QCDF Amplitudes from SU(3) Symmetries

Gilberto Tetlalmatzi-Xolocotzi

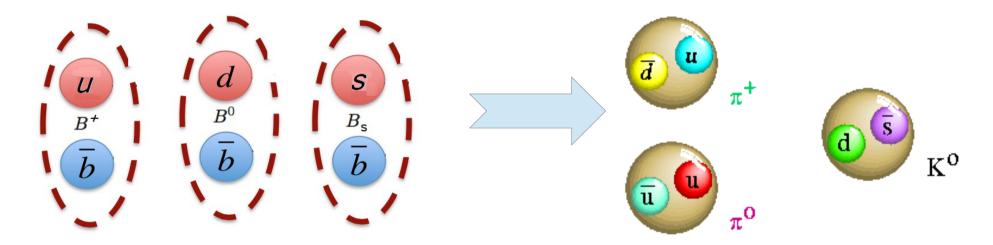
Based on: T. Huber and GTX, 2111.06418

Eur.Phys.J.C 81 (2021) 7, 658

CPPS, Theoretische Physik 1, Universität Siegen

Non-leptonic B meson decays

We are interested in B meson decays into pairs of light pseudoscalar mesons



$$B \to PP$$

The light pseudoscalar mesons are bound states of light quarks [u, d, s] (SU(3) symmetry)

$$B = (B^+, B_d^0, B_s^0)$$

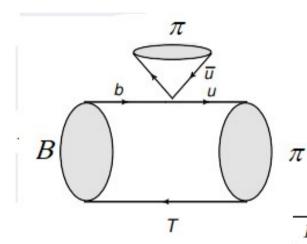
$$q_i \otimes \overline{q_j} \rightarrow 3 \otimes \overline{3} = 8 \oplus 1$$

 $i, j \in [u, d, s]$

$$M = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta_q}{\sqrt{2}} + \frac{\eta_q'}{\sqrt{2}} & \pi^- & K^- \\ \pi^+ & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta_q}{\sqrt{2}} + \frac{\eta_q'}{\sqrt{2}} & \bar{K}^0 \\ K^+ & K^0 & \eta_s + \eta_s' \end{pmatrix}$$

Non-leptonic B meson decays

We are interested in B meson decays into pairs of light pseudoscalar mesons



 $b \rightarrow u \overline{u} q$

q = d, s

Several possible decay channels

$$\begin{array}{cccc}
B^{-} \to \pi^{0}\pi^{-} & \overline{B}^{0} \to K^{0}\overline{K}^{0} \\
B^{-} \to \pi^{-}\eta_{8} & \overline{B}^{0} \to \eta_{8}\eta_{8} \\
B^{-} \to \pi^{-}\eta_{1} & \overline{B}^{0} \to \eta_{8}\eta_{1} \\
B^{-} \to K^{0}K^{-} & \overline{B}^{0} \to \eta_{1}\eta_{1} \\
\overline{B}^{0} \to \pi^{+}\pi^{-} & \overline{B}^{0} \to \pi^{0}K^{0} \\
\overline{B}^{0} \to \pi^{0}\pi^{0} & \overline{B}^{0} \to \pi^{-}K^{+} \\
\overline{B}^{0} \to \pi^{0}\eta_{8} & \overline{B}^{0} \to K^{0}\eta_{8} \\
\overline{B}^{0} \to K^{+}K^{-} & \overline{B}^{0} \to K^{0}\eta_{1}
\end{array}$$

Consider the process $B \to PP$

where P is a charmless pseudoscalar meson

The physical amplitude can be decomposed as

$$\mathcal{A}^{TDA} = i \frac{G_F}{\sqrt{2}} \Big[\mathcal{T}^{TDA} + \mathcal{P}^{TDA} \Big]$$

$$\lambda_p^{(q)} = V_{pb} V_{pq}^* \qquad \lambda_u^{(q)} \qquad \lambda_t^{(q)} \qquad q = d, s$$

$$\lambda_u^{(q)} + \lambda_c^{(q)} + \lambda_t^{(q)} = 0$$

Consider the process $B \to PP$

where P is a charmless pseudoscalar meson

The physical amplitude can be decomposed as

$$\mathcal{A}^{TDA} = i \frac{G_F}{\sqrt{2}} \Big[\mathcal{T}^{TDA} + \mathcal{P}^{TDA} \Big]$$

$$\lambda_p^{(q)} = V_{pb} V_{pq}^* \qquad \lambda_u^{(q)} \qquad \lambda_t^{(q)} \qquad q = d, s$$

$$\lambda_u^{(q)} + \lambda_c^{(q)} + \lambda_t^{(q)} = 0$$

$$\mathcal{T}^{TDA} = \underline{T} B_{i}(M)_{j}^{i} \bar{H}_{k}^{jl}(M)_{l}^{k} + \underline{C} B_{i}(M)_{j}^{i} \bar{H}_{k}^{lj}(M)_{l}^{k} + \underline{A} B_{i} \bar{H}_{j}^{il}(M)_{k}^{j}(M)_{k}^{k}$$

$$+ \underline{E} B_{i} \bar{H}_{j}^{li}(M)_{k}^{j}(M)_{k}^{k} + \underline{T}_{ES} B_{i} \bar{H}_{l}^{ij}(M)_{j}^{l}(M)_{k}^{k} + \underline{T}_{AS} B_{i} \bar{H}_{l}^{ji}(M)_{j}^{l}(M)_{k}^{k}$$

$$+ \underline{T}_{S} B_{i}(M)_{j}^{i} \bar{H}_{l}^{lj}(M)_{k}^{k} + \underline{T}_{PA} B_{i} \bar{H}_{l}^{li}(M)_{k}^{j}(M)_{j}^{k} + \underline{T}_{PB} B_{i}(M)_{j}^{i}(M)_{k}^{j} \bar{H}_{l}^{lk}$$

$$+ \underline{T}_{SS} B_{i} \bar{H}_{l}^{li}(M)_{j}^{j}(M)_{k}^{k},$$

SU(3) Flavour

[u, d, s]

$$B = (B^+, B_d^0, B_s^0) \qquad M = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta_q}{\sqrt{2}} + \frac{\eta_q'}{\sqrt{2}} & \pi^- & K^- \\ \pi^+ & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta_q}{\sqrt{2}} + \frac{\eta_q'}{\sqrt{2}} & \bar{K}^0 \\ K^+ & K^0 & \eta_s + \eta_s' \end{pmatrix}$$

