Modular Flavor Symmetries and CP, from the top down

Andreas Trautner

contact: trautner AT mpi-hd.mpg.de

based on:

PLB 786 (2018) 283-287	1808.07060	w/ H.P. Nilles, M. Ratz, P. Vaudrevange
PLB 795 (2019) 7-14	1901.03251	w/ A. Baur, H.P. Nilles, P. Vaudrevange
NPB 947 (2019) 114737	1908.00805	w/ A. Baur, H.P. Nilles, P. Vaudrevange
NPB 971 (2021) 115534	2105.08078	w/ H.P. Nilles, S. Ramos-Sánchez, P. Vaudrevange
PRD 105 (2022) 5 055018	2112.06940	w/ A.Baur, H.P. Nilles, S. Ramos-Sánchez, P. Vaudrevang
JHEP 09 (2022) 224	2207.10677	w/ A.Baur, H.P. Nilles, S. Ramos-Sánchez, P. Vaudrevang

Andreas Trautner

Outline: Flavor symmetry

- [Modular] Flavor symmetries from the top-down
- The eclectic flavor symmetry
- Breaking of the eclectic flavor symmetry
- Phenomenology of a concrete top-down example model
- Summary

Unification – bottom-up vs. top-down

Andreas Trautner Modular Flavor Symmetries and CP from the top down, DISCRETE Baden-Baden, 8.11.22 3/ 27

Unification – bottom-up vs. top-down

Unification - bottom-up vs. top-down

Andreas Trautner

Modular Flavor Symmetries and CP from the top down, DISCRETE Baden-Baden, 8.11.22

Is everything unified?

Standard Model of Elementary Particles

No "theory of everything" without a theory of flavor!

Andreas Trautner

Modular Flavor Symmetries

Even w/o thoughts about UV completions: Very attractive framework. Predictivity (few parameters), CP violation & hierarchies "built in", ...

Neutrinos/Leptons

[Feruglio '17], [Kobayashi, Tanaka, Tatsuishi '18], [Penedo, Petcov '18], [Criado, Feruglio '18], [Kobayashi, Omoto, Shimizu, Takagi, Tanimoto, Tatsuishi '18], [Novichkov, Penedo, Petcov, Titov '18 (2x)], [Novichkov, Petcov, Tanimoto '18], [Nomura, Okada '19], [de Medeiros Varzielas, King, Zhou '19], [Liu, Ding '19], [Criado, Feruglio, S.J.D.King '19], ...

Quark sector

[Okada, Tanimoto '18 &'19], [Kobayashi, Shimizu, Takagi, Tanimoto, Tatsuishi, Uchida '18], [Lu, Liu, Ding '19], ...

· Combination of modular transformations with CP

[Baur, Nilles, AT, Vaudrevange '19], [Novichkov, Penedo, Petcov, Titov '19], [Kobayashi, Shimizu, Takagi, Tanimoto, Tatsuishi '19]

Within GUTs

[de Anda, King, Perdomo '18], [Kobayashi, Shimizu, Takagi, Tanimoto, Tatsuishi '19], [Zhao, Zhang '21], [Chen, Ding, King '21], [Ding, King, Lu '21],...

\rightarrow See talk by Penedo

Modular Flavor Symmetries

Modular flavor symmetry is strongly motivated from top-down viewpoint of UV completions of the Standard Model.

Setting: compactified heterotic string theory. [Gross, Harvey, Martinec, Rohm '85] [Dixon, Harvey, Vafa, Witten '85 & '86] Compactifications are controlled by modular invariance:

- Couplings among twisted-sector states are modular forms. [Ibañez '86],[Hamdi, Vafa '87],[Dixon, Friedan, Martinec, Shenker '87], [Lauer, Mas, Nilles '89 &'91]
- Effective 4D SUSY (sugra) theory controlled by modular invariance... [Ferrara, Lüst, (Shapere), Theisen '89(x2)]
- ...in particular, the Yukawa couplings. [Casas, Gomez, Munoz '91], [Lebedev '01], [Kobayashi, Lebedev '03], ...
- Twisted-sector gives rise to chiral matter, can host 3 generations of (supersymmetric) SM. [Ibañez, (Kim), Nilles, Quevedo '87 (x2)]
- Flavor symmetries are a generic feature. [Lauer, Mas, Nilles' 89 '91], [Kobayashi, Nilles, Plöger, Raby, Ratz '06]

This talk: Unambiguous derivation of unified flavor symmetry & Example for explicit model with correct low energy pheno.

Schematically for the example of $\mathcal{N} = 1$ SUSY.

x: spacetime, θ : superspace, Φ : (Super-)fields, *T*: modulus. $K(T, \Phi)$: Kähler potential, $W(T, \Phi)$: Superpotential

$$\mathcal{S} = \int d^4x \, d^2\theta \, d^2\overline{\theta} K(T,\overline{T},\Phi,\overline{\Phi}) + \int d^4x \, d^2\theta \, W(T,\Phi) + \int d^4x \, d^2\overline{\theta} \, \overline{W}(\overline{T},\overline{\Phi}) \; .$$

Schematically for the example of $\mathcal{N} = 1$ SUSY.

x: spacetime, θ : superspace, Φ : (Super-)fields, *T*: modulus. $K(T, \Phi)$: Kähler potential, $W(T, \Phi)$: Superpotential

$$\mathcal{S} = \int d^4x \, d^2\theta \, d^2\overline{\theta} K(T,\overline{T}, \mathbf{\Phi}, \overline{\mathbf{\Phi}}) + \int d^4x \, d^2\theta \, W(T, \mathbf{\Phi}) + \int d^4x \, d^2\overline{\theta} \, \overline{W}(\overline{T}, \overline{\mathbf{\Phi}}) \; .$$

• "traditional" Flavor symmetries $\Phi \mapsto \rho(g) \Phi$, $g \in G$

for a review, see e.g. [King & Luhn '13]

Schematically for the example of $\mathcal{N} = 1$ SUSY.

x: spacetime, θ : superspace, Φ : (Super-)fields, *T*: modulus. $K(T, \Phi)$: Kähler potential, $W(T, \Phi)$: Superpotential

$$\mathcal{S} = \int d^4x \, d^2\theta \, d^2\overline{\theta} \, \boldsymbol{K}(\boldsymbol{T},\overline{\boldsymbol{T}},\boldsymbol{\Phi},\overline{\boldsymbol{\Phi}}) + \int d^4x \, d^2\theta \, \boldsymbol{W}(\boldsymbol{T},\boldsymbol{\Phi}) + \int d^4x \, d^2\overline{\theta} \, \overline{\boldsymbol{W}}(\overline{\boldsymbol{T}},\overline{\boldsymbol{\Phi}}) \; .$$

"traditional" Flavor symmetries

 $G_{\text{traditional}}$

modular Flavor symmetries

[Feruglio '17]

$$\Phi \xrightarrow{\gamma} (c T + d)^n \rho(\gamma) \Phi , \quad T \xrightarrow{\gamma} \frac{a T + b}{c T + d} , \quad \gamma := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{Z}) .$$

Couplings are modular forms: Y = Y(T), $Y(\gamma T) = (c T + d)^{k_Y} \rho_Y(\gamma) Y(T)$.

Schematically for the example of $\mathcal{N} = 1$ SUSY.

x: spacetime, θ : superspace, Φ : (Super-)fields, T: modulus. $K(T, \Phi)$: Kähler potential, $W(T, \Phi)$: Superpotential

$$\mathcal{S} = \int d^4x \, d^2\theta \, d^2\overline{\theta} K(\boldsymbol{T}, \overline{\boldsymbol{T}}, \boldsymbol{\Phi}, \overline{\boldsymbol{\Phi}}) + \int d^4x \, d^2\theta \, \boldsymbol{W}(\boldsymbol{T}, \boldsymbol{\Phi}) + \int d^4x \, d^2\overline{\theta} \, \overline{\boldsymbol{W}}(\overline{\boldsymbol{T}}, \overline{\boldsymbol{\Phi}}) \; .$$

"traditional" Flavor symmetries

 $G_{\text{traditional}}$ G_{modular}

- modular Flavor symmetries
- R symmetries for non-Abelian discrete R flavor symmetries see [Chen, Ratz, AT '13]

 $\Phi(x,\theta) = \phi(x) + \sqrt{2}\theta \,\psi(x) + \theta\theta F(x) \;, \implies \phi \mapsto e^{iq_\Phi \alpha}\phi, \; \psi \mapsto e^{i(q_\Phi - q_\theta)\alpha}\psi \,.$

Schematically for the example of $\mathcal{N} = 1$ SUSY.

x: spacetime, θ : superspace, Φ : (Super-)fields, T: modulus. $K(T, \Phi)$: Kähler potential, $W(T, \Phi)$: Superpotential

$$\mathcal{S} = \int d^4x \, d^2 \theta \, d^2 \overline{ heta} K(T, \overline{T}, \Phi, \overline{\Phi}) + \int d^4x \, d^2 heta \, W(T, \Phi) + \int d^4x \, d^2 \overline{ heta} \, \overline{W}(\overline{T}, \overline{\Phi}) \; .$$

- "traditional" Flavor symmetries
- modular Flavor symmetries
- R symmetries
- general CP(-like) symmetries

 $G_{\text{traditional}}$

 G_{modular}

 G_R

[Novichkov, Penedo et al. '19], [Baur et al. '19]

$$\Phi \stackrel{\overline{\gamma}}{\mapsto} (c\overline{T} + d)^n \rho(\overline{\gamma})\overline{\Phi} , \quad T \stackrel{\overline{\gamma}}{\mapsto} \frac{a\overline{T} + b}{c\overline{T} + d} , \quad \det\left[\overline{\gamma} \in \mathrm{GL}(2,\mathbb{Z})\right] = -1 .$$

Schematically for the example of $\mathcal{N} = 1$ SUSY.

x: spacetime, θ : superspace, Φ : (Super-)fields, T: modulus. $K(T, \Phi)$: Kähler potential, $W(T, \Phi)$: Superpotential

$$\mathcal{S} = \int d^4x \, d^2\theta \, d^2\overline{\theta} K(T,\overline{T},\Phi,\overline{\Phi}) + \int d^4x \, d^2\theta \, W(T,\Phi) + \int d^4x \, d^2\overline{\theta} \, \overline{W}(\overline{T},\overline{\Phi}) \; .$$

• "traditional" Flavor symmetries $G_{\text{traditional}}$ • modular Flavor symmetries G_{modular} • R symmetries G_R • general $C\mathcal{P}(\text{-like})$ symmetries $C\mathcal{P}$

From the bottom-up: All kinds known and used, individually!

 \rightarrow See talk by Penedo.

for an up-to-date review see [Feruglio&Romanino '19]

Schematically for the example of $\mathcal{N} = 1$ SUSY.

x: spacetime, θ : superspace, Φ : (Super-)fields, T: modulus. $K(T, \Phi)$: Kähler potential, $W(T, \Phi)$: Superpotential

$$\mathcal{S} = \int d^4x \, d^2\theta \, d^2\overline{\theta} K(T,\overline{T},\Phi,\overline{\Phi}) + \int d^4x \, d^2\theta \, W(T,\Phi) + \int d^4x \, d^2\overline{\theta} \, \overline{W}(\overline{T},\overline{\Phi}) \; .$$

• "traditional" Flavor symmetries $G_{\text{traditional}}$ • modular Flavor symmetries G_{modular} • R symmetries G_R • general CP(-like) symmetriesCP

From the top-down: *all, at the same time*!

$$G_{\text{eclectic}} = G_{\text{traditional}} \cup G_{\text{modular}} \cup G_{\text{R}} \cup C\mathcal{P},$$

see works by [Baur, Nilles, AT, Vaudrevange '19; Nilles, Ramos-Sánchez, Vaudrevange '20]

Schematically for the example of $\mathcal{N} = 1$ SUSY.

x: spacetime, θ : superspace, Φ : (Super-)fields, T: modulus. $K(T, \Phi)$: Kähler potential, $W(T, \Phi)$: Superpotential

$$\mathcal{S} = \int d^4x \, d^2\theta \, d^2\overline{\theta} K(T,\overline{T},\Phi,\overline{\Phi}) + \int d^4x \, d^2\theta \, W(T,\Phi) + \int d^4x \, d^2\overline{\theta} \, \overline{W}(\overline{T},\overline{\Phi}) \; .$$

• "traditional" Flavor symmetries $G_{\text{traditional}}$ • modular Flavor symmetries G_{modular} • R symmetries G_R • general CP(-like) symmetriesCP

From the top-down: *all, at the same time*!

