & v\end{pmatrix} \qquad \begin{pmatrix}H_{1} \\ H_{2} \\ H_{3}\end{pmatrix} = \mathcal{R}\begin{pmatrix}\phi_{1} \\ \phi_{2} \\ \phi_{3}\end{pmatrix} = \tilde{\mathcal{R}}\begin{pmatrix}\phi_{1} \\ e^{-i\theta_{2}}\phi_{2} \\ e^{-i\theta_{3}}\phi_{3}\end{pmatrix} \n\tilde{\mathcal{R}} = \mathcal{R}_{2}\frac{1}{w}\begin{pmatrix}w & 0 & 0 \\ 0 & v_{2} & v_{3} \\ 0 & -v_{3} & v_{2}\end{pmatrix} \qquad \text{in fact real}.
$$

0.1 Rotating to a Higgs basis

 $A \rightarrow \infty$ suitable Higgs basis is reached by the transformation

*R*2*R*¹

0

*v*1

*R*¹ =

1

A =

*v*¹ *w* 0

0

v

1

1
1
1

0

@

eⁱ✓² *v*²

@

0
1900 - 1910
1910 - 1910 - 1910

Higgs basis *eⁱ*✓² *v*² \overline{P} $\overline{}$ $\overline{\mathbf{s}}$ $\overline{}$ A *.* (0.23) *, R*¹ = *<i><u>i**basis*</u> Thus, the Higgs basis (with SU(2) doublets *H*1, *H*² and *H*3) is reached by *R* ⌘ *R*2*R*1, **b** Dasis A *.* (0.25) Thus, the Higgs basis (with SU(2) doublets *H*1, *H*² and *H*3) is reached by *R* ⌘ *R*2*R*1,

, w =

*v*2

² + *v*²

*H*¹

1
1
1

0
1900
1900

³*,* (0.24)

0.1 Rotating to a Higgs basis

 $A \rightarrow \infty$ suitable Higgs basis is reached by the transformation

*R*2*R*¹

0

*v*1

*R*¹ =

1

A =

*v*¹ *w* 0

0

v

1

1
1
1

0

@

eⁱ✓² *v*²

@

0
1900 - 1910
1910 - 1910 - 1910

$$
\mathcal{R}_{2}\mathcal{R}_{1}\begin{pmatrix} v_{1} \\ e^{i\theta_{2}}v_{2} \\ e^{i\theta_{3}}v_{3} \end{pmatrix} = \begin{pmatrix} v \\ 0 \\ 0 \end{pmatrix} \n\mathcal{R}_{1} = \begin{pmatrix} 1 & 0 \\ 0 & R_{1} \end{pmatrix}, \quad R_{1} = \frac{1}{w} \begin{pmatrix} v_{2}e^{-i\theta_{2}} & v_{3}e^{-i\theta_{3}} \\ -v_{3}e^{-i\theta_{2}} & v_{2}e^{-i\theta_{3}} \end{pmatrix}, \quad w = \sqrt{v_{2}^{2} + v_{3}^{2}}.
$$
\n
$$
\mathcal{R}_{2} = \frac{1}{v} \begin{pmatrix} v_{1} & w & 0 \\ -w & v_{1} & 0 \\ 0 & 0 & v \end{pmatrix} \qquad \begin{pmatrix} H_{1} \\ H_{2} \\ H_{3} \end{pmatrix} = \mathcal{R} \begin{pmatrix} \phi_{1} \\ \phi_{2} \\ \phi_{3} \end{pmatrix} = \tilde{\mathcal{R}} \begin{pmatrix} \phi_{1} \\ e^{-i\theta_{2}}\phi_{2} \\ e^{-i\theta_{3}}\phi_{3} \end{pmatrix}
$$
\n
$$
\tilde{\mathcal{R}} = \mathcal{R}_{2} \frac{1}{w} \begin{pmatrix} w & 0 & 0 \\ 0 & v_{2} & v_{3} \\ 0 & -v_{3} & v_{2} \end{pmatrix} \qquad \text{in fact real.}
$$
\n
$$
H_{1} = \begin{pmatrix} G^{+} \\ (v + \eta_{1}^{HB} + iG_{0})/\sqrt{2} \end{pmatrix}, \quad H_{i} = \begin{pmatrix} \varphi_{i}^{HB} + \\ (\eta_{i}^{HB} + i\chi_{i}^{HB})/\sqrt{2} \end{pmatrix}, \quad i = 2, 3
$$
\n
$$
\varphi_{i}^{HB} = \{\eta_{1}^{HB}, \quad \eta_{2}^{HB}, \quad \eta_{3}^{HB}, \quad \chi_{2}^{HB}, \quad \chi_{3}^{HB}, \quad i = 1, \dots 5
$$