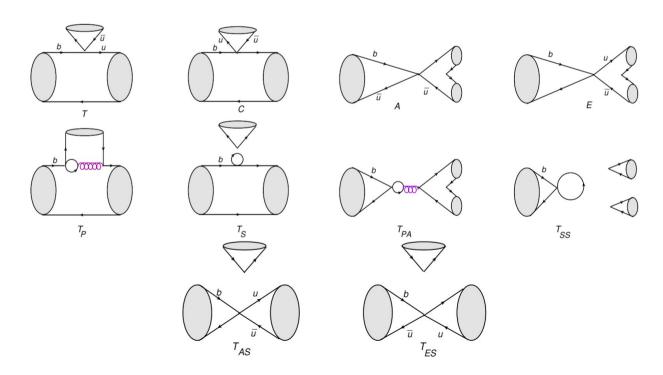
$$\bar{H}_1^{12} = \lambda_u^{(d)}, \quad \bar{H}_1^{13} = \lambda_u^{(s)},$$

$$\mathcal{T}^{TDA} = \underline{T} B_{i}(M)_{j}^{i} \bar{H}_{k}^{jl}(M)_{l}^{k} + \underline{C} B_{i}(M)_{j}^{i} \bar{H}_{k}^{lj}(M)_{l}^{k} + \underline{A} B_{i} \bar{H}_{j}^{il}(M)_{k}^{j}(M)_{k}^{k}$$

$$+ \underline{E} B_{i} \bar{H}_{j}^{li}(M)_{k}^{j}(M)_{k}^{k} + \underline{T}_{ES} B_{i} \bar{H}_{l}^{ij}(M)_{j}^{l}(M)_{k}^{k} + \underline{T}_{AS} B_{i} \bar{H}_{l}^{ji}(M)_{j}^{l}(M)_{k}^{k}$$

$$+ \underline{T}_{S} B_{i}(M)_{j}^{i} \bar{H}_{l}^{lj}(M)_{k}^{k} + \underline{T}_{PA} B_{i} \bar{H}_{l}^{li}(M)_{k}^{j}(M)_{j}^{k} + \underline{T}_{PB} B_{i}(M)_{j}^{i}(M)_{k}^{j} \bar{H}_{l}^{lk}$$

$$+ \underline{T}_{SS} B_{i} \bar{H}_{l}^{li}(M)_{j}^{j}(M)_{k}^{k},$$



SU(3)-Irreducible decomposition

$$\mathcal{T}^{IRA} = \underline{A_3}^T B_i(\bar{H}_{\bar{3}})^i(M)_k^j(M)_j^k + \underline{C_3}^T B_i(M)_j^i(M)_k^j(\bar{H}_{\bar{3}})^k + \underline{B_3}^T B_i(\bar{H}_3)^i(M)_k^k(M)_j^j$$

$$+ \underline{D_3}^T B_i(M)_j^i(\bar{H}_{\bar{3}})^j(M)_k^k + \underline{A_6}^T B_i(H_6)_k^{ij}(M)_j^l(M)_l^k + \underline{C_6}^T B_i(M)_j^i(\bar{H}_6)_k^{jl}(M)_l^k$$

$$+ \underline{B_6}^T B_i(\bar{H}_6)_k^{ij}(M)_j^k(M)_l^l + \underline{A_{15}}^T B_i(\bar{H}_{\bar{15}})_k^{ij}(M)_j^l(M)_l^k + \underline{C_{15}}^T B_i(M)_j^i(\bar{H}_{\bar{15}})_l^{jk}(M)_k^l$$

$$+ \underline{B_{15}}^T B_i(\bar{H}_{\bar{15}})_k^{ij}(M)_j^k(M)_l^l.$$

SU(3) irreducible decomposition

$$\bar{H}_{k}^{ij} = \frac{1}{8} (H_{\overline{15}})_{k}^{ij} + \frac{1}{4} (H_{6})_{k}^{ij} - \frac{1}{8} (H_{\overline{3}})^{i} \delta_{k}^{j} + \frac{3}{8} (H_{\overline{3}'})^{j} \delta_{k}^{i}$$

SU(3)-Irreducible decomposition

$$\mathcal{T}^{IRA} = \underline{A_3^T} B_i(\bar{H}_{\bar{3}})^i (M)_k^j (M)_j^k + \underline{C_3^T} B_i(M)_j^i (M)_k^j (\bar{H}_{\bar{3}})^k + \underline{B_3^T} B_i(\bar{H}_3)^i (M)_k^k (M)_j^j$$

$$+ \underline{D_3^T} B_i(M)_j^i (\bar{H}_{\bar{3}})^j (M)_k^k + \underline{A_6^T} B_i(H_6)_k^{ij} (M)_j^l (M)_k^k + \underline{C_6^T} B_i(M)_j^i (\bar{H}_6)_k^{jl} (M)_k^k$$

$$+ \underline{B_6^T} B_i(\bar{H}_6)_k^{ij} (M)_j^k (M)_l^l + \underline{A_{15}^T} B_i(\bar{H}_{\bar{15}})_k^{ij} (M)_j^l (M)_l^k + \underline{C_{15}^T} B_i(M)_j^i (\bar{H}_{\bar{15}})_l^{jk} (M)_k^l$$

$$+ \underline{B_{15}^T} B_i(\bar{H}_{\bar{15}})_k^{ij} (M)_j^k (M)_l^l.$$

Topological to SU(3)

X.-G. He and W. Wang: 1803.04227

$$A_3^T = -\frac{A}{8} + \frac{3E}{8} + T_{PA}, \qquad B_3^T = T_{SS} + \frac{3T_{AS} - T_{ES}}{8},$$

$$C_3^T = \frac{1}{8}(3A - C - E + 3T) + T_P, \qquad D_3^T = T_S + \frac{1}{8}(3C - T_{AS} + 3T_{ES} - T)$$

$$A_6^T = \frac{1}{4}(A - E), \qquad B_6^T = \frac{1}{4}(T_{ES} - T_{AS}),$$

$$C_6^T = \frac{1}{4}(-C + T), \qquad A_{15}^T = \frac{A + E}{8},$$

$$B_{15}^T = \frac{T_{ES} + T_{AS}}{8}, \qquad C_{15}^T = \frac{C + T}{8},$$

The physical amplitudes can be expressed as linear combinations of the SU(3) sub-amplitudes