 $G_{\text{eclectic}} = G_{\text{traditional}} \cup G_{\text{modular}} \cup G_{\text{R}} \cup C\mathcal{P},$

see works by [Baur, Nilles, AT, Vaudrevange '19; Nilles, Ramos-Sánchez, Vaudrevange '20]

How to compute G_{eclectic} ?

Andreas Trautner

Flavor symmetries from top-down perspective

- Setting is compactified heterotic string theory.
 Focus on 2D compact space, e.g. a torus: T².
- Example case: $\mathbb{T}^2/\mathbb{Z}_3$ orbifold. Space group S (rot. & transl.).

 $g \in S$ $g = (\theta^k, e n)$ with $k \in \{0, 1, 2\}$ and $n \in \begin{pmatrix} \mathbb{Z} \\ \mathbb{Z} \end{pmatrix}$.

- we identify points $y \sim gy \Rightarrow$ fixed points.
- g constitutes boundary condition for closed strings; e.g. closed-string worldsheet boson (Dixon, Harvey, Vafa, Witten '85,'86)

Flavor symmetries from top-down perspective

- Setting is compactified heterotic string theory.
 Focus on 2D compact space, e.g. a torus: T².
- Example case: T²/Z₃ orbifold. Space group S (rot. & transl.).

 $g \in S$ $g = (\theta^k, e n)$ with $k \in \{0, 1, 2\}$ and $n \in \begin{pmatrix} \mathbb{Z} \\ \mathbb{Z} \end{pmatrix}$.

- we identify points $y \sim gy \Rightarrow$ fixed points.
- g constitutes boundary condition for closed strings; e.g. closed-string worldsheet boson [Dixon, Harvey, Vafa, Witten '85,'86]

- \Rightarrow Strings are "localized" at fixed points.
 - New insight: we can obtain flavor symmetries from outer automorphisms of the space group! [Baur, Nilles, AT, Vaudrevange '19]
 - inner auts: map fixed points to themselves \Rightarrow trivial.
 - outer auts: permutation of fixed points ⇒ non-trivial maps between strings at different f.p.'s!

$$h := (\sigma, t) \not\in S$$
, with $g \stackrel{h}{\mapsto} h g h^{-1} \stackrel{!}{\in} S$.

Andreas Trautner

[Narain '86], [Narain, Samardi, Witten '87], [Narain, Sarmadi, Vafa'87], [Groot Nibbelink, Vaudrevange '17]

[Narain '86], [Narain, Samardi, Witten '87], [Narain, Sarmadi, Vafa'87], [Groot Nibbelink, Vaudrevange '17] Lattice can have symmetries.

[Narain '86], [Narain, Samardi, Witten '87], [Narain, Sarmadi, Vafa'87], [Groot Nibbelink, Vaudrevange '17] Lattice can have symmetries.

discrete translations

Andreas Trautner

[Narain '86], [Narain, Samardi, Witten '87], [Narain, Sarmadi, Vafa'87], [Groot Nibbelink, Vaudrevange '17] Lattice can have symmetries.

reflections / inversions

Andreas Trautner

[Narain '86], [Narain, Samardi, Witten '87], [Narain, Sarmadi, Vafa'87], [Groot Nibbelink, Vaudrevange '17] Lattice can have symmetries.

discrete rotations

Andreas Trautner

Flavor symmetries from top-down perspective Specializing to $D = 2 \Rightarrow 4$ -dim lattice w/ $E^{T}E \equiv \mathcal{H} = \mathcal{H}(T, U)$

 \rightarrow Kähler T and complex structure modulus U.

Reflection and rotation outer automorphisms of Narain space group: Modular transformations

 $\mathcal{O}_{\hat{\eta}}(D, D, \mathbb{Z}) := \left\langle \ \hat{\Sigma} \ \middle| \ \hat{\Sigma} \ \in \ \mathcal{GL}(2D, \mathbb{Z}) \quad \text{with} \quad \hat{\Sigma}^{\mathrm{T}} \hat{\eta} \ \hat{\Sigma} \ = \ \hat{\eta} \ \right\rangle.$

 $O_{\hat{\eta}}(2,2,\mathbb{Z}) \cong \left[(\mathrm{SL}(2,\mathbb{Z})_T \times \mathrm{SL}(2,\mathbb{Z})_U) \rtimes (\mathbb{Z}_2 \times \mathbb{Z}_2) \right] / \mathbb{Z}_2 .$

Action on moduli $M \equiv \{T, U\}$ includes

$$\mathsf{s}: M \mapsto -\frac{1}{M} \;, \qquad \mathsf{t}: M \mapsto M + 1 \;, \qquad \mathsf{u}: M \mapsto -\overline{M} \;, \qquad \mathsf{d}: U \leftrightarrow T \;.$$

Flavor symmetries from top-down perspective Specializing to $D = 2 \Rightarrow 4$ -dim lattice w/ $E^{T}E \equiv \mathcal{H} = \mathcal{H}(T, U)$

 \rightarrow Kähler T and complex structure modulus U.

Reflection and rotation outer automorphisms of Narain space group: Modular transformations

 $\mathcal{O}_{\hat{\eta}}(D, D, \mathbb{Z}) := \left\langle \; \hat{\Sigma} \; \middle| \; \hat{\Sigma} \; \in \; \mathrm{GL}(2D, \mathbb{Z}) \quad \text{with} \quad \hat{\Sigma}^{\mathrm{T}} \hat{\eta} \; \hat{\Sigma} \; = \; \hat{\eta} \; \right\rangle.$

 $O_{\hat{\eta}}(2,2,\mathbb{Z}) \cong \left[(\mathrm{SL}(2,\mathbb{Z})_T \times \mathrm{SL}(2,\mathbb{Z})_U) \rtimes (\mathbb{Z}_2 \times \mathbb{Z}_2) \right] / \mathbb{Z}_2 .$

Action on moduli $M \equiv \{T, U\}$ includes

 $\mathsf{s}: M \mapsto -\frac{1}{M}$, $\mathsf{t}: M \mapsto M+1$, $\mathsf{u}: M \mapsto -\overline{M}$, $\mathsf{d}: U \leftrightarrow T$.

Translationary outer automorphisms of Narain space group:

Traditional flavor symmetries

$$\begin{split} M & \stackrel{h}{\longmapsto} M' \neq M & \leftrightarrow \text{``modular flavor trafo''} \\ M & \stackrel{h}{\longmapsto} M' = M & \leftrightarrow \text{``traditional flavor trafo''} \\ \text{Out}_{\text{Narain}} = \left\{ (\hat{\Sigma}_1, 0), \ (\hat{\Sigma}_2, 0), \ \dots, \ (\mathbb{1}, \hat{T}_1), \ (\mathbb{1}, \hat{T}_2), \ \dots \right\} \ . \end{split}$$

Andreas Trautner

Modular Flavor Symmetries and CP from the top down, DISCRETE Baden-Baden, 8.11.22

The eclectic flavor symmetry of $\mathbb{T}^2/\mathbb{Z}_3$ For this specific orbifold, $\langle U \rangle = \exp(2\pi i/3)$.

nature	outer automorphism			flower	TOUDS		
symmetry	of Narain space group		havor groups				
modulan	rotation S \in SL $(2, \mathbb{Z})_T$			77/			
modular	rotation T \in SL $(2, \mathbb{Z})_T$	\mathbb{Z}_3		1			
	translation A		$\Lambda(97)$			O(2)	
$\operatorname{traditional}$	translation B	\mathbb{Z}_3	$\mathbb{Z}_3 \begin{vmatrix} \Delta(2T) \\ \Delta \end{vmatrix} = \Delta$		$\Lambda'(54, 9, 1)$	32(2)	
flavor	rotation $C = S^2 \in SL(2, \mathbb{Z})_T$	\mathbb{Z}_2^R			$\Delta(34, 2, 1)$		
	rotation $\mathbf{R} \in \mathrm{SL}(2,\mathbb{Z})_U$		\mathbb{Z}_9^R				
	nature symmetry modular traditional flavor	nature outer automorphism symmetry of Narain space group modular rotation $S \in SL(2, \mathbb{Z})_T$ rotation $T \in SL(2, \mathbb{Z})_T$ rotation A traditional translation B flavor rotation $C = S^2 \in SL(2, \mathbb{Z})_T$ rotation $R \in SL(2, \mathbb{Z})_U$ rotation $R \in SL(2, \mathbb{Z})_U$	nature outer automorphism symmetry of Narain space group modular rotation $S \in SL(2, \mathbb{Z})_T$ \mathbb{Z}_4 rotation $T \in SL(2, \mathbb{Z})_T$ \mathbb{Z}_3 traditional translation A \mathbb{Z}_3 flavor rotation $C = S^2 \in SL(2, \mathbb{Z})_T$ \mathbb{Z}_4 rotation $C = S^2 \in SL(2, \mathbb{Z})_T$ \mathbb{Z}_3	$ \begin{array}{c} \text{nature} & \text{outer automorphism} \\ \text{symmetry} & \text{of Narain space group} \end{array} \end{array} \\ \begin{array}{c} & \\ & \\ \text{modular} \end{array} & \begin{array}{c} \text{rotation S \in SL(2, \mathbb{Z})_T} & \mathbb{Z}_4 \\ & \\ \text{rotation T \in SL(2, \mathbb{Z})_T} & \mathbb{Z}_3 \end{array} \\ \\ \text{traditional} & \\ \text{translation A} & \\ & \\ \text{flavor} \end{array} & \begin{array}{c} \text{flavor} \end{array} & \begin{array}{c} \text{rotation C = S^2 \in SL(2, \mathbb{Z})_T} \end{array} & \begin{array}{c} \mathbb{Z}_2 \\ & \\ \mathbb{Z}_3 \end{array} \\ \end{array} $	$\begin{array}{ c c c c c c } nature & outer automorphism \\ symmetry & of Narain space group \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c c} nature & outer automorphism \\ symmetry & of Narain space group \\ \end{array} \\ \hline \\ modular & rotation S \in SL(2, \mathbb{Z})_{T} & \mathbb{Z}_{4} \\ \hline \\ rotation T \in SL(2, \mathbb{Z})_{T} & \mathbb{Z}_{3} \\ \end{array} \\ \hline \\ radicion T \in SL(2, \mathbb{Z})_{T} & \mathbb{Z}_{3} \\ \hline \\ radicion R & \mathbb{Z}_{3} \\ \hline \\ rotation C = S^{2} \in SL(2, \mathbb{Z})_{T} \\ \hline \\ rotation R \in SL(2, \mathbb{Z})_{U} \\ \end{array} \\ \begin{array}{c} \mathcal{Z}_{2} \\ \mathcal{Z}_{3} \\ \mathcal{Z}_{4} \\ \mathcal{Z}_{5} \\ \mathcal{Z}_{5$	

table from [Nilles, Ramos-Sánchez, Vaudrevange '20]

Action on the $T\ {\rm modulus}\ {\rm as}$

$$\begin{split} \mathbf{S} &= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} , \\ \mathbf{T} &= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} , \\ \mathbf{K}_*^{\mathcal{CP}} &= \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} . \end{split}$$

A, B, C, R : trivial!

The **eclectic** flavor symmetry of $\mathbb{T}^2/\mathbb{Z}_3$

For this specific orbifold, $\langle U \rangle = \exp(2\pi i/3)$.