Masses and enumerate the neutral fields *{*1,2,3,4,5*}* according to the following sequence: ² *,* ⌘HB ³ *,* HB ² *,* HB ² *,* ⌘HB ³ *,* HB ² *,* HB $\overline{}$ Masses ch)11 = 1*v*2 sin2(2)
*v*2 sin2(2)*v* 2*v*²

and enumerate the neutral fields *{*1,2,3,4,5*}* according to the following sequence:

³ *}, i* = 1*,...* 5*.* (1.29)

³) *^v*²

³ *}, i* = 1*,...* 5*.* (1.29)

Charged sector: Charged sector: Charged sectors in the second sector in the second sector in the second sector in the second sector. The second sector in the second second sector in the second sector in the second sector in the second sector in the secon \mathbf{r} ⁺

'
'HBC
'HBC

'HB

ⁱ ⁼ *{*⌘HB

ⁱ ⁼ *{*⌘HB

Charged sector:

¹ *,* ⌘HB

¹ *,* ⌘HB

$$
\begin{split}\n(\mathcal{M}_{ch}^2)_{11} &= -\frac{\lambda_1 v^2 \sin^2(2\theta_2 - 2\theta_3) v_2^2 v_3^2}{\sin 2\theta_2 \sin 2\theta_3 v_1^2 w^2} - (\lambda'_{12} v_2^2 + \lambda'_{13} v_3^2) \frac{v^2}{2w^2}, \\
(\mathcal{M}_{ch}^2)_{12} &= -\frac{\lambda_1 v v_1 v_2 v_3 \sin(2\theta_2 - 2\theta_3)}{\sin 2\theta_2 \sin 2\theta_3 v_1^2 w^2} (v_2^2 \sin 2\theta_2 e^{2i\theta_3} + v_3^2 \sin 2\theta_3 e^{2i\theta_2}) + \frac{v v_1 v_2 v_3}{2w^2} (\lambda'_{12} - \lambda'_{13}), \\
(\mathcal{M}_{ch}^2)_{21} &= (\mathcal{M}_{ch}^2)_{12}^*, \\
(\mathcal{M}_{ch}^2)_{22} &= -\frac{\lambda_1}{\sin 2\theta_2 \sin 2\theta_3 w^2} (2 \sin 2\theta_2 \sin 2\theta_3 \cos(2\theta_2 - 2\theta_3) v_2^2 v_3^2 + \sin^2 2\theta_2 v_2^4 + \sin^2 2\theta_3 v_3^4) \\
&- \frac{1}{2w^2} [(\lambda'_{12} v_3^2 + \lambda'_{13} v_2^2) v_1^2 + \lambda'_{23} w^4].\n\end{split}
$$

_ገ
ገ terms proportional to λ_1 and to λ'_{ij}

$$
h_i^+ = U_{ij} \varphi_{j+1}^{\text{HB}+} \qquad U = \begin{pmatrix} \cos \gamma & \sin \gamma e^{i\phi} \\ -\sin \gamma e^{-i\phi} & \cos \gamma \end{pmatrix}
$$

Masses

Neutral sector: Neutral sector (5×5) :