Channel	A_3^T	C_3^T	A_6^T	C_6^T	A_{15}^T	C_{15}^T	B_3^T	B_6^T	B_{15}^T	D_3^T
$B^- o \pi^0 \pi^-$	0	0	0	0	0	$4\sqrt{2}$	0	0	0	0
$B^- \to K^0 K^-$	0	1	1	-1	3	-1	0	0	0	0
$B^0 o \pi^+\pi^-$	2	1	-1	1	1	3	0	0	0	0
$B^0 o \pi^0 \pi^0$	2	1	-1	1	1	-5	0	0	0	0
$B^0 o K^+K^-$	2	0	0	0	2	0	0	0	0	0
$B^0 o K^0 \bar{K}^0$	2	1	1	-1	-3	-1	0	0	0	0
$B_s \to \pi^0 K^0$	0	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$\frac{5}{\sqrt{2}}$	0	0	0	0
$B_s \to \pi^- K^+$	0	1	-1	1	-1	3	0	0	0	0
$B^- \to \pi^0 K^-$	0	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$\frac{3}{\sqrt{2}}$	$\frac{7}{\sqrt{2}}$	0	0	0	0
$B^- \to \pi^- K^0$	0	1	1	-1	3	-1	0	0	0	0
$B^0 o \pi^+ K^-$	0	1	-1	1	-1	3	0	0	0	0
$B^0 o \pi^0 K^0$	0	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$\frac{5}{\sqrt{2}}$	0	0	0	0
$B_s \to \pi^+\pi^-$	2	0	0	0	2	0	0	0	0	0
$B_s o \pi^0 \pi^0$	2	0	0	0	2	0	0	0	0	0
$B_s \to K^+K^-$	2	1	-1	1	1	3	0	0	0	0
$B_s \to K^0 \bar{K}^0$	2	1	1	-1	-3	-1	0	0	0	0

Extract the SU(3) amplitudes by fitting to data

$$\Gamma(\bar{B} \to M_1 M_2) = \frac{S}{16\pi M_B} |\mathcal{A}_{B \to M_1 M_2}|^2$$

$$S=1$$
 if $M_1 \neq M_2$

$$S=1$$
 if $M_1 \neq M_2$ $S=1/2$ if $M_1 = M_2$

Observables:

Branching fractions

$$\mathcal{B}(\bar{B} \to \bar{f}) = \frac{1}{2} \tau_B \left[\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f) \right]$$

$$\mathcal{A}_{\mathrm{CP}}(\bar{B} \to \bar{f}) = \frac{\Gamma(\bar{B} \to \bar{f}) - \Gamma(B \to f)}{\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f)}$$

Perform a
$$\chi^2$$
 fit $\chi^2 = \sum \left(\frac{\mathcal{O}_i^{\text{Theo}} - \mathcal{O}_i^{\text{Exp}}}{\sigma^{\text{Exp}}}\right)^2$

10 Tree complex amplitudes

$$A_3^T$$
 , C_3^T , A_6^T , C_6^T , A_{15}^T , C_{15}^T , B_3^T , B_6^T , B_{15}^T , D_3^T

and 10 Penguin complex amplitudes (replace T for P above)

The combinations
$$C_6^T - \underline{A_6^T}$$
 and $B_6^T + \underline{A_6^T}$ always appear together (analogously for penguins)

Redefine

$$C_6^T - A_6^T \to C_6^T$$
 $C_6^P - A_6^P \to C_6^P$
 $B_6^T + A_6^T \to B_6^T$ $B_6^P + A_6^P \to B_6^P$

Absorb a global phase by taking $\ C_3^P$ as a real parameter

35 parameters +
$$\theta_{FKS}$$
 = 36 parameters to fit.

Best fit point (modulus in GeV³)

$$\begin{split} |A_3^T| &= 0.029, & \delta_{A_3^T} = -3.083, & |C_3^T| = 0.258, & \delta_{C_3^T} = -0.105, \\ |C_6^T| &= 0.235, & \delta_{C_6^T} = -0.079, & |A_{15}^T| = 0.029, & \delta_{A_{15}^T} = -3.083, \\ |C_{15}^T| &= 0.151, & \delta_{C_{15}^T} = 0.061, & |B_3^T| = 0.034, & \delta_{B_3^T} = 3.087 \\ |B_6^T| &= 0.033, & \delta_{B_6^T} = -0.286, & |B_{15}^T| = 0.008, & \delta_{B_{15}^T} = -1.892 \\ |D_3^T| &= 0.055, & \delta_{D_3^T} = 2.942, & |C_6^P| &= 0.145, & \delta_{C_6^P} = -2.881, \\ |A_{15}^P| &= 0.003, & \delta_{A_{15}^P} = 2.234, & |C_{15}^P| &= 0.003, & \delta_{C_{15}^P} = -0.608, \\ |B_3^P| &= 0.043, & \delta_{B_3^P} = 2.367, & |B_6^P| &= 0.099, & \delta_{B_6^P} = 0.353, \\ |B_{15}^P| &= 0.031, & \delta_{B_{15}^P} = -0.690, & |D_3^P| &= 0.030, & \delta_{D_3^P} = 0.477, \\ |C_3^P| &= 0.008, & \theta_{FKS} = 0.628. & & \end{split}$$

Annihilation amplitudes below 10%.