The outer automorphisms of the corresponding Narain space group yield the following symmetries:

[Baur, Nilles, AT, Vaudrevange '19; Nilles, Ramos-Sánchez, Vaudrevange '20]

- a $\Delta(54)$ traditional flavor symmetry,
- an SL(2, Z)_T modular symmetry which acts as a Γ'₃ ≅ T' finite modular symmetry on matter fields and their couplings,
- a \mathbb{Z}_9^R discrete *R*-symmetry as remnant of $SL(2, \mathbb{Z})_U$, and

• a
$$\mathbb{Z}_2^{CP} CP$$
-like transformation.

 $G_{\text{eclectic}} = G_{\text{traditional}} \cup G_{\text{modular}} \cup G_{\text{R}} \cup C\mathcal{P},$

Together, the full eclectic group of this setting is of order 3888 given by

 $G_{\rm eclectic} \ = \ \Omega(2) \rtimes \mathbb{Z}_2^{\mathcal{CP}} \,, \qquad {\rm with} \quad \Omega(2) \cong [1944, 3448] \,.$

The **eclectic** flavor symmetry of $\mathbb{T}^2/\mathbb{Z}_3$

For this specific orbifold, $\langle U \rangle = \exp(2\pi i/3)$.

The outer automorphisms of the corresponding Narain space group yield the following symmetries:

[Baur, Nilles, AT, Vaudrevange '19; Nilles, Ramos-Sánchez, Vaudrevange '20]

- a $\Delta(54)$ traditional flavor symmetry,
- an SL(2, Z)_T modular symmetry which acts as a Γ'₃ ≅ T' finite modular symmetry on matter fields and their couplings,
- a \mathbb{Z}_9^R discrete *R*-symmetry as remnant of $SL(2, \mathbb{Z})_U$, and

• a
$$\mathbb{Z}_2^{\mathcal{CP}} \mathcal{CP}$$
-like transformation.

 $G_{\text{eclectic}} = G_{\text{traditional}} \cup G_{\text{modular}} \cup G_{\text{R}} \cup C\mathcal{P},$

Together, the full eclectic group of this setting is of order 3888 given by

$$G_{\rm eclectic} \ = \ \Omega(2) \rtimes \mathbb{Z}_2^{\mathcal{CP}} \,, \qquad {\rm with} \quad \Omega(2) \cong [1944, 3448] \,.$$

Explicit $\mathbb{T}^2/\mathbb{Z}_3$ models: charge assignments

Model	l	ē	$\bar{\nu}$	q	\bar{u}	\bar{d}	H_u	H_d	flavons
А	$\Phi_{-2/3}$	$\Phi_{-2/3}$	$\Phi_{-2/3}$	$\Phi_{-2/3}$	$\Phi_{-2/3}$	$\Phi_{-2/3}$	Φ_0	Φ_0	$\Phi_{-2/3,-1}$
в	$\Phi_{-1/3}$	$\Phi_{-2/3}$	$\Phi_{-2/3}$	$\Phi_{-2/3}$	$\Phi_{-2/3}$	$\Phi_{-1/3}$	Φ_{-1}	Φ_0	$\Phi_{-2/3,-1}$
\mathbf{C}	$\Phi_{-2/3}$	$\Phi_{-1/3}$	$\Phi_{-1/3}$	$\Phi_{-1/3}$	$\Phi_{-1/3}$	$\Phi_{-2/3}$	Φ_{-1}	Φ_{-1}	$\Phi_{-1/3,-1}$
D	$\Phi_{-1/3}$	$\Phi_{-1/3}$	$\Phi_{\pm 2/3,0}$	$\Phi_{-1/3}$	$\Phi_{-1/3}$	$\Phi_{-1/3}$	Φ_0	$\Phi_{-1,0}$	$\Phi_{\pm 2/3,-1}$
Е	$\Phi_{-2\!/\!3,-1\!/\!3}$	$\Phi_{-2\!/\!3,0}$	$\Phi_{0,-2/3,-1/3,-5/3}$	$\Phi_{-1,-2/3}$	$\Phi_{-2/3}$	$\Phi_{0,-2/3}$	Φ_0	Φ_0	$\Phi_{^{-2/3},^{-1/3},^{-5/3},-1}$

for methodology, see [Carballo-Pérez, Peinado, Ramos-Sánchez '16; Ramos-Sánchez '17] [Olguin-Trejo, Perez-Martinez, Ramos-Sanchez '18]

	matter			ecl	ectic fl	avor gro	up $\Omega(2)$			
sector	fields	m	odular T'	subgroup		trad	group	\mathbb{Z}_{9}^{R}		
	Φ_n	irrep \boldsymbol{s}	$\rho_{s}(S)$	$\rho_{s}(T)$	n	irrep \boldsymbol{r}	$\rho_{\boldsymbol{r}}(\mathbf{A})$	$\rho_{\boldsymbol{r}}(\mathbf{B})$	$\rho_{\boldsymbol{r}}(\mathbf{C})$	R
bulk	Φ_0	1	1	1	0	1	1	1	+1	0
	Φ_{-1}	1	1	1	-1	1'	1	1	-1	3
θ	$\Phi_{-2/3}$	$2' \oplus 1$	$\rho(S)$	$\rho(T)$	-2/3	3 ₂	$\rho(A)$	$\rho(B)$	$+\rho(C)$	1
	$\Phi_{-5/3}$	$\mathbf{2'} \oplus 1$	$\rho(S)$	$\rho(T)$	-5/3	3_1	$\rho(A)$	$\rho(B)$	$-\rho(C)$	-2
θ^2	$\Phi_{-1/3}$	$2'' \oplus 1$	$(\rho(S))^*$	$(\rho(T))^*$	-1/3	$\bar{3}_1$	$\rho(A)$	$(\rho(B))^*$	$-\rho(C)$	2
	$\Phi_{+2/3}$	$2'' \oplus 1$	$(\rho(S))^*$	$(\rho(T))^*$	+2/3	$ar{3}_2$	$\rho(A)$	$(\rho(B))^*$	$+\rho(C)$	5
super- potential	W	1	1	1	-1	1′	1	1	-1	3

table from [Nilles, Ramos-Sánchez, Vaudrevange '20]

Explicit $\mathbb{T}^2/\mathbb{Z}_3$ models: charge assignments

Model	l	\bar{e}	$\bar{\nu}$	q	\bar{u}	\bar{d}	H_u	H_d	flavons
Α	$\Phi_{-2/3}$	$\Phi_{-2/3}$	$\Phi_{-2/3}$	$\Phi_{-2/3}$	$\Phi_{-2/3}$	$\Phi_{-2/3}$	Φ_0	Φ_0	$\Phi_{^{-2/3},-1}$
В	$\Phi_{-1/3}$	$\Phi_{-2/3}$	$\Phi_{-2/3}$	$\Phi_{-2/3}$	$\Phi_{-2/3}$	$\Phi_{-1/3}$	Φ_{-1}	Φ_0	$\Phi_{-2/3,-1}$
\mathbf{C}	$\Phi_{-2/3}$	$\Phi_{-1/3}$	$\Phi_{-1/3}$	$\Phi_{-1/3}$	$\Phi_{-1/3}$	$\Phi_{-2/3}$	Φ_{-1}	Φ_{-1}	$\Phi_{-1/3,-1}$
D	$\Phi_{-1/3}$	$\Phi_{-1/3}$	$\Phi_{\pm 2/3,0}$	$\Phi_{-1/3}$	$\Phi_{-1/3}$	$\Phi_{-1/3}$	Φ_0	$\Phi_{-1,0}$	$\Phi_{\pm 2/3,-1}$
Е	$\Phi_{-2/3,-1/3}$	$\Phi_{-2\!/\!3,0}$	$\Phi_{0,-2/3,-1/3,-5/3}$	$\Phi_{-1,-2/3}$	$\Phi_{-2/3}$	$\Phi_{0,-2/3}$	Φ_0	Φ_0	$\Phi_{^{-2\!/\!3,-1\!/\!3,-5\!/\!3,-1}}$

for methodology, see [Carballo-Pérez, Peinado, Ramos-Sánchez '16; Ramos-Sánchez '17] [Olguin-Trejo, Perez-Martinez, Ramos-Sanchez '18]

	matter			ecl	ectic fl	avor gro	up $\Omega(2)$			
sector	fields	m	odular T'	subgroup		group	\mathbb{Z}_{9}^{R}			
	Φ_n	irrep \boldsymbol{s}	$\rho_{s}(S)$	$\rho_{s}(T)$	n	irrep r	$\rho_{r}(\mathbf{A})$	$\rho_{r}(B)$	$\rho_{\boldsymbol{r}}(\mathbf{C})$	R
bulk	Φ_0	1	1	1	0	1	1	1	+1	0
	Φ_{-1}	1	1	1	-1	1′	1	1	-1	3
θ	$\Phi_{-2/3}$	$2' \oplus 1$	$\rho(S)$	$\rho(T)$	-2/3	3_2	$\rho(A)$	$\rho(B)$	$+\rho(C)$	1
	$\Phi_{-5/3}$	$\mathbf{2'} \oplus 1$	$\rho(S)$	$\rho(T)$	-5/3	3_1	$\rho(A)$	$\rho(B)$	$-\rho(C)$	-2
θ^2	$\Phi_{-1/3}$	$2'' \oplus 1$	$(\rho(S))^*$	$(\rho(T))^*$	-1/3	$ar{3}_1$	$\rho(A)$	$(\rho(B))^*$	$-\rho(C)$	2
	$\Phi_{+2/3}$	$2'' \oplus 1$	$(\rho(S))^*$	$(\rho(T))^*$	+2/3	$ar{3}_2$	$\rho(A)$	$(\rho(B))^*$	$+\rho(C)$	5
super- potential	W	1	1	1	-1	1′	1	1	-1	3

table from [Nilles, Ramos-Sánchez, Vaudrevange '20]

13/27

Sources of eclectic symmetry breaking

1. Modulus VEV $\langle T \rangle$. Points w/ enhanced symmetry:

$$\begin{split} \langle T \rangle &= \mathbf{i}, \qquad \Omega(2) \to \Xi(2,2) \\ \langle T \rangle &= \omega, -\omega^2 \quad \Omega(2) \to H(3,2,1) \\ \langle T \rangle &= \mathbf{i}\infty, 1 \qquad \Omega(2) \to H(3,2,1) \\ &\qquad \Xi(2,2) \cong [324,111] \\ &\qquad H(3,2,1) \cong [486,125] \end{split}$$

2. Flavon VEVs

$$\begin{split} \langle \Phi_{-2/3} \rangle &\sim \langle \mathbf{3}_2 \rangle, \qquad \langle \Phi_{-5/3} \rangle \sim \langle \mathbf{3}_1 \rangle, \qquad \langle \Phi_{-1} \rangle \sim \langle \mathbf{1}' \rangle , \\ \langle \Phi_{-1/3} \rangle &\sim \langle \overline{\mathbf{3}}_1 \rangle, \qquad \langle \Phi_{+2/3} \rangle \sim \langle \overline{\mathbf{3}}_2 \rangle. \end{split}$$

Example: Breakdown of H(3,2,1) at $\langle T \rangle = i\infty$

[Baur, Nilles, Ramos-Sánchez, AT, Vaudrevange '22]

Residual symmetries help to generate hierarchies in masses and mixing matrix elements.

Example: Breakdown of H(3,2,1) at $\langle T \rangle = i\infty$

[Baur, Nilles, Ramos-Sánchez, AT, Vaudrevange '22]

Residual symmetries help to generate hierarchies in masses and mixing matrix elements.