1.2 Neutral sector

$$
(\mathcal{M}_{\text{neut}}^{2})_{11} = \frac{4\lambda_{1}v_{2}^{2}v_{3}^{2}}{v^{2} s_{2\theta_{2}} s_{2\theta_{3}}}[1 - c_{2\theta_{2}-2\theta_{2}} c_{2\theta_{2}} c_{2\theta_{3}}] + \frac{2}{v^{2}}[\lambda_{11}v_{1}^{4} + \lambda_{22}v_{2}^{4} + \lambda_{33}v_{3}^{4} + \bar{\lambda}_{12}v_{1}^{2}v_{2}^{2} + \bar{\lambda}_{13}v_{1}^{2}v_{3}^{2} + \bar{\lambda}_{23}v_{2}^{2}v_{3}^{2}], (\mathcal{M}_{\text{neut}}^{2})_{12} = \frac{-2\lambda_{1}v_{2}^{2}v_{3}^{2}}{v^{2} w v_{1} s_{2\theta_{2}} s_{2\theta_{3}}}[s_{2\theta_{2}-2\theta_{3}}^{2}(2w^{2} - v^{2}) - 2c_{2\theta_{2}-2\theta_{3}} s_{2\theta_{2}} s_{2\theta_{3}} v_{1}^{2}] - \frac{v_{1}}{v^{2} w}[2\lambda_{11}v_{1}^{2}w^{2} - 2\lambda_{22}v_{2}^{4} - 2\lambda_{33}v_{3}^{4} - (\bar{\lambda}_{12}v_{2}^{2} + \bar{\lambda}_{13}v_{3}^{2})(v^{2} - 2w^{2}) - 2\bar{\lambda}_{23}v_{2}^{2}v_{3}^{2}] (\mathcal{M}_{\text{neut}}^{2})_{13} = \frac{2\lambda_{1}v_{2}v_{3}}{v w s_{2\theta_{2}} s_{2\theta_{3}}}[v_{2}^{2} s_{2\theta_{2}}^{2} - v_{3}^{2} s_{2\theta_{3}}^{2}] + \frac{v_{2}v_{3}w}{vw^{2}}[-2\lambda_{22}v_{2}^{2} + 2\lambda_{33}v_{3}^{2} - \bar{\lambda}_{12}v_{1}^{2} + \bar{\lambda}_{13}v_{1}^{2} + \bar{\lambda}_{23}(v_{2}^{2} - v_{3}^{2})], (\mathcal{M}_{\text{neut}}^{2})_{22} = \frac{4\lambda_{1}v_{2}^{2}v_{3}^{2}}{v^{2} w^{2} s_{2\
$$

Masses 1.2 Neutral sector 1.2 Ne ¹*c*2✓22✓³ *^s*2✓² *^s*2✓³ *^w*2*s*² ²✓22✓³] ³ ¯12*v*² ²*w*² ¯13*v*² ³*w*² ⁺ ¯23*v*² *^v*2*w*² [11*w*⁴ ⁺ 22*v*⁴ ² + 33*v*⁴

2*v*2 3]*,*

Neutral sector (5×5) :

 $\frac{1}{2}$

neut)²² ⁼ ⁴1*v*²

2*v*² 1

[*v*2

² + 33*v*⁴

*v*2*w*2*s*2✓² *s*2✓³

*^v*2*w*² [11*w*⁴ ⁺ 22*v*⁴

(*M*²

WELLIAI SECHOI (J X J).
\n
$$
(\mathcal{M}_{\text{neut}}^2)_{23} = \frac{2\lambda_1 v_2 v_3}{v v_1 w^2 s_{2\theta_2 s_{2\theta_3}} [-w^2 s_{2\theta_2 - 2\theta_3} (v_2^2 s_{2\theta_2} c_{2\theta_3} + v_3^2 s_{2\theta_3} c_{2\theta_2}) + v_1^2 (v_2^2 - v_3^2) c_{2\theta_2 - 2\theta_3} s_{2\theta_2} s_{2\theta_3}] + \frac{v_1 v_2 v_3}{w v^2} [-2\lambda_{22} v_2^2 + 2\lambda_{33} v_3^2 + (\bar{\lambda}_{12} - \bar{\lambda}_{13}) w^2 + \bar{\lambda}_{23} (v_2^2 - v_3^2)],
$$
\n
$$
(\mathcal{M}_{\text{neut}}^2)_{25} = \frac{2\lambda_1 v v_2 v_3}{v_1} s_{2\theta_2 - 2\theta_3},
$$
\n
$$
(\mathcal{M}_{\text{neut}}^2)_{34} = \frac{-4\lambda_1 v_2^2 v_3^2}{v_1} c_{2\theta_2 - 2\theta_3} + \frac{2v_2^2 v_3^2}{w^2} [\lambda_{22} + \lambda_{33} - \bar{\lambda}_{23}],
$$
\n
$$
(\mathcal{M}_{\text{neut}}^2)_{44} = \frac{-2\lambda_1 v v_2 v_3}{v_1} s_{2\theta_2 - 2\theta_3},
$$
\n
$$
(\mathcal{M}_{\text{neut}}^2)_{45} = \frac{-2\lambda_1 v^2 v_2^2 v_3^2}{v_1 w^2 s_{2\theta_2} s_{2\theta_3}} s_{2\theta_2 - 2\theta_3} [v_2^2 s_{2\theta_2} c_{2\theta_3} + v_3^2 s_{2\theta_3} c_{2\theta_2}],
$$
\n
$$
(\mathcal{M}_{\text{neut}}^2)_{45} = \frac{-2\lambda_1 v_2 v_3}{v_1 w^2 s_{2\theta_2} s_{2\theta_3}} [2v_2^2 v_3^2 c_{2\theta_2 - 2\theta_3} s_{2\theta_2 - 2\theta_3}
$$