 $\chi^2/d.o.f. = 0.851$

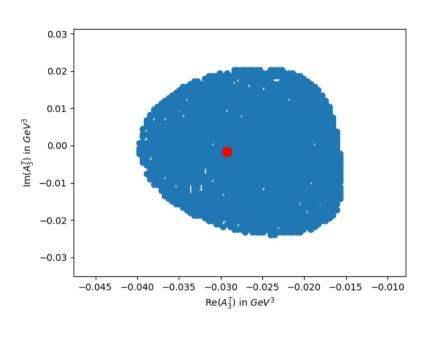
Fit-Results: Branching fractions

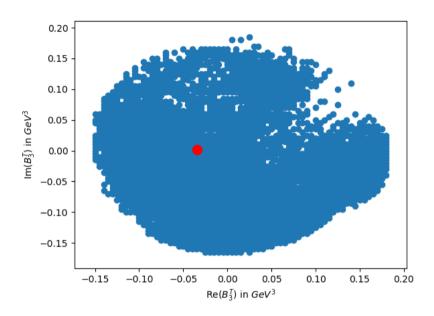
		ing ratio s of 10 ⁻⁶		Branching ratio in units of 10^{-6}		
Channel	Experimental	Theoretical	Channel	Experimental		
$B^- o \pi^0 \pi^-$	5.5 ± 0.4	$6.04^{+2.42}_{-2.51}$	$B^- \to \eta \pi^-$	4.02 ± 0.27	$3.80^{+1.25}_{-1.55}$	
$B^- o K^0 K^-$	1.31 ± 0.17	$1.36^{+0.17}_{-0.16}$	$B^- o \eta' \pi^-$	2.7 ± 0.9	$3.55^{+4.49}_{-1.67}$	
$\bar{B}^0 o \pi^+\pi^-$	5.12 ± 0.19	$6.31^{+0.61}_{-0.50}$	$ar{B}^0 o \eta \pi^0$	0.41 ± 0.17	$0.41^{+8.90}_{-4.08}$	
$\bar{B}^0 \to \pi^0 \pi^0$	1.59 ± 0.26	$1.01^{+1.30}_{-0.51}$	$\bar{B}^0 \to \eta' \pi^0$	1.2 ± 0.6	$1.20^{+3.62}_{-1.19}$	
$\bar{B}^0 \to K^+ K^-$	0.078 ± 0.015	$0.13^{+0.08}_{-0.07}$	$\bar{B}_s o \eta K^0$	Not available	$0.13^{+0.11}_{-0.08}$	
$\bar B^0 o K^0 ar K^0$	1.21 ± 0.16	$1.13^{+0.83}_{-0.91}$	$\bar{B}_s \to \eta' K^0$	Not available	$6.65^{+1.48}_{-1.65}$	
$\bar{B}_s \to \pi^- K^+$	5.8 ± 0.7	$7.75_{-0.09}^{+0.63}$	$B^- \to \eta K^-$	2.4 ± 0.4	$2.34^{+1.39}_{-1.67}$	
$B^- \to \pi^0 K^-$	12.9 ± 0.5	$12.78^{+1.75}_{-1.94}$	$B^- \to \eta' K^-$	70.4 ± 2.5	$70.82^{+11.16}_{-11.53}$	
$B^- o \pi^- ar K^0$	23.7 ± 0.8	$23.85^{+2.23}_{-2.31}$	$\bar{B}^0 o \eta K^0$	1.23 ± 0.27	$1.38^{+1.15}_{-0.36}$	
$\bar{B}^0 o \pi^+ K^-$	19.6 ± 0.5	$19.47^{+1.72}_{-2.24}$	$\bar{B}^0 \to \eta' K^0$	6.6 ± 0.4	$6.65^{+1.48}_{-1.65}$	
$\bar{B}^0 o \pi^0 \bar{K}^0$	9.9 ± 0.5	$10.17^{+2.00}_{-2.30}$	$\bar{B}_s \to \eta \pi^0$	$< 10^{3}$	$31.15^{+39.05}_{-31.14}$	
$\bar{B}_s o \pi^+\pi^-$	0.7 ± 0.1	$0.57^{+0.40}_{-0.42}$	$\bar{B}_s \to \eta' \pi^0$	Not available	$11.13^{+74.75}_{-11.12}$	
$\bar{B}_s \to \pi^0 \pi^0$	< 210	$0.28^{+0.20}_{-0.21}$	$ar{B}^0 o \eta \eta$	< 1	$0.30^{+0.70}_{-0.30}$	
$\bar{B}_s \to K^+ K^-$	26.6 ± 2.2	$20.63^{+6.80}_{-8.09}$	$\bar{B}_s o \eta \eta$	$< 1.5 \times 10^{3}$	$2.58^{+36.53}_{-2.57}$	
$\bar{B}_s o K^0 \bar{K}^0$	20 ± 6	$24.64^{+18.84}_{-21.14}$	$\bar{B}^0 o \eta' \eta'$	< 1.7	$1.14^{+0.57}_{-1.07}$	
$\bar{B}_s o \pi^0 K^0$	Not available	$0.71^{+1.47}_{-0.27}$	$\bar{B}_s o \eta' \eta'$	33 ± 7	$33.00^{+24.52}_{-31.74}$	
			$\bar{B}^0 \to \eta' \eta$	< 1.2	$0.61^{+0.59}_{-0.60}$	
			$\bar{B}_s \to \eta' \eta$	Not available	$0.61^{+0.59}_{-0.60}$	