Example: Breakdown of H(3,2,1) at $\langle T \rangle \approx i\infty$

$$\begin{array}{c}
\Omega(2) \longrightarrow \langle T \rangle = i\infty \longrightarrow H(3, 2, 1) \longrightarrow \langle \bar{\varphi} \rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \longrightarrow \mathbb{Z}_{3}^{(2)} \times \mathbb{Z}_{3}^{(3)} \longrightarrow \langle \bar{\varphi} \rangle = \begin{pmatrix} 0 \\ \lambda_{2} \\ 1 \end{pmatrix} \longrightarrow \mathbb{Z}_{3}^{(3)} \times \mathbb{Z}_{3}^{(3)} \longrightarrow \mathbb{Z}_{3}^{(3)} \times \mathbb{Z}_{3}^{(3)} \longrightarrow \mathbb{Z}_{3}^{(3)} \times \mathbb{Z}_{3}^{(3)} \longrightarrow \mathbb{Z}_{3}^{(3)} \times \mathbb{Z}_{3}^{(3)} \longrightarrow \mathbb{Z}_{3}^$$

$$\langle \tilde{\varphi}_{\mathbf{3}_2} \rangle = (\lambda_1, \lambda_2, 1) , \qquad \epsilon := e^{2\pi i \langle T \rangle} .$$

$$\begin{split} \mathbb{Z}_3^{(2)} &\subset G_{\text{traditional}} \quad \text{generated by} \quad \rho_{\mathbf{3}_2, \text{i}\infty}(\text{ABA}^2) \ = \ \begin{pmatrix} \omega & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \ , \\ \mathbb{Z}_3^{(3)} &\subset G_{\text{modular}} \quad \text{generated by} \qquad \rho_{\mathbf{3}_2, \text{i}\infty}(\text{T}) \ = \ \begin{pmatrix} \omega^2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \ . \end{split}$$

Spontaneous breaking of eclectic symmetry controlled by *technically natural* small parameters

 $\epsilon, \lambda_1 \ll \lambda_2 \ll 1$.

Andreas Trautner

A concrete "Model A" example

Superpotential predicted, and tightly constrained:

$$(M_{\rm P1} = 1)$$

$$W = \phi^{0} \left[\left(\phi_{u}^{0} \varphi_{u} \right) Y_{u} H_{u} \overline{u} q + \left(\phi_{d}^{0} \varphi_{d} \right) Y_{d} H_{d} \overline{d} q \right] + \phi^{0} \left[\left(\phi_{e}^{0} \varphi_{d} \right) Y_{\ell} H_{d} \overline{e} \ell + (\varphi_{\nu}) Y_{\nu} H_{u} \overline{\nu} \ell \right] + \phi_{M}^{0} \varphi_{d} \overline{\nu} \overline{\nu} .$$

All superpotential terms have the generic structure

$$\Phi_0 \dots \Phi_0 \hat{Y}^{(1)}(T) \Phi_{-2/3}^{(1)} \Phi_{-2/3}^{(2)} \Phi_{-2/3}^{(3)} ,$$

"singlet flavon(s) × modular form × triplet matter × triplet matter × triplet flavon". $\implies All \text{ mass terms can be written as} \qquad \text{[Nilles, Ramos-Sanchez, Vaudrevange '20]} \\ \left(\Phi_{-2/3}^{(1)}\right)^{\mathrm{T}} M\left(T, c, \Phi_{-2/3}^{(3)}\right) \quad \Phi_{-2/3}^{(2)} ,$ $M\left(T, c, \Phi_{-2/3}^{(3)}\right) = c \begin{pmatrix} \hat{Y}_{2}(T) X & -\frac{\hat{Y}_{1}(T)}{\sqrt{2}} Z & -\frac{\hat{Y}_{1}(T)}{\sqrt{2}} Y \\ -\frac{\hat{Y}_{1}(T)}{\sqrt{2}} Z & \hat{Y}_{2}(T) Y & -\frac{\hat{Y}_{1}(T)}{\sqrt{2}} X \end{pmatrix} .$

$$\begin{aligned} \begin{pmatrix} \sqrt{2} & \sqrt{2} & \sqrt{2} \\ -\frac{\hat{Y}_1(T)}{\sqrt{2}} & Y & -\frac{\hat{Y}_1(T)}{\sqrt{2}} & X & \hat{Y}_2(T) & Z \\ \end{pmatrix} \\ \Phi^{(3)}_{-2/3} &\equiv (X, Y, Z), \qquad \text{and} \qquad \hat{Y}^{(1)}(T) \equiv \begin{pmatrix} \hat{Y}_1(T) \\ \hat{Y}_2(T) \end{pmatrix} \equiv \frac{1}{\eta(T)} \begin{pmatrix} -3\sqrt{2} & \eta^3(3T) \\ 3\eta^3(3T) + & \eta^3(T/3) \end{pmatrix}. \end{aligned}$$

with

A concrete "Model A" example

Superpotential predicted, and tightly constrained:

$$(M_{\rm Pl} = 1)$$

$$W = \phi^{0} \left[\left(\phi_{u}^{0} \varphi_{u} \right) Y_{u} H_{u} \overline{u} q + \left(\phi_{d}^{0} \varphi_{d} \right) Y_{d} H_{d} \overline{d} q \right] + \phi^{0} \left[\left(\phi_{e}^{0} \varphi_{d} \right) Y_{\ell} H_{d} \overline{e} \ell + (\varphi_{\nu}) Y_{\nu} H_{u} \overline{\nu} \ell \right] + \phi_{M}^{0} \varphi_{d} \overline{\nu} \overline{\nu} .$$

All superpotential terms have the generic structure

$$\Phi_0 \dots \Phi_0 \hat{Y}^{(1)}(T) \Phi_{-2/3}^{(1)} \Phi_{-2/3}^{(2)} \Phi_{-2/3}^{(3)} ,$$

"singlet flavon(s) \times modular form \times triplet matter \times triplet matter \times triplet flavon".

 $\implies A /\!\!/ \text{ mass terms can be written as} \qquad \text{[Nilles, Ramos-Sanchez, Vaudrevange '20]} \\ \begin{pmatrix} \Phi_{-2/3}^{(1)} \end{pmatrix}^{\mathrm{T}} M \begin{pmatrix} T, c, \Phi_{-2/3}^{(3)} \end{pmatrix} \Phi_{-2/3}^{(2)} , \\ M \left(\langle T \rangle, \Lambda, \langle \tilde{\varphi} \rangle \right) = \Lambda \begin{pmatrix} \lambda_1 & 3 \epsilon^{1/3} & 3 \lambda_2 \epsilon^{1/3} \\ 3 \epsilon^{1/3} & \lambda_2 & 3 \lambda_1 \epsilon^{1/3} \\ 3 \lambda_2 \epsilon^{1/3} & 3 \lambda_1 \epsilon^{1/3} & 1 \end{pmatrix} + \mathcal{O}(\epsilon) .$

 \implies Analytic control over hierarchies, e.g. mass ratios

$$\begin{array}{ll} \displaystyle \frac{m_1}{m_2} \approx \ \left| \frac{\lambda_1}{\lambda_2} \right| & \displaystyle \frac{m_2}{m_3} \approx \ |\lambda_2| & \mbox{ for } & |\epsilon^{2/3}| \ll |\lambda_1\lambda_2| \ll |\lambda_2|^2 \,, \\ \\ \displaystyle \frac{m_1}{m_2} \approx \ 9 \ \left| \frac{\epsilon^{2/3}}{\lambda_2^2} \right| & \displaystyle \frac{m_2}{m_3} \approx \ |\lambda_2| & \mbox{ for } & |\lambda_1\lambda_2| \ll |\epsilon^{2/3}| \ll |\lambda_2|^2 \,. \end{array}$$

Andreas Trautner

Modular Flavor Symmetries and CP from the top down, DISCRETE Baden-Baden, 8.11.22

Numerical analysis: fit to data

Strategy:

[Baur, Nilles, Ramos-Sánchez, AT, Vaudrevange 2207.10677]

- Fit model to data as *proof-of-existence* of working consistent top-down models.
- Lepton data from NuFITv5.1. [Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou '20]
- Quark data from PDG.
- "State-of-the-art" handling of SUSY breaking and running. $(M_{\rm SUSY} \approx 10 \,{
 m TeV}, \tan(\beta) \approx 10)$ [Ross, Serna '08], [Antusch, Maurer '13], [Feruglio '17], [Ding, King, Yao '21]
- Numerically minimize χ^2 using <code>lmfit</code>. [Newville et al.'21]
- Explore each minimum w/ MCMC sampler emcee.

[Foreman-Mackey et al.'12]

Numerical analysis: fit to lepton data Lepton sector fit: *effectively* only 7 parameters

	, i	ight green region	le	ft green region
parameter	best-fit value	1σ interval	best-fit value	1σ interval
$\operatorname{Re}\langle T\rangle$	0.02279	$0.01345 \rightarrow 0.03087$	-0.04283	$-0.05416 \rightarrow -0.02926$
$\operatorname{Im} \langle T \rangle$	3.195	$3.191 \rightarrow 3.199$	3.139	$3.135 \rightarrow 3.142$
$\langle \tilde{\varphi}_{\mathrm{e},1} \rangle$	$-4.069 \cdot 10^{-5}$	$-4.321 \cdot 10^{-5} \rightarrow -3.947 \cdot 10^{-5}$	$2.311 \cdot 10^{-5}$	$2.196 \cdot 10^{-5} \rightarrow 2.414 \cdot 10^{-5}$
$\langle \tilde{\varphi}_{e,2} \rangle$	0.05833	$0.05793 \rightarrow 0.05876$	0.05826	$0.05792 \rightarrow 0.05863$
$\langle \tilde{\varphi}_{\nu,1} \rangle$	0.001224	$0.001201 \rightarrow 0.001248$	-0.001274	$-0.001304 \rightarrow -0.001248$
$\langle \tilde{\varphi}_{\nu,2} \rangle$	-0.9857	$-1.0128 \rightarrow -0.9408$	0.9829	$0.9433 \rightarrow 1.0122$
Λ_{ν} [eV]	0.05629	$0.05442 \rightarrow 0.05888$	0.05591	$0.05408 \to 0.05850$
χ^2	0.08		0.45	

 $x = \{ \operatorname{Re} \langle T \rangle, \, \operatorname{Im} \langle T \rangle, \, \langle \tilde{\varphi}_{\mathrm{e},1} \rangle, \, \langle \tilde{\varphi}_{\mathrm{e},2} \rangle, \, \langle \tilde{\varphi}_{\nu,1} \rangle, \, \langle \tilde{\varphi}_{\nu,2} \rangle, \, \Lambda_{\nu} \} \; .$