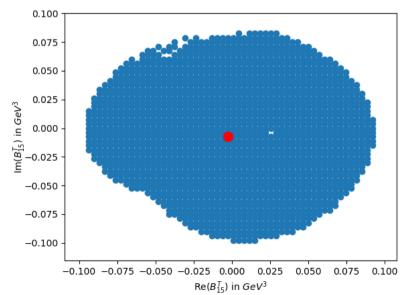
Fit-Results: CP Asymmetries

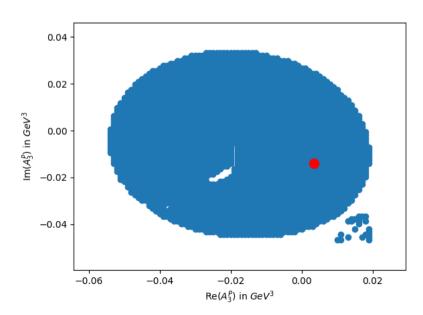
	CP asy	ymmetries		CP asymmetries			
Channel	in p	percent	Channel	in percent			
Chamier	Experimental	Theoretical	Chamiei	Experimental	Theoretical		
$B^- o \pi^0 \pi^-$	3 ± 4	$5.45^{+22.02}_{-20.60}$	$B^- \to \eta \pi^-$	-14 ± 7	$-11.37^{+14.49}_{-26.90}$		
$B^- o K^0 K^-$	4 ± 14	$18.82^{+36.93}_{-30.83}$	$B^- o \eta' \pi^-$	6 ± 16	$4.71^{+59.79}_{-57.97}$		
$\bar{B}^0 o \pi^+\pi^-$	32 ± 4	$35.01^{+3.19}_{-22.29}$	$\bar{B}_s o \eta K^0$	< 0.1	$0.10^{+0.00}_{-100.07}$		
$\bar{B}^0 \to \pi^0 \pi^0$	33 ± 22	$-10.58^{+40.69}_{-89.40}$	$\bar{B}_s \to \eta' K^0$	Not available	$-0.58^{+100.57}_{-79.58}$		
$\bar B^0 o K^0 ar K^0$	-60 ± 70	$-6.88^{+85.39}_{-81.37}$	$B^- \to \eta K^-$	-37 ± 8	$-42.23^{+42.23}_{-16.00}$		
$\bar{B}_s \to \pi^- K^+$	22.1 ± 1.5	$20.84^{+2.39}_{-2.57}$	$B^- \to \eta' K^-$	0.4 ± 1.1	$0.63^{+3.98}_{-4.30}$		
$B^- \to \pi^0 K^-$	3.7 ± 2.1	$3.72^{+7.19}_{-4.35}$	$\bar{B}^0 \to \eta K^0$	Not available	$-0.01^{+40.07}_{-0.02}$		
$B^- \to \pi^- K^0$	-1.7 ± 1.6	$-1.08^{+1.76}_{-2.32}$	$\bar{B}^0 \to \eta' K^0$	-6 ± 4	$0.03^{+4.82}_{-11.69}$		
$\bar{B}^0 \to \pi^+ K^-$	-8.3 ± 0.4	$-8.38^{+8.38}_{-1.01}$	$ar{B}^0 o \eta \pi^0$	Not available	$-27.39_{-72.58}^{+127.11}$		
$ar{B}^0 ightarrow \pi^0 ar{K}^0$	0 ± 13	$-0.97^{+19.35}_{-3.20}$	$ar{B}^0 o \eta' \pi^0$	Not available	$-43.67^{+143.63}_{-56.33}$		
$\bar{B}_s \to K^+K^-$	-14 ± 11	$-10.58^{+10.58}_{-3.60}$	$\bar{B}_s o \eta \pi^0$	Not available	$0.88^{+94.98}_{-98.70}$		
$\bar{B}_s \to \pi^+\pi^-$	Not available	$17.56^{+11.84}_{-38.25}$	$\bar{B}_s \to \eta' \pi^0$	Not available	$1.57^{+77.56}_{-95.66}$		
$\bar{B}_s o \pi^0 \pi^0$	Not available	$17.56^{+11.84}_{-38.25}$	$ar{B}^0 o \eta \eta$	Not available	$3.46^{+96.50}_{-103.45}$		
$\bar{B}_s o K^0 \bar{K}^0$	Not available	$0.31^{+5.07}_{-4.59}$	$\bar{B}_s o \eta \eta$	Not available	$14.29^{+76.81}_{-113.09}$		
$\bar{B}^0 \to K^+ K^-$	Not available	$-78.45^{+161.99}_{-20.78}$	$ar{B}^0 o \eta' \eta'$	Not available	$42.41^{+57.55}_{-142.41}$		
$\bar{B}_s o \pi^0 K^0$	Not available	$13.74^{+29.49}_{-113.73}$	$\bar{B}_s o \eta' \eta'$	Not available	$-2.05^{+15.29}_{-13.44}$		
			$\bar{B}^0 o \eta' \eta$	Not available	$-12.32^{+112.32}_{-87.67}$		
			$\bar{B}_s \to \eta' \eta$	Not available	$3.43^{+96.36}_{-103.22}$		

SU(3) Confidence Regions





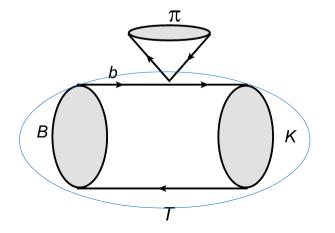




The topological and SU(3) invariant descriptions are just parametrizations of the decay amplitudes

A first principle technique to perform these calculations is QCD-Factorization

Beneke et al: 9905312 Beneke et al: 0308039



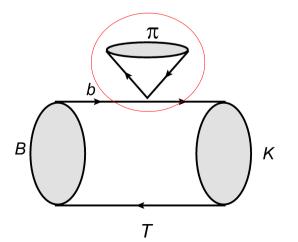
Naive Factorization

$$\langle K \pi | Q | B \rangle \sim F_{B \to K} f_{\pi}$$

The topological and SU(3) invariant descriptions are just parametrizations of the decay amplitudes

A first principle technique to perform these calculations is QCD-Factorization

Beneke et al: 9905312 Beneke et al: 0308039



Naive Factorization

$$\langle K\pi | Q | B \rangle \sim F_{B \to K} f_{\pi}$$

Naive factorization special case of

$$\langle M_1 M_2 | \hat{Q}_i | B \rangle = \sum_j F_j^{B \to M_1}(0) \int_0^1 du T_{ij}^I(u) \Phi_{M_2}(u) + (M_1 \leftrightarrow M_2)$$

$$+ \int_0^1 d\xi du dv T_i^{II}(\xi, u, v) \Phi_B(\xi) \Phi_{M_1}(v) \Phi_{M_2}(u).$$

QCD-Factorization offers a systematic way to disentangle short from long distance physics considering $\Lambda_{OCD} \ll m_b$

$$\mathcal{A}^{\text{QCDF}} = i \frac{G_F}{\sqrt{2}} \sum_{p=u,c} A_{M_1 M_2} \left\{ B M_1 \left(\alpha_1 \delta_{pu} \hat{U} + \alpha_4^p \hat{I} + \alpha_{4,EW}^p \hat{Q} \right) M_2 \Lambda_p \right.$$

$$\left. + B M_1 \Lambda_p \cdot \text{Tr} \left[\left(\alpha_2 \delta_{pu} \hat{U} + \alpha_3^p \hat{I} + \alpha_{3,EW}^p \hat{Q} \right) M_2 \right] \right.$$

$$\left. + B \left(\beta_2 \delta_{pu} \hat{U} + \beta_3^p \hat{I} + \beta_{3,EW}^p \hat{Q} \right) M_1 M_2 \Lambda_p \right.$$

$$\left. + B \Lambda_p \cdot \text{Tr} \left[\left(\beta_1 \delta_{pu} \hat{U} + \beta_4^p \hat{I} + b_{4,EW}^p \hat{Q} \right) M_1 M_2 \right] \right.$$

$$\left. + B \left(\beta_{S2} \delta_{pu} \hat{U} + \beta_{S3}^p \hat{I} + \beta_{S3,EW}^p \hat{Q} \right) M_1 \Lambda_p \cdot \text{Tr} M_2 \right.$$

$$\left. + B \Lambda_p \cdot \text{Tr} \left[\left(\beta_{S1} \delta_{pu} \hat{U} + \beta_{S4}^p \hat{I} + b_{S4,EW}^p \hat{Q} \right) M_1 \right] \cdot \text{Tr} M_2 \right\}$$

$$\begin{split} \Lambda_p &= \begin{pmatrix} 0 \\ \lambda_p^{(d)} \\ \lambda_p^{(s)} \end{pmatrix}, & \hat{U} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ \hat{Q} &= \frac{3}{2}Q &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & -\frac{1}{2} \end{pmatrix}, & \hat{I} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, & \text{Beneke et al: 0308039} \end{split}$$

$$\mathcal{A}^{\text{QCDF}} = i \frac{G_F}{\sqrt{2}} \sum_{p=u,c} A_{M_1 M_2} \left\{ B M_1 \left(\alpha_1 \delta_{pu} \hat{U} + \alpha_4^p \hat{I} + \alpha_{4,EW}^p \hat{Q} \right) M_2 \Lambda_p \right.$$

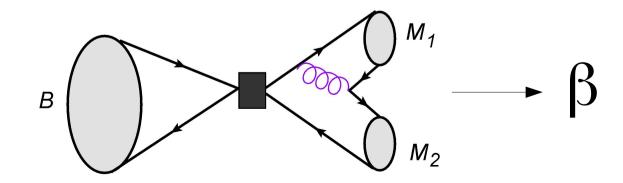
$$\left. + B M_1 \Lambda_p \cdot \text{Tr} \left[\left(\alpha_2 \delta_{pu} \hat{U} + \alpha_3^p \hat{I} + \alpha_{3,EW}^p \hat{Q} \right) M_2 \right] \right.$$

$$\left. + B \left(\beta_2 \delta_{pu} \hat{U} + \beta_3^p \hat{I} + \beta_{3,EW}^p \hat{Q} \right) M_1 M_2 \Lambda_p \right.$$

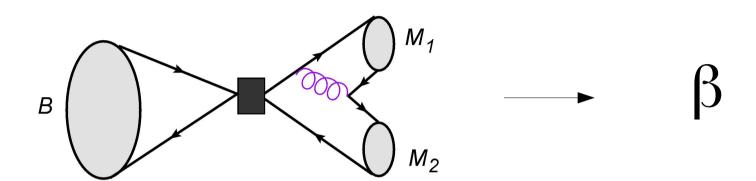
$$\left. + B \Lambda_p \cdot \text{Tr} \left[\left(\beta_1 \delta_{pu} \hat{U} + \beta_4^p \hat{I} + b_{4,EW}^p \hat{Q} \right) M_1 M_2 \right] \right.$$

$$\left. + B \left(\beta_{S2} \delta_{pu} \hat{U} + \beta_{S3}^p \hat{I} + \beta_{S3,EW}^p \hat{Q} \right) M_1 \Lambda_p \cdot \text{Tr} M_2 \right.$$

$$\left. + B \Lambda_p \cdot \text{Tr} \left[\left(\beta_{S1} \delta_{pu} \hat{U} + \beta_{S4}^p \hat{I} + b_{S4,EW}^p \hat{Q} \right) M_1 \right] \cdot \text{Tr} M_2 \right\}$$



Weak annihilation contributions are non-factorizable



Weak annihilation contributions are non-factorizable

One of the main drawbacks of QCDF

These contributions are power suppressed

$$\Lambda_{QCD}/m_b$$

To address this problem educated Ansatz are made

$$X_A = \left(1 + \rho_A e^{i\phi_A}\right) \ln \frac{m_B}{\Lambda_h} \qquad 0 < \rho_A < 1$$

$$\Lambda_h \approx \mathcal{O}(\Lambda_{QCD})$$

WHAT CAN WE LEARN ABOUT THE ANNIHILATION CONTRIBUTIONS FROM DATA?

CAN WE PROFIT FROM THE SU(3) INVARIANT FITS?

TO ACHIEVE THIS FIRST ESTABLISH A
DICTIONARY BETWEEN SU(3) AND THE
QCDF DECOMPOSITION OF THE
PHYSICAL AMPLITUDES

QCF Factorization-Topological Equivalence

Equivalence between the QCF and the topological amplitudes

Decompose the matrix Q in terms of U and I $\hat{Q} = \frac{3}{9}\hat{U} - \frac{1}{9}\hat{I}$

Use the $\ \lambda_u^{(q)}$ and $\ \lambda_t^{(q)}$ factors $\ \Lambda_t = -\Lambda_u - \Lambda_c$

$$\mathcal{A}^{\text{QCDF}} = i \frac{G_F}{\sqrt{2}} A_{M_1 M_2} \Big\{ B_i M_j^i (\tilde{\hat{C}}_1)_k^{jl} M_l^k + B_i M_j^i (\tilde{\hat{C}}_2)_k^{lj} M_l^k + B_i (\tilde{\hat{C}}_3)_k^{ij} M_l^k M_l^l + B_i (\tilde{\hat{C}}_3)_k^{ij} M_l^k M_l^l + B_i (\tilde{\hat{C}}_3)_k^{ij} M_l^k M_l^l + B_i (\tilde{\hat{C}}_6)_k^{ji} M_j^k M_l^l \Big\}$$

$$\tilde{C}_r = \left[\tilde{T} + \frac{3}{2} \tilde{P}_2^u - \frac{3}{2} \tilde{P}_2^c \right] \hat{U} \otimes \Lambda_u + \left[\tilde{P}_1^u - \tilde{P}_1^c - \frac{1}{2} \left\{ \tilde{P}_2^u - \tilde{P}_2^c \right\} \right] \hat{I} \otimes \Lambda_u$$

$$- \frac{3}{2} \tilde{P}_2^c \hat{U} \otimes \Lambda_t - \left[\tilde{P}_1^c - \frac{\tilde{P}_2^c}{2} \right] \hat{I} \otimes \Lambda_t,$$

$$(\tilde{C}_r)_k^{ij} = \left[\tilde{T} + \frac{3}{2} \tilde{P}_2^u - \frac{3}{2} \tilde{P}_2^c \right] \hat{U}_k^i (\Lambda_u)^j + \left[\tilde{P}_1^u - \tilde{P}_1^c - \frac{1}{2} \left\{ \tilde{P}_2^u - \tilde{P}_2^c \right\} \right] \delta_k^i (\Lambda_u)^j$$

$$- \frac{3}{2} \tilde{P}_2^c \hat{U}_k^i (\Lambda_t)^j - \left[\tilde{P}_1^c - \frac{\tilde{P}_2^c}{2} \right] \delta_k^i (\Lambda_t)^j$$