Andreas Trautner

Numerical analysis: fit to lepton data

Neutrino sector fit:

		model			experimen	t
observable	best fit	1σ interval	3σ interval	best fit	1σ interval	3σ interval
$\frac{m_{\rm e}/m_{\mu}}{m_{\mu}/m_{\tau}}$	$\begin{array}{c} 0.00473 \\ 0.0586 \end{array}$	$\begin{array}{c} 0.00470 \rightarrow 0.00477 \\ 0.0581 \rightarrow 0.0590 \end{array}$	$\begin{array}{c} 0.00462 \rightarrow 0.00485 \\ 0.0572 \rightarrow 0.0600 \end{array}$	$\begin{array}{c} 0.00474 \\ 0.0586 \end{array}$	$\begin{array}{c} 0.00470 \rightarrow 0.00478 \\ 0.0581 \rightarrow 0.0590 \end{array}$	$\begin{array}{c} 0.00462 \rightarrow 0.00486 \\ 0.0572 \rightarrow 0.0600 \end{array}$
$\begin{array}{c} \sin^2\theta_{12} \\ \sin^2\theta_{13} \\ \sin^2\theta_{23} \end{array}$	$\begin{array}{c} 0.303 \\ 0.02254 \\ 0.449 \end{array}$	$\begin{array}{c} 0.294 \rightarrow 0.315 \\ 0.02189 \rightarrow 0.02304 \\ 0.436 \rightarrow 0.468 \end{array}$	$\begin{array}{c} 0.275 \rightarrow 0.335 \\ 0.02065 \rightarrow 0.02424 \\ 0.414 \rightarrow 0.593 \end{array}$	$\begin{array}{c} 0.304 \\ 0.02246 \\ 0.450 \end{array}$	$\begin{array}{c} 0.292 \rightarrow 0.316 \\ 0.02184 \rightarrow 0.02308 \\ 0.434 \rightarrow 0.469 \end{array}$	$\begin{array}{c} 0.269 \rightarrow 0.343 \\ 0.02060 \rightarrow 0.02435 \\ 0.408 \rightarrow 0.603 \end{array}$
$\begin{array}{l} \delta^{\ell}_{\mathcal{CP}}/\pi \\ \eta_1/\pi \mod 1 \\ \eta_2/\pi \mod 1 \\ J_{\mathcal{CP}} \\ J^{\max}_{\mathcal{CP}} \end{array}$	$\begin{array}{c} 1.28 \\ 0.029 \\ 0.994 \\ -0.026 \\ 0.0335 \end{array}$	$\begin{array}{c} 1.15 \rightarrow 1.47 \\ 0.018 \rightarrow 0.048 \\ 0.992 \rightarrow 0.998 \\ -0.033 \rightarrow -0.015 \\ 0.0330 \rightarrow 0.0341 \end{array}$	$\begin{array}{c} 0.81 \rightarrow 1.94 \\ -0.031 \rightarrow 0.090 \\ 0.935 \rightarrow 1.004 \\ -0.035 \rightarrow 0.019 \\ 0.0318 \rightarrow 0.0352 \end{array}$	1.28 - -0.026 0.0336	$\begin{array}{c} 1.14 \rightarrow 1.48 \\ - \\ - \\ - 0.033 \rightarrow - 0.016 \\ 0.0329 \rightarrow 0.0341 \end{array}$	$0.80 \rightarrow 1.94$ - $-0.033 \rightarrow 0.000$ $0.0317 \rightarrow 0.0353$
$\begin{array}{l} \Delta m_{21}^2 / 10^{-5} \ [eV^2] \\ \Delta m_{31}^2 / 10^{-3} \ [eV^2] \\ m_1 \ [eV] \\ m_2 \ [eV] \\ m_3 \ [eV] \\ \sum m_i \ [eV] \\ m_{\beta\beta} \ [eV] \\ m_{\beta\beta} \ [eV] \\ \end{array}$	7.39 2.508 0.0042 0.0095 0.0504 0.0641 0.0055 0.0099	$\begin{array}{c} 7.35 \rightarrow 7.49 \\ 2.488 \rightarrow 2.534 \\ 0.0039 \rightarrow 0.0049 \\ 0.0095 \rightarrow 0.0099 \\ 0.0501 \rightarrow 0.0505 \\ 0.0636 \rightarrow 0.0652 \\ 0.0045 \rightarrow 0.0064 \\ 0.0097 \rightarrow 0.0102 \end{array}$	$\begin{array}{c} 7.21 \rightarrow 7.65 \\ 2.437 \rightarrow 2.587 \\ 0.0034 \rightarrow 0.0131 \\ 0.0092 \rightarrow 0.0157 \\ 0.0496 \rightarrow 0.0519 \\ 0.0628 \rightarrow 0.0806 \\ 0.0040 \rightarrow 0.0145 \\ 0.0094 \rightarrow 0.0159 \end{array}$	$7.42 \\ 2.521 \\ < 0.037 \\ - \\ < 0.120 \\ < 0.036 \\ < 0.8 \\$	$7.22 \rightarrow 7.63$ $2.483 \rightarrow 2.537$	$6.82 \rightarrow 8.04$ $2.430 \rightarrow 2.593$ -
χ^2	0.08					

Numerical analysis: fit to data \rightarrow predictions

The fit predicts:

[Baur, Nilles, Ramos-Sánchez, AT, Vaudrevange PRD'22 & JHEP'22]

- θ_{23}^{ℓ} lies in lower octant,
- Normal ordering of neutrino masses,
- Majorana phases $\eta_{1,2} \approx \pi$ close to CP conserving values.

Andreas Trautner

Modular Flavor Symmetries and CP from the top down, DISCRETE Baden-Baden, 8.11.22

Importance of Kähler corrections

- Kähler corrections are important, because they are unconstrained in generic bottom-up modular flavor models. [Chen. Ramos-Sánchez, Ratz '19]
- Unlike pure modular flavor theories, the traditional flavor symmetry helps to control the Kaehler potential.

 $\sim K$ is canonical at leading order. [Nilles, Ramos-Sanchez, Vaudrevange '20]

- However, there are higher-order Kähler corrections due to VEV of flavon fields that break the traditional flavor symmetry.
- No Kähler corrections included in our lepton sector fit.
- Must include K\u00e4hler corrections for quark sector (Note: this might be specific to Model A: φ_d ≡ φ_ℓ).

Schematically:

$$K_{\rm LO} \supset -\log(-iT + i\overline{T}) + \sum_{\Phi} \left[(-iT + i\overline{T})^{-2/3} + (-iT + i\overline{T})^{1/3} |\hat{Y}^{(1)}(T)|^2 \right] |\Phi|^2 ,$$

$$K_{\rm NLO} \supset \sum_{\Psi,\varphi} \left[(-iT + i\overline{T})^{-4/3} \sum_a |\Psi\varphi|^2_{\mathbf{1},a} + (-iT + i\overline{T})^{-1/3} \sum_a |\hat{Y}^{(1)}(T)\Psi\varphi|^2_{\mathbf{1},a} \right] .$$

Andreas Trautner

Kähler corrections – parametrization

For a given quark flavor $f = \{u, d, q\}$,

$$K_{ij}^{(f)} \approx \chi^{(f)} \left[\delta_{ij} + \lambda_{\varphi_{\rm eff}}^{(f)} \left(A_{ij}^{(f)} + \kappa_{\varphi_{\rm eff}}^{(f)} B_{ij}^{(f)} \right) \right] \,,$$

with flavor space structures $A = A(\varphi, T)$ and $B = B(\varphi, T)$ that are fixed by group theory and depend on *all* flavon fields. We can define "effective flavons" such that

$$\sum_{\varphi} \lambda_{\varphi}^{(f)} A_{ij}(\varphi) =: \lambda_{\varphi_{\text{eff}}}^{(f)} A_{ij}(\tilde{\varphi}_{\text{eff}}^{(A,f)}) \qquad \equiv \lambda_{\varphi_{\text{eff}}}^{(f)} A_{ij}^{(f)} ,$$
$$\sum_{\varphi} \lambda_{\varphi}^{(f)} \kappa_{\varphi}^{(f)} B_{ij}(\varphi) =: \lambda_{\varphi_{\text{eff}}}^{(f)} \kappa_{\varphi_{\text{eff}}}^{(f)} B_{ij}(\tilde{\varphi}_{\text{eff}}^{(B,f)}) \qquad \equiv \lambda_{\varphi_{\text{eff}}}^{(f)} \kappa_{\varphi_{\text{eff}}}^{(f)} B_{ij}^{(f)}$$

Tilde means we took the scale out of the flavon directions

 $\tilde{\varphi}_{\mathrm{eff}}^{(A,B)} := \varphi_{\mathrm{eff}}^{(A,B)} / \Lambda_{\varphi_{\mathrm{eff}}^{(A,B)}} \quad \text{such that} \quad \tilde{\varphi}_{\mathrm{eff}}^{(A,B)} := \ \left(\tilde{\varphi}_{\mathrm{eff},1}^{(A,B)}, \tilde{\varphi}_{\mathrm{eff},2}^{(A,B)}, 1 \right)^{\mathrm{T}} \,.$

Finally, we can define the parameters

$$\alpha_i^{(f)} := \sqrt{\lambda_{\varphi_{\text{eff}}}^{(f)}} \left\langle \tilde{\varphi}_{\text{eff},i}^{(A,f)} \right\rangle, \qquad \qquad \beta_i^{(f)} := \sqrt{\lambda_{\varphi_{\text{eff}}}^{(f)}} \left\langle \tilde{\varphi}_{\text{eff},i}^{(B,f)} \right\rangle,$$

and one can show that

$$\lambda_{\varphi_{\rm eff}}^{(f)} A_{ij}^{(f)} = \alpha_i^{(f)} \, \alpha_j^{(f)} \,, \qquad \qquad \lambda_{\varphi_{\rm eff}}^{(f)} B_{ij}^{(f)} \approx \beta_i^{(f)} \, \beta_j^{(f)}$$

Note: All this is very specific to Models of type A.

Andreas Trautner

Modular Flavor Symmetries and CP from the top down, DISCRETE Baden-Baden, 8.11.22

Numerical analysis: fit to quark & lepton data Parameters: Observables:

parame	eter	best-fit value			observable	model best fit	exp. best fit	exp. 1σ interval
Im Re $\langle \tilde{\varphi} \rangle$ $\langle \vartheta \rangle$	$\langle T \rangle$ $\langle T \rangle$ $\langle u,1 \rangle$ $\langle u,1 \rangle$	$\begin{array}{c} 3.195 \\ 0.02279 \\ 2.0332 \cdot 10^{-4} \\ 1.6481 \\ 0.00000 \\ 1.00000 \\ 0.0$		sector	$egin{array}{c} m_{ m u}/m_{ m c}\ m_{ m c}/m_{ m t}\ m_{ m d}/m_{ m s}\ m_{ m s}/m_{ m b} \end{array}$	0.00193 0.00280 0.0505 0.0182	0.00193 0.00282 0.0505 0.0182	$\begin{array}{c} 0.00133 \rightarrow 0.00253 \\ 0.00270 \rightarrow 0.00294 \\ 0.0443 \rightarrow 0.0567 \\ 0.0172 \rightarrow 0.0192 \end{array}$
superpote ອີງ ອີງ	$\langle \hat{v}_{u,2} \rangle$ $\langle \hat{v}_{u,2} \rangle$ $\langle \hat{v}_{e,1} \rangle$ $\langle \hat{v}_{e,2} \rangle$ $\langle \hat{v}_{u,1} \rangle$	$6.3011 \cdot 10^{-2}$ -1.5983 -4.069 $\cdot 10^{-5}$ 5.833 $\cdot 10^{-2}$ 1.224 $\cdot 10^{-3}$	-	quark	$\begin{array}{l} \vartheta_{12} \; [\mathrm{deg}] \\ \vartheta_{13} \; [\mathrm{deg}] \\ \vartheta_{23} \; [\mathrm{deg}] \\ \delta^{\mathrm{q}}_{\mathcal{CP}} \; [\mathrm{deg}] \end{array}$	13.03 0.200 2.30 69.2	13.03 0.200 2.30 69.2	$\begin{array}{c} 12.98 \rightarrow 13.07 \\ 0.193 \rightarrow 0.207 \\ 2.26 \rightarrow 2.34 \\ 66.1 \rightarrow 72.3 \end{array}$
$\langle \tilde{\varphi} \\ \Lambda_{\nu} [$	$ \tilde{\phi}_{\nu,2}\rangle$ [eV]	-0.9857 0.05629			$rac{m_{ m e}/m_{\mu}}{m_{\mu}/m_{ au}}$	0.00473 0.0586	$0.00474 \\ 0.0586$	$\begin{array}{c} 0.00470 \rightarrow 0.00478 \\ 0.0581 \rightarrow 0.0590 \end{array}$
ıtial	α_1^u α_2^u α_3^u	-0.94917 0.0016906 0.31472			$\frac{\sin^2 \theta_{12}}{\sin^2 \theta_{13}}$ $\frac{\sin^2 \theta_{23}}{\sin^2 \theta_{23}}$	0.303 0.0225 0.449	0.304 0.0225 0.450	$\begin{array}{c} 0.292 \rightarrow 0.316 \\ 0.0218 \rightarrow 0.0231 \\ 0.434 \rightarrow 0.469 \end{array}$
Kähler poten	$\alpha_1^{d_1} \alpha_2^{d_2} \alpha_3^{q_1} \alpha_1^{q_2} \alpha_2^{q_1} \alpha_2^{q_2}$	$\begin{array}{c} 0.95067\\ 0.0077533\\ 0.30283\\ -0.96952\\ -0.20501\end{array}$		sector	$\begin{array}{c} \delta^{\ell}_{\mathcal{CP}}/\pi \\ \eta_1/\pi \\ \eta_2/\pi \\ J_{\mathcal{CP}} \\ J^{\max}_{\mathcal{CP}} \end{array}$	$\begin{array}{c} 1.28 \\ 0.029 \\ 0.994 \\ -0.026 \\ 0.0335 \end{array}$	1.28 - - -0.026 0.0336	$\begin{array}{c} 1.14 \rightarrow 1.48 \\ - \\ - \\ - 0.033 \rightarrow -0.016 \\ 0.0329 \rightarrow 0.0341 \end{array}$
mpose	$\frac{\alpha_3^3}{2}$	onstraints: $1 \forall f$		lepton	$\begin{array}{c} \Delta m^2_{21}/10^{-5}~[\mathrm{eV}^2]\\ \Delta m^2_{31}/10^{-3}~[\mathrm{eV}^2]\\ m_1~[\mathrm{eV}]\\ m_2~[\mathrm{eV}]\\ m_3~[\mathrm{eV}] \end{array}$	7.39 2.521 0.0042 0.0095 0.0504	7.42 2.510 <0.037	$7.22 \rightarrow 7.63$ $2.483 \rightarrow 2.537$ -
$\alpha_i^{(f)}$ $\alpha_i^{(f)}$	$=\beta$ $\in \mathbb{R}$	$B_i^{(f)} \ \forall f, i,$			$\frac{\sum_{i} m_{i} [eV]}{m_{\beta\beta} [eV]}$ $\frac{m_{\beta\beta} [eV]}{m_{\beta} [eV]}$	0.0641 0.0055 0.0099 0.11	<0.120 <0.036 <0.8	-