The connection between the topological decomposition and the QCD-factorization is established through

$$U_k^i(\Lambda_u)^j = \bar{H}_k^{ij}, \qquad U_k^i(\Lambda_t)^j = \tilde{H}_k^{ij}, \qquad (\Lambda_t)^i = \tilde{H}^i.$$

QCF Factorization-Topological Equivalence

We consider the following results

$$\alpha_3^u = \alpha_3^c = \alpha_3, \quad \alpha_{3,EW}^u = \alpha_{3,EW}^c = \alpha_{3,EW}, \quad \beta_i^u = \beta_i^c = \beta_i, \quad b_i^u = b_i^c = b_i$$

$$|\alpha_{4,EW}^c - \alpha_{4,EW}^u| < 10^{-3}$$

$$|\alpha_4^c - \alpha_4^u| \sim 2\%$$

NLO

NNLO

Bell, Beneke, Huber, Li:2002.03262

QCDF to topological transformation rules

$$T = A_{M_1 M_2} \alpha_1,$$

$$C = A_{M_1 M_2} \alpha_2,$$
 $E = A_{M_1 M_2} \beta_1,$

$$E = A_{M_1 M_2} \beta_1$$

$$A = A_{M_1 M_2} \beta_2,$$

$$A = A_{M_1 M_2} \beta_2,$$
 $T_{AS} = A_{M_1 M_2} \beta_{S1},$ $T_{ES} = A_{M_1 M_2} \beta_{S2},$

$$T_{ES} = A_{M_1 M_2} \beta_{S2},$$

$$S = -A_{M_1 M_2} \left[\alpha_3 + \beta_{S3} - \frac{\alpha_{3,EW}}{2} - \frac{\beta_{S3,EW}}{2} \right],$$

$$P = -A_{M_1 M_2} \left[\alpha_4^c + \beta_3 - \frac{\alpha_{4,EW}^c}{2} - \frac{\beta_{3,EW}}{2} \right],$$

$$A_{M_1M_2} = (1.25 \pm 0.17) \text{ GeV}^3$$

Further details on the χ^2 -fit

Best QCDF fit point (modulus in GeV³)

$$A_{M_1M_2}\alpha_1 = 1.072 + 5.596 \times 10^{-5}i, \qquad A_{M_1M_2}\alpha_2 = 0.136 + 0.073i,$$

$$A_{M_1M_2}\beta_1 = -0.117 - 0.007i, \qquad A_{M_1M_2}\beta_2 = A_{M_1M_2}\beta_1,$$

$$A_{M_1M_2}\beta_{S1} = -0.074 - 0.0112i, \qquad A_{M_1M_2}\beta_{S2} = 0.054 - 0.049i,$$

$$A_{M_1M_2}\alpha_{3,EW} = -0.193 - 0.045i, \qquad A_{M_1M_2}\alpha_{4,EW} = 0.181 + 0.053i,$$

$$A_{M_1M_2}\beta_{3,EW} = 0.005 - 0.006i, \qquad A_{M_1M_2}b_{4,EW} = A_{M_1M_2}\beta_{3,EW},$$

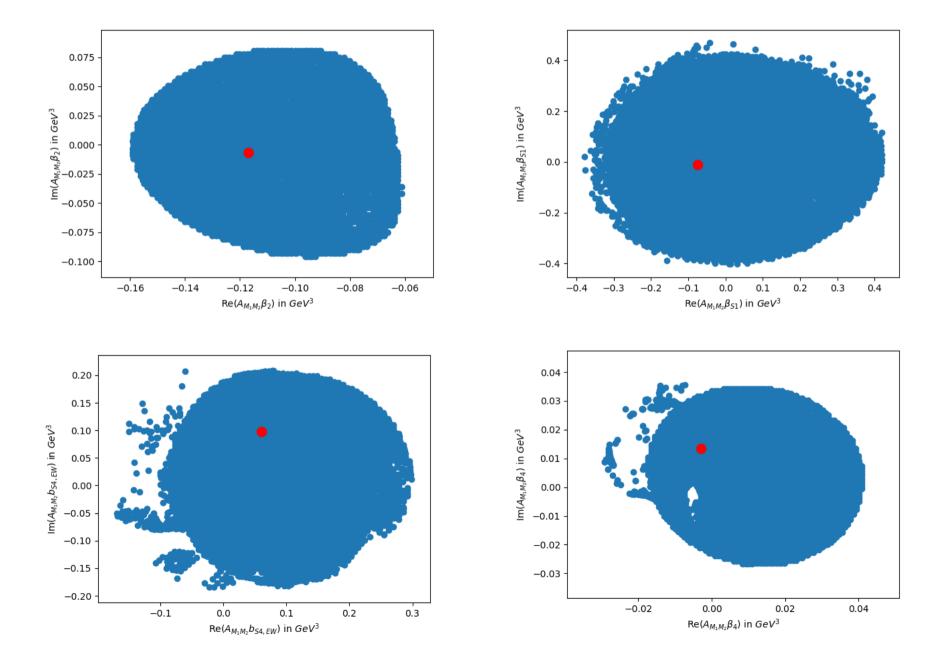
$$A_{M_1M_2}\beta_{S3,EW} = -0.188 + 0.007i, \qquad A_{M_1M_2}b_{54,EW} = 0.061 + 0.098i,$$

$$A_{M_1M_2}\beta_4 = -0.003 + 0.013i, \qquad A_{M_1M_2}\beta_{54} = 0.031 - 0.030i,$$

$$A_{M_1M_2}(\alpha_3 + \beta_{S3}) = 0.230 + 0.067i, \qquad A_{M_1M_2}(\alpha_4 + \beta_3) = -0.242 - 0.062i$$

Obtained by mapping the SU(3)-fit results into the QCDF amplitudes.