Andreas Trautner

Possible lessons for bottom-up model building Empirical observations:

- Modular flavor symmetries do not arise alone; They are generically accompanied by (partly overlapping!)
 - "traditional" discrete flavor symmetries (& flavons),
 - discrete (non-Abelian) R symmetries,
 - *CP*-type symmetries.

 $G_{\text{eclectic}} = G_{\text{traditional}} \cup G_{\text{modular}} \cup G_{\text{R}} \cup C\mathcal{P}.$

- Modular weights of matter fields are fractional, Modular weights of (Yukawa) couplings are integer.
- Modular weights are 1 : 1 "locked" to all other flavor symmetry representations.

Conjecture: This may be a general top-down feature !?

for other known examples, see [Ishiguro, Kobayashi, Otsuka '21], [Kikuchi, Kobayahsi, Uchida '21] [Almumin, Chen, Knapp-Pérez, Ramos-Sánchez, Ratz, Shukla '21]

Many open questions

Extra tori? → Metaplectic groups

[Ding, Feruglio, Liu '20 &'21], [Nilles, Ramos-Sanchez, AT, Vaudrevange '21]

- Other possible realistic string configurations? "Size of the 'landscape' "?
- Moduli stabilization?
- Flavon potential?
- Restrictions on K\u00e4hler potential?

see [Chen, Ramos-Sanchez, Ratz '19] [Chen, Knapp-Perez, Ramos-Hamud, Ramos-Sanchez, Ratz, Shukla '21]

Summary

• There are explicit models of heterotic string theory that reproduce, at low energies, the

MSSM + (modular) flavor symmetry + flavons.

- The complete flavor symmetry can unambiguously be derived by the outer automorphisms of the Narain space group.
- One finds an "eclectic" flavor symmetry that non-trivially unifies:

 $G_{\text{eclectic}} = G_{\text{traditional}} \cup G_{\text{modular}} \cup G_{\text{R}} \cup C\mathcal{P}.$

- This symmetry is broken by
 - Expectation values of the moduli, e.g. $\langle U \rangle$, $\langle T \rangle$.
 - Expectation values of the flavon fields.
- (Approximate) residual symmetries are common, and can help to naturally generate hierachies in masses and mixing matrix elements.
- We have identified one example for a model that can give a successfull fit to the observed SM flavor structure.

Thank You

Andreas Trautner

Backup slides

Andreas Trautner Modular Flavor Symmetries and CP from the top down, DISCRETE Baden-Baden, 8.11.22 29/27

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a, a²}.
- Outer automorphism group ("Out") of ℤ₃: generated by

 $u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.$ (think: $\mathsf{u}\,\mathsf{a}\,\mathsf{u}^{-1}\,=\,\mathsf{a}^2$)

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a, $a^{\flat}_{7}a^2$ }.
- Outer automorphism group ("Out") of ℤ₃: generated by

$$u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.$$
 (think: $\mathsf{u}\,\mathsf{a}\,\mathsf{u}^{-1}\,=\,\mathsf{a}^2$)

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a, $a^{\flat}_{7}a^2$ }.
- Outer automorphism group ("Out") of Z₃: generated by

$$u(a): a \mapsto a^2$$
. (think: $u a u^{-1} = a^2$)

Abstract: Out is a reshuffling of symmetry elements.

In words: Out is a "symmetry of the symmetry".

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a, $a^{\flat}_{7}a^2$ }.
- Outer automorphism group ("Out") of Z₃: generated by

$$u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.$$
 (think: u a u⁻¹ = a²)

Abstract: Out is a reshuffling of symmetry elements.

In words: Out is a "symmetry of the symmetry".

Concrete: Out is a 1:1 mapping of representations $r \mapsto r'$. Comes with a transformation matrix U, which is given by

$$U\rho_{\boldsymbol{r}'}(\mathbf{g})U^{-1} = \rho_{\boldsymbol{r}}(u(\mathbf{g})) , \quad \forall \mathbf{g} \in G .$$

(consistency condition)

[Fallbacher, AT, '15] [Holthausen, Lindner, Schmidt, '13]

for group element
$$g \in G$$

 $\rho_{r}(g)$: representation matrix for group $u: g \mapsto u(g)$: **outer** automorphism

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

• All elements of \mathbb{Z}_3 : {id, a, $a^{\flat}_{7}a^2$ }.

Andreas Trau

 Outer automorphism group ("Out") of ℤ₃: generated by

$$u(a): a \mapsto a^2$$
. (think: $u a u^{-1} = a^2$)

Abstract: Out is a reshuffling of symmetry elements.

In words: Out is a "symmetry of the symmetry".

Concrete: Out is a 1:1 mapping of representations $r \mapsto r'$. Comes with a transformation matrix U, which is given by

$$U\rho_{\mathbf{r}'}(\mathbf{g})U^{-1} = \rho_{\mathbf{r}}(u(\mathbf{g})), \quad \forall \mathbf{g} \in G.$$

$$(\text{consistency} r) \quad \textbf{E.g.: Physical CP trafo or er, AT, '15]} \text{ is a special case of this! midt, '13]} \quad \mathbf{r} \mapsto \mathbf{r}' = \mathbf{r}^*$$

$$(\text{consistency} r) \quad \mathbf{r} \mapsto \mathbf{r} \mapsto \mathbf{r}' = \mathbf{r}^*$$

$$(\text{consistency} r) \quad \mathbf{r} \mapsto \mathbf{r$$

Flavor and Modular Symmetries

Feruglio: "Are neutrino masses modular forms?" [Feruglio '17]

General (bottom-up) idea:

- Supersymmetric (say N = 1) theory.
- Ask for modular invariance:

[Ferrara, Lüst, (Shapere), Theisen '89(x2)]

$$\tau\mapsto\gamma\tau=\frac{a\tau+b}{c\tau+d}\,,\qquad\varphi^{(I)}\mapsto(c\tau+d)^{-k_{I}}\,\rho^{(I)}(\gamma)\varphi^{(I)}\;.$$

$$\gamma := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N) , \quad \{a, b, c, d\} \in \mathbb{Z} , \qquad \Phi := (\tau, \varphi) .$$

- EITHER $W(\Phi)$, $K(\Phi, \overline{\Phi})$ invariant (K up to Kähler transf.), \longrightarrow global SUSY OR compensating against each other. \longrightarrow SUGRA
- In any case, Yukawa couplings must be modular forms:

$$W(\Phi) = \sum_{n} Y_{I_1\dots I_n}(\tau) \varphi^{(I_1)} \dots \varphi^{(I_n)} ,$$

$$Y_{I_1\dots I_n}(\tau) \mapsto Y_{I_1\dots I_n}(\gamma \tau) \stackrel{!}{=} \left[e^{\mathbf{i}\alpha(\gamma)} \right] (c\tau + d)^{k_Y(n)} Y_{I_1\dots I_n}(\tau)$$

• $\tau \to \langle \tau \rangle$ breaks modular symmetry $\iff \tau$ takes rôle of flavon!

Andreas Trautner

Narain lattice formulation of heterotic string theory: [Narain '86] [Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink & Vaudrevange '17] Lattice can have symmetries. Symmetries can have fixed points.

e.g. $\mathbb{T}^2/\mathbb{Z}_3$ (with $\mathbb{T}^2 := \mathbb{R}^2/\mathbb{Z}^2$)

Narain lattice formulation of heterotic string theory: [Narain '86] [Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink & Vaudrevange '17] Lattice can have symmetries. Symmetries can have fixed points. e.g. $\mathbb{T}^2/\mathbb{Z}_3$ (with $\mathbb{T}^2 := \mathbb{R}^2/\mathbb{Z}^2$)

Symmetries can have outer automorphisms.

"Symmetries of symmetries" [AT'16]

Narain lattice formulation of heterotic string theory: [Narain '86] [Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink & Vaudrevange '17] Lattice can have symmetries. Symmetries can have fixed points. e.g. $\mathbb{T}^2/\mathbb{Z}_3$ (with $\mathbb{T}^2 := \mathbb{R}^2/\mathbb{Z}^2$)

Symmetries can have outer automorphisms.

"Symmetries of symmetries" [AT'16] Here, these leave the lattice symmetries invariant, but act non-trivially on the fixed points.

 $\begin{array}{ll} \mbox{Narain lattice formulation of heterotic string theory:} [Narain '86] [Narain, Samardi, Witten '87], [Narain, M. H. Sarmadi, and C. Vafa, '87], [Groot Nibbelink & Vaudrevange '17] Lattice can have symmetries. Symmetries can have fixed points. e.g. <math display="inline">\mathbb{T}^2/\mathbb{Z}_3$ (with $\mathbb{T}^2:=\mathbb{R}^2/\mathbb{Z}^2)$

Symmetries can have outer automorphisms.

"Symmetries of symmetries" [AT'16] Here, these leave the lattice symmetries invariant, but act non-trivially on the fixed points.

 $\begin{array}{ll} \mbox{Narain lattice formulation of heterotic string theory:} [Narain '86] [Narain, Samardi, Witten '87], [Narain, M. H. Sarmadi, and C. Vafa, '87], [Groot Nibbelink & Vaudrevange '17] Lattice can have symmetries. Symmetries can have fixed points. e.g. <math display="inline">\mathbb{T}^2/\mathbb{Z}_3$ (with $\mathbb{T}^2:=\mathbb{R}^2/\mathbb{Z}^2)$

Symmetries can have outer automorphisms.

"Symmetries of symmetries" [AT'16]

Here, these leave the lattice symmetries invariant, but act non-trivially on the fixed points.

New insight: Flavor symmetries are given by outer automorphisms of the Narain lattice space group! [Baur, Nilles, AT, Vaudrevange '19]

In this way we can unambiguously compute them in the top-down approach.

Andreas Trautner

Origin of eclectic flavor symmetry in heterotic orbifolds Narain lattice formulation of heterotic string theory: [Narain '86]

[Narain, Samardi, Witten '87], [Narain, M. H. Sarmadi, and C. Vafa, '87], [Groot Nibbelink & Vaudrevange '17]

• Bosonic string coordinates, *D* right- and *D* left-moving, *y*_{R,L}, *compactified* on 2*D* torus:

$$\begin{pmatrix} y_{\rm R} \\ y_{\rm L} \end{pmatrix} \equiv Y \sim \Theta^k \, Y \! + \! E \, \hat{N},$$

Origin of eclectic flavor symmetry in heterotic orbifolds Narain lattice formulation of heterotic string theory: [Narain '36]

[Narain, Samardi, Witten '87], [Narain, M. H. Sarmadi, and C. Vafa, '87], [Groot Nibbelink & Vaudrevange '17]

• Bosonic string coordinates, *D* right- and *D* left-moving, *y*_{R,L}, *compactified* on 2*D* torus:

$$\begin{pmatrix} y_{\rm R} \\ y_{\rm L} \end{pmatrix} \equiv Y \sim \Theta^k \, Y + E \, \hat{N}, \quad \text{with} \quad \Theta = \begin{pmatrix} \theta_{\rm R} & 0 \\ 0 & \theta_{\rm L} \end{pmatrix}, \hat{N} = \begin{pmatrix} n \\ m \end{pmatrix}$$

- $\Theta^K = 1$, is an "orbifold twist" with $\theta_{R,L} \in SO(D)$.
- "Narain lattice":

$$\Gamma = \{ E \, \hat{N} \mid \hat{N} \in \mathbb{Z}^{2D} \}$$

(Γ is even, self-dual lattice with metric $\eta = \operatorname{diag}(-\mathbb{1}_D, \mathbb{1}_D)$.)

- $\hat{N} = (n,m) \in \mathbb{Z}^{2D}$, *n*: winding number, *m*: Kaluza-Klein number of string boundary condition.
- *E*: "Narain vielbein", depends on moduli of the torus; $E^{T}E \equiv \mathcal{H} = \mathcal{H}(T, U).$

Origin of eclectic flavor symmetry in heterotic orbifolds Narain lattice formulation of heterotic string theory: [Narain '36]

[Narain, Samardi, Witten '87], [Narain, M. H. Sarmadi, and C. Vafa, '87], [Groot Nibbelink & Vaudrevange '17]

• Bosonic string coordinates, *D* right- and *D* left-moving, *y*_{R,L}, *compactified* on 2*D* torus:

$$\begin{pmatrix} y_{\rm R} \\ y_{\rm L} \end{pmatrix} \equiv Y \sim \Theta^k \, Y + E \, \hat{N}, \quad \text{with} \quad \Theta = \begin{pmatrix} \theta_{\rm R} & 0 \\ 0 & \theta_{\rm L} \end{pmatrix}, \hat{N} = \begin{pmatrix} n \\ m \end{pmatrix}$$

- $\Theta^K = 1$, is an "orbifold twist" with $\theta_{R,L} \in SO(D)$.
- "Narain lattice":

$$\Gamma = \{ E \, \hat{N} \mid \hat{N} \in \mathbb{Z}^{2D} \}$$

(Γ is even, self-dual lattice with metric $\eta = \operatorname{diag}(-\mathbb{1}_D, \mathbb{1}_D)$.)

- $\hat{N} = (n,m) \in \mathbb{Z}^{2D}$, *n*: winding number, *m*: Kaluza-Klein number of string boundary condition.
- *E*: "Narain vielbein", depends on moduli of the torus; $E^{T}E \equiv \mathcal{H} = \mathcal{H}(T, U).$

$$\mathcal{H}(T,U) = \frac{1}{\operatorname{Im} T \operatorname{Im} U} \begin{pmatrix} |T|^2 & |T|^2 \operatorname{Re} U & \operatorname{Re} T \operatorname{Re} U & -\operatorname{Re} T \\ |T|^2 \operatorname{Re} U & |TU|^2 & |U|^2 \operatorname{Re} T & -\operatorname{Re} T \operatorname{Re} U \\ \operatorname{Re} T \operatorname{Re} U & |U|^2 \operatorname{Re} T & |U|^2 & -\operatorname{Re} U \\ -\operatorname{Re} T & -\operatorname{Re} T \operatorname{Re} U & -\operatorname{Re} U & 1 \end{pmatrix}$$

Andreas Trautner

Origin of eclectic flavor symmetry in heterotic orbifolds Narain lattice formulation of heterotic string theory: [Narain '86]

[Narain, Samardi, Witten '87], [Narain, M. H. Sarmadi, and C. Vafa, '87], [Groot Nibbelink & Vaudrevange '17]

• Bosonic string coordinates, *D* right- and *D* left-moving, *y*_{R,L}, *compactified* on 2*D* torus:

$$\begin{pmatrix} y_{\rm R} \\ y_{\rm L} \end{pmatrix} \equiv Y \sim \Theta^k \, Y + E \, \hat{N}, \quad \text{with} \quad \Theta = \begin{pmatrix} \theta_{\rm R} & 0 \\ 0 & \theta_{\rm L} \end{pmatrix}, \hat{N} = \begin{pmatrix} n \\ m \end{pmatrix}$$

- $\Theta^K = 1$, is an "orbifold twist" with $\theta_{R,L} \in SO(D)$.
- "Narain lattice":

$$\Gamma = \{ E \, \hat{N} \mid \hat{N} \in \mathbb{Z}^{2D} \}$$

(Γ is even, self-dual lattice with metric $\eta = \operatorname{diag}(-\mathbb{1}_D, \mathbb{1}_D)$.)

- $\hat{N} = (n,m) \in \mathbb{Z}^{2D}$, *n*: winding number, *m*: Kaluza-Klein number of string boundary condition.
- *E*: "Narain vielbein", depends on moduli of the torus; $E^{T}E \equiv \mathcal{H} = \mathcal{H}(T, U).$

Narain space group $g=(\Theta^k,E\,\hat{N})\in S_{\rm Narain}$ is given by multiplicative closure of all twist and shifts

 $S_{\text{Narain}} \ := \ \left\langle \ (\Theta, 0) \ , \ (\mathbbm{1}, E_i) \ \text{for} \ i \in \{1, \dots, 2D\} \ \right\rangle \,.$

Andreas Trautner

Flavor symmetries from top-down perspective

The "whole" story: Narain lattice formulation of heterotic string theory:

[Narain '86], [Narain, Samardi, Witten '87], [Narain, Sarmadi, Vafa'87], [Groot Nibbelink, Vaudrevange '17]

- Winding \leftrightarrow momentum duality \Rightarrow $D \frown 2D$ lattice.
- "Narain lattice": $\Gamma = \{E \ \hat{N} \mid \hat{N} = (n, m) \in \mathbb{Z}^{2D}\}$ even, self-dual, metric $\eta = \operatorname{diag}(-\mathbb{1}_D, \mathbb{1}_D), n$: winding #, m: Kaluza-Klein # E: "Narain vielbein", depends on moduli of the torus; $E^{\mathrm{T}}E \equiv \mathcal{H} = \mathcal{H}(T, U)$.
- Narain lattice space group $S_{\text{Narain}} \ni g = (\Theta^k, E \hat{N}).$
- Outs of S_{Narain} , $h := (\hat{\Sigma}, \hat{T}) \notin S_{\text{Narain}}$,

$$g \stackrel{h}{\mapsto} h g h^{-1} \stackrel{!}{\in} S_{\text{Narain}} , \qquad \hat{\Sigma}^{\text{T}} \hat{\eta} \, \hat{\Sigma} \; = \; \hat{\eta} \; .$$

\sim Solve consistency conditions to find *all* Outs.

The outer automorphisms of S_{Narain} include: [Baur, Nilles, AT, Vaudrevange '19 (2x)]

- (i) fixed-point permutation symmetry (S_3 in previous example),
- (ii) "space group selection rules"

- [Hamidi and Vafa '86]
- (iii) target space modular transformations (inkl. T-duality),
- (iv) "CP-like" transformations.

Andreas Trautner

Details of representations

		c	quarks ar	nd lepton	S		Higg	s fields			flav	ons				
label	q	\overline{u}	d	l	ē	$\overline{\nu}$	$H_{\rm u}$	$H_{\rm d}$	$\varphi_{\rm e}$	φ_{u}	φ_{ν}	ϕ^0	ϕ_{M}^{0}	ϕ_{e}^{0}	ϕ_{u}^{0}	ϕ_d^0
$SU(3)_c$	3	3	3	1	1	1	1	1	1	1	1	1	1	1	1	1
$SU(2)_L$	2	1	1	2	1	1	2	2	1	1	1	1	1	1	1	1
$U(1)_Y$	1/6	-2/3	1/3	-1/2	1	0	1/2	-1/2	0	0	0	0	0	0	0	0
$\Delta(54)$	3 ₂	3 ₂	3 ₂	3 ₂	3 ₂	3 ₂	1	1	3 ₂	3 ₂	3 ₂	1	1	1	1	1
T'	$2' \oplus 1$	$\mathbf{2'} \oplus 1$	$2' \oplus 1$	$2' \oplus 1$	$2' \oplus 1$	$2' \oplus 1$	1	1	$2' \oplus 1$	$2' \oplus 1$	$2' \oplus 1$	1	1	1	1	1
\mathbb{Z}_{9}^{R}	1	1	1	1	1	1	0	0	1	1	1	0	0	0	0	0
n	-2/3	-2/3	-2/3	-2/3	-2/3	-2/3	0	0	-2/3	-2/3	-2/3	0	0	0	0	0
\mathbb{Z}_3	1	1	ω	ω	1	1	1	1	1	ω	ω^2	1	1	ω^2	ω^2	ω^2
\mathbb{Z}_3	ω^2	ω^2	1	1	ω^2	ω^2	1	1	ω^2	1	ω	1	1	ω^2	ω^2	ω^2
\mathbb{Z}_3	1	1	ω	1	1	1	1	1	1	ω^2	1	1	1	1	ω	ω^2

Vectorlike exotic matter:

#	irrep	labels	#	irrep	labels
101	$(1, 1)_0$	s_i			
51	$(1,1)_{-1/3}$	V_i	51	$({f 1},{f 1})_{1/3}$	\overline{V}_i
14	$(1,1)_{-2/3}$	X_i	14	$({f 1},{f 1})_{2/3}$	\overline{X}_i
10	$(1, 2)_{-1/2}$	L_i	10	$({f 1},{f 2})_{1/2}$	\overline{L}_i
9	$(\overline{\bf 3}, {\bf 1})_{1/3}$	\overline{D}_i	9	$({f 3},{f 1})_{-1/3}$	D_i
8	$(1,2)_{-1/6}$	W_i	8	$({f 1},{f 2})_{1/6}$	\overline{W}_i
2	$(\overline{\bf 3}, {\bf 1})_{-2/3}$	\overline{U}_i	2	$({f 3},{f 1})_{2/3}$	U_i
4	$(\overline{3},1)_0$	Z_i	4	$({\bf 3},{\bf 1})_0$	\overline{Z}_i
1	$\left(\overline{3},1 ight)_{-1/3}$	Y	1	$({f 3},{f 1})_{1\!/\!3}$	\overline{Y}