QCF Factorization confidence regions



Summary and Outlook

- We have established a set of transformation rules between the QCD factorization and the topological representation of physical amplitudes.
- By fitting to data we have determined bounds for different QCDF amplitudes.
- The real and imaginary components of the weak annihilation amplitudes as allowed by data can be between 4% and 30%.
- SU(3) symmetry asummed so far.
- Introduce SU(3) breaking by fitting to data the weak annihilation amplitudes combining NLO and NNLO results for independent channels

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945422

Fit for the modulus and and phases of the relevant parameters.

Use random sampling to obtain the best fit point with 10⁹ points:

- Calculate the χ^2 function for 10^6 points assuming a flat probability distribution.
- Select the best 5 points leading to the minimum χ^2 .
- Use these partial minimums as starting points for the Sequential Least Square Programming algorithm, SLSQP.
- Repeat 10³ times to get the overall minimum.

To obtain the 65 % C.L regions apply a likelihood ratio test using Wilk's theorem.

$$\mathcal{T}^{TDA} = \underline{T} B_{i}(M)_{j}^{i} \bar{H}_{k}^{jl}(M)_{l}^{k} + \underline{C} B_{i}(M)_{j}^{i} \bar{H}_{k}^{lj}(M)_{l}^{k} + \underline{A} B_{i} \bar{H}_{j}^{il}(M)_{k}^{j}(M)_{k}^{k}$$

$$+ \underline{E} B_{i} \bar{H}_{j}^{li}(M)_{k}^{j}(M)_{k}^{k} + \underline{T}_{ES} B_{i} \bar{H}_{l}^{ij}(M)_{j}^{l}(M)_{k}^{k} + \underline{T}_{AS} B_{i} \bar{H}_{l}^{ji}(M)_{j}^{l}(M)_{k}^{k}$$

$$+ \underline{T}_{S} B_{i}(M)_{j}^{i} \bar{H}_{l}^{lj}(M)_{k}^{k} + \underline{T}_{PA} B_{i} \bar{H}_{l}^{li}(M)_{k}^{j}(M)_{j}^{k} + \underline{T}_{PB} B_{i}(M)_{j}^{i}(M)_{k}^{j} \bar{H}_{l}^{lk}$$

$$+ \underline{T}_{SS} B_{i} \bar{H}_{l}^{li}(M)_{j}^{j}(M)_{k}^{k},$$

T: Color allowed tree. P: QCD-penguin.

C: Color-suppressed tree. S: QCD-singlet penguin.

E: W-exchange diagram. A: Annihilation.

Further details on the χ^2 -fit

Constraints from QCDF

Taking into account
$$\alpha_1(\pi\pi) = 1.000^{+0.029}_{-0.069} + (0.011^{+0.023}_{-0.050})i$$

Beneke Huber et al: 0911.3655

We impose
$$\Re(\alpha_1) = 1.000^{+0.138}_{-0.138}$$

In addition we require

$$T_{PA} = T_{SS} = T_S = 0, |T_P| < 10\%$$

Phenomenological constraints

$$Br(B_s \to \pi^0 \pi^0) < 2.10 \times 10^{-4}, \quad Br(B_s \to \eta \pi^0) < 10^{-3},$$

 $Br(B^0 \to \eta \eta) < 10^{-6}, \quad Br(B^0 \to \eta' \eta') < 1.7 \times 10^{-6},$
 $Br(B^0 \to \eta' \eta) < 1.2 \times 10^{-6}, \quad A_{CP}(B_s \to \eta K^0) < 10^{-3}.$

Include \(\gamma \) contributions in the Feldmann–Kroll–Stech scheme

 $heta_{FKS}$ mixing angle au. Feldmann et al: 9802409

Channel	A_3^T	C_{3T}^T	A_6^T	C_6^T	A_{15}^T	C_{15}^T	B_3^T	B_6^T	B_{15}^T	D_3^T
$B^- \to \eta_q \pi^-$	0	$\sqrt{2}$	$\sqrt{2}$	0	$3\sqrt{2}$	$2\sqrt{2}$	0	$\sqrt{2}$	$3\sqrt{2}$	$\sqrt{2}$
$B^- \to \eta_s \pi^-$	0	0	0	1	0	-1	0	1	3	1
$B^0 \to \eta_q \pi^0$	0	-1	-1	0	5	2	0	-1	5	-1
$B^0 \to \eta_s \pi^0$	0	0	0	$-\frac{1}{\sqrt{2}}$	0	$\frac{1}{\sqrt{2}}$	0	$-\frac{1}{\sqrt{2}}$	$\frac{5}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$
$B_s \to \eta_q K^0$	0	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$	0	$-\sqrt{2}$	$-\sqrt{2}$	$\sqrt[-\frac{1}{\sqrt{2}}]{2}$
$B_s \to \eta_s K^0$	0	1	-i	0	-1	-2	0	-1	-1	1
$B^- \to \eta_q K^-$	0	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$\frac{3}{\sqrt{2}}$	$\frac{5}{\sqrt{2}}$	0	$\sqrt{2}$	$3\sqrt{2}$	$\sqrt{2}$
$B^- \to \eta_s K^-$	0	1	1	0	3	-2	0	1	3	1
$B^0 \to \eta_q K^0$	0	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	0	$-\sqrt{2}$	$-\sqrt{2}$	$\sqrt{2}$
$B^0 \to \eta_s K^0$	0	1	-1	0	-1	-2	0	-1	-1	1
$B_s \to \eta_q \pi^0$	0	0	-2	0	4	0	0	-2	4	0
$B_s \to \eta_s \pi^0$	0	0	0	$-\sqrt{2}$	0	$2\sqrt{2}$	0	$-\sqrt{2}$	$2\sqrt{2}$	0
$B^0 o \eta_q \eta_q$	1	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	2	-1	1	1
$B^0 o \eta_q \eta_s$	0	0	0	$\frac{1}{\sqrt{2}}$	0	$-\frac{1}{\sqrt{2}}$	$2\sqrt{2}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$B^0 o \eta_s \eta_s$	1	0	1	0	-1	0	1	1	-1	0
$B_s \to \eta_q \eta_q$	1	0	0	0	1	0	2	0	2	0
$B_s \to \eta_q \eta_s$	0	0	0	0	0	$\sqrt{2}$	$2\sqrt{2}$	0	$-\sqrt{2}$	$\sqrt{2}$
$B_s \to \eta_s \eta_s$	1	1	0	0	-2	-2	1	0	-2	1