Transformation of massless matter fields

	matter			ecl	ectic fl	avor gro	up $\Omega(2)$				
sector	fields	m	odular T'	subgroup		trad	itional 4	$\Delta(54)$ sub	group	\mathbb{Z}_{9}^{R}	
	Φ_n	irrep s	$\rho_{s}(S)$	$\rho_{s}(T)$	n	irrep r	$\rho_{\boldsymbol{r}}(\mathbf{A})$	$\rho_r(B)$	$\rho_{\boldsymbol{r}}(\mathbf{C})$	R	
bulk	Φ_0	1	1	1	0	1	1	1	+1	0	
	Φ_{-1}	1	1	1	-1	1'	1	1	-1	3	
θ	$\Phi_{-2/3}$	$\mathbf{2'} \oplus 1$	$\rho(S)$	$\rho(T)$	-2/3	3_2	$\rho(A)$	$\rho(B)$	$+\rho(C)$	1	
	$\Phi_{-5/3}$	$\mathbf{2'} \oplus 1$	$\rho(S)$	$\rho(T)$	-5/3	3_1	$\rho(A)$	$\rho(B)$	$-\rho(C)$	-2	
θ^2	$\Phi_{-1/3}$	$2'' \oplus 1$	$(\rho(S))^*$	$(\rho(T))^*$	-1/3	$\bar{3}_1$	$\rho(A)$	$(\rho(B))^*$	$-\rho(C)$	2	
	$\Phi_{+2/3}$	$2'' \oplus 1$	$(\rho(S))^*$	$(\rho(T))^*$	+2/3	$ar{3}_2$	$\rho(A)$	$(\rho(B))^*$	$+\rho(C)$	5	
super- potential	w	1	1	1	-1	1′	1	1	-1	3	
$\overset{Z}{\wedge}$			$(\omega :$	$= e^{2\pi i/3}$	t	able from	[Nilles, Ra	imos-Sánch	ez, Vaudrev	/ange '2(
	$\rho(S) = \frac{i}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega^2 & \omega\\ 1 & \omega & \omega^2 \end{pmatrix}, \rho(T) = \begin{pmatrix} \omega^2 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix},$										
$\rho(A) =$	$\rho(\mathbf{A}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \rho(\mathbf{B}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \rho(\mathbf{C}) = -\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \rho(\mathbf{S})^2.$										

Transformation of massless matter fields

matter eclectic flavor group $\Omega(2)$												
sector	fields	modular T' subgroup				traditional $\Delta(54)$ subgroup				\mathbb{Z}_{9}^{R}		
	Φ_n	irrep s	$\rho_{s}(S)$	$\rho_{s}(T)$	n	irrep r	$\rho_{\pmb{r}}(\mathbf{A})$	$\rho_r(B)$	$\rho_{\boldsymbol{r}}(\mathbf{C})$	R		
bulk	Φ_0	1	1	1	0	1	1	1	+1	0		
	Φ_{-1}	1	1	1	-1	1′	1	1	-1	3		
θ	$\Phi_{-2/3}$	$\mathbf{2'} \oplus 1$	$\rho(S)$	$\rho(T)$	-2/3	3_2	$\rho(A)$	$\rho(B)$	$+\rho(C)$	1		
	$\Phi_{-5/3}$	$\mathbf{2'} \oplus 1$	$\rho(S)$	$\rho(T)$	-5/3	3_1	$\rho(A)$	$\rho(B)$	$-\rho(C)$	-2		
θ^2	$\Phi_{-1/3}$	$2'' \oplus 1$	$(\rho(S))^*$	$(\rho(T))^*$	-1/3	$ar{3}_1$	$\rho(A)$	$(\rho(B))^*$	$-\rho(C)$	2		
	$\Phi_{+2/3}$	$2'' \oplus 1$	$(\rho(S))^*$	$(\rho(T))^*$	+2/3	$ar{3}_2$	$\rho(A)$	$(\rho(B))^*$	$+\rho(C)$	5		
super- potential	W	1	1	1	-1	1′	1	1	-1	3		
$ \begin{array}{cccc} $												
$\rho(\mathbf{A}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \rho(\mathbf{B}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \rho(\mathbf{C}) = -\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \rho(\mathbf{S})^2.$												

Example: Breakdown of H(3,2,1) at $\langle T \rangle = \omega$

H(3, 2, 1)	bran	chings	subgroup	corresponding vevs		
subgroup	$\Phi_{-2/3}$	$\Phi_{-5/3}$	generator(s)	$\langle \Phi_{-2/3} \rangle$	$\langle \Phi_{-5/3} \rangle$	
$S_{3}^{(2)} \times \mathbb{Z}_{3}^{(3)}$	$1_1'\oplus 2_c$	$1\oplus 2_{c}$	$\rm C, AB^2A, AB^2AR(ST)$	-	$(\omega^2, 1, 1)^T$	
$\mathbb{Z}_{3}^{(2)} \times \mathbb{Z}_{3}^{(3)}$	$1 \oplus 1_{\omega,1} \oplus 1_{\omega^2,\omega}$	$1 \oplus 1_{\omega^2,1} \oplus 1_{\omega,\omega^2}$	$AB^2A, AB^2AR(ST)$	$(\omega^2, 1, 1)^T$	$(\omega^2, 1, 1)^T \oplus \langle \Phi_{-1} \rangle$	
$\mathbb{Z}_3^{(3)}$	$1 \oplus 1 \oplus 1_\omega$	$1 \oplus 1 \oplus 1_{\omega^2}$	$AB^2AR(ST)$	$(0, 1, -\omega^2)^T + \alpha(1, 0, -\omega^2)^T$	$(1, -1, 0)^{T}$ + $\alpha(0, -\omega, 1)^{T}$	
$S_{3}^{(1)}$	$1'\oplus2$	$1\oplus2$	C, A	-	$(1, 1, 1)^{\mathrm{T}}$	
$\mathbb{Z}_{3}^{(1)}$	$1 \oplus 1_\omega \oplus 1_{\omega^2}$	$1 \oplus 1_\omega \oplus 1_{\omega^2}$	А	$(1, 1, 1)^{\mathrm{T}}$	$(1,1,1)^{\mathrm{T}}\oplus \langle \Phi_{-1} \rangle$	
\mathbb{Z}_6	$1 \oplus 1_{-1} \oplus 1_{-\omega}$	$1\oplus 1_{-1}\oplus 1_{\omega}$	$B^2ACR^2(ST)^2$	$(1, -1, 0)^{T}$	$(1, 1, -2\omega^2)^T$	
$\mathbb{Z}_3^{(3)}$	$1\oplus1\oplus1_{\omega^2}$	$1\oplus1\oplus1_{\omega^2}$	$AB^2AR(ST)$	$(0, 1, -\omega^2)^T + \alpha(1, 0, -\omega^2)^T$	$(1, -1, 0)^{T} + \alpha(0, -\omega, 1)^{T}$	
$Z_{3}^{(4)}$	$1\oplus1_\omega\oplus1_{\omega^2}$	$1\oplus1_\omega\oplus1_{\omega^2}$	$BR(ST)^2$	$(1, a, b)^{\mathrm{T}}$	$(1, a, b)^{\mathrm{T}}$	
\mathbb{Z}_2	$1\oplus1_{-1}\oplus1_{-1}$	$1\oplus1\oplus1_{-1}$	С	$(0,1,-1)^{\mathrm{T}}$ (preserves $\mathbb{Z}_6^{(2)}$)	$(1,0,0)^{\mathrm{T}} + \alpha(0,1,1)^{\mathrm{T}}$	

Representation matrices of the flavor group of twisted matter fields $\Phi_{-2/3}$ and $\Phi_{-5/3}$

$$\begin{split} \Phi_{-2/3}: & \rho_{\mathbf{3}_{2},\omega}(A) = \rho(A), & \rho_{\mathbf{3}_{2},\omega}(B) = \rho(B), & \rho_{\mathbf{3}_{2},\omega}(C) = \rho(C), \\ & \rho_{\mathbf{3}_{2},\omega}(R) = e^{2\pi i/9} \mathbb{1}_{3}, & \rho_{\mathbf{3}_{2},\omega}(ST) = e^{2\pi i 2/9} \rho(ST), & \text{and} \\ \Phi_{-5/3}: & \rho_{\mathbf{3}_{1},\omega}(A) = \rho(A), & \rho_{\mathbf{3}_{1},\omega}(B) = \rho(B), & \rho_{\mathbf{3}_{1},\omega}(C) = -\rho(C), \\ & \rho_{\mathbf{3}_{1},\omega}(R) = e^{-4\pi i/9} \mathbb{1}_{3}, & \rho_{\mathbf{3}_{1},\omega}(ST) = e^{2\pi i 5/9} \rho(ST). \end{split}$$

Narain vielbein

The Narain vielbein can be parameterized as (in absence of Wilson lines)

$$E := \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{e^{-\mathrm{T}}}{\sqrt{\alpha'}} (G - B) & -\sqrt{\alpha'} e^{-\mathrm{T}} \\ \frac{e^{-\mathrm{T}}}{\sqrt{\alpha'}} (G + B) & \sqrt{\alpha'} e^{-\mathrm{T}} \end{pmatrix}$$

In this definition of the Narain vielbein, e denotes the vielbein of the D-dimensional geometrical torus \mathbb{T}^D with metric $G := e^{\mathrm{T}}e$, $e^{-\mathrm{T}}$ corresponds to the inverse transposed matrix of e, B is the anti-symmetric background B-field ($B = -B^{\mathrm{T}}$), and α' is called the Regge slope.

World-sheet modular invariance requires E to span even, self-dual lattice $\Gamma = \{E \ \hat{N} \mid \hat{N} \in \mathbb{Z}^{2D}\}$ with metric η of signature (D, D). Consequently, one can always choose E such that

$$E^{\mathrm{T}}\eta E = \hat{\eta}$$
, where $\eta := \begin{pmatrix} -\mathbb{1} & 0\\ 0 & \mathbb{1} \end{pmatrix}$ and $\hat{\eta} := \begin{pmatrix} 0 & \mathbb{1}\\ \mathbb{1} & 0 \end{pmatrix}$

Andreas Trautner

Modular Flavor Symmetries and CP from the top down, DISCRETE Baden-Baden, 8.11.22

Transformation of moduli

To compute the transformation properties of the moduli T and U we use the generalized metric $\mathcal{H} = E^{T}E$. As the Narain vielbein depends on the moduli E = E(T, U) so does the generalized metric $\mathcal{H} = \mathcal{H}(T, U)$. It transforms as

$$\mathcal{H}(T,U) \stackrel{\hat{\Sigma}}{\longmapsto} \mathcal{H}(T',U') = \hat{\Sigma}^{-\mathrm{T}} \mathcal{H}(T,U) \hat{\Sigma}^{-1}$$

This equation can be used to read off the transformations of the moduli

$$T \xrightarrow{\hat{\Sigma}} T' = T'(T, U)$$
 and $U \xrightarrow{\hat{\Sigma}} U' = U'(T, U)$.

For a two-torus \mathbb{T}^2 , the generalized metric in terms of the torus moduli reads

$$\mathcal{H}(T,U) = \frac{1}{\operatorname{Im} T \operatorname{Im} U} \begin{pmatrix} |T|^2 & |T|^2 \operatorname{Re} U & \operatorname{Re} T \operatorname{Re} U & -\operatorname{Re} T \\ |T|^2 \operatorname{Re} U & |T U|^2 & |U|^2 \operatorname{Re} T & -\operatorname{Re} T \operatorname{Re} U \\ \operatorname{Re} T \operatorname{Re} U & |U|^2 \operatorname{Re} T & |U|^2 & -\operatorname{Re} U \\ -\operatorname{Re} T & -\operatorname{Re} T \operatorname{Re} U & -\operatorname{Re} U & 1 \end{pmatrix}$$

Andreas Trautner Modular Flavor Symmetries and CP from the top down, DISCRETE Baden-Baden, 8.11.22 39/27

Explicit generators of $\Omega(2)$ for $\mathbb{T}^2/\mathbb{Z}_3$

 ${\rm SL}(2,\mathbb{Z})_T$ modular generators ${\rm S}$ and ${\rm T}$ arise from rotational outer automorphisms and act on the modulus via

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$,

Reflectional outer automorphism coresponding to \mathbb{Z}_2^{CP} CP-like transformation:

$$\mathbf{K}_* = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}$$

$$\rho({\rm S}) = \frac{{\rm i}}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix} \qquad \text{and} \qquad \rho({\rm T}) = \begin{pmatrix} \omega^2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \,,$$

The traditional flavor symmetry $\Delta(54)$ is generated by two translational outer automorphisms of the Narain space group A and B, together with the \mathbb{Z}_2 rotational outer automorphism $C := S^2$.

$$\rho(\mathbf{A}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \ \rho(\mathbf{B}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix} \text{ and } \rho(\mathbf{C}) = - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \rho(\mathbf{S})^2,$$