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Simplified dark matter models describe effective dark matter (DM) interactions without integrating out
the mediating particle (like in traditional effective field theories).

They're a useful tool for studying how both low and high energy experimental probes affect BSM physics.

I’ll discuss my work on performing global fits of s-channel vector-mediated simplified dark matter models
with GAMBIT (arXiv:2209.13266).

m'DM
off —shell
mediator
Al
EFT limit
on—shell
mediator
Image from Kahlhoefer (2017) [27] >m

med



Scalar DM:

1 1 1 1
Lpsm =§8ﬂ¢8“¢ - im%)M¢2 - ZF#VFMV - imeV#V“

+9Vud"a + igha Vi (61(0"9) - (9"9)0)

Dirac fermion DM;
1 1

Lpsy =txv"0ux — mpuxx — ~Fu F* — gm?quV“

1
+9,Vo@r"q + Vix(abar + gma 7V )V"X

Majorana fermion DM:
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Assumptions:

No lepton couplings (only quarks)
-> To avoid strong di-lepton searches.

No axial-vector quark couplings

-> To avoid strong electroweak precision
tests.

Flavour universal couplings
-> To require minimal flavour violation.

Mass generation mechanism has no
observable impact on experiments
-> Could be achieved by e.g. a dark Higgs
with mass well above the other particle

masses.
-> example model studied in [2]

In each model, there are 4 or 5 model parameters: DM mass (mowm), Mediator mass (mw), mediator-quark coupling (gq), mediator-DM

coupling (gow) (either vector or axial-vector)

[2] M. Duerr, F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, and S. Vogl, How to save the WIMP: global analysis of a dark matter model with two s-channel mediators, JHEP 09 (2016) 042



The presence of an axial-vector couplings for the Dirac and Majorana models implies a bound from unitarity: [3]
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[3] F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016



Experiment

CDMSlite [4]
CRESST-II [5]
CRESST-1II [6]
DarkSide 50 [7]
LUX 2016 [8]
PICO-60 [9, 10]
PandaX [11, 12]
XENONIT [13]
LZ 2022 [28]

LHC Dijets [14-22]
ATLAS monojet [23]
CMS monojet [24]

Fermi-LAT [25]
Planck 2018: 22h* [26]

Nuisances




Experiment

CDMSlite [4]
CRESST-II [5]
Effective Operator Relevant models CRESST-III [6]
. DarkSide 50 (7]
I 1D]%I 1n i Scalar, Dirac LUX 2016 [§]
§6) (s _ mLN), S-vtin Dirac, Majorana PICO-60 [9, 10]
PandaX [11, 12]
XENONIT [13]
Relic DM should be non-relativistic -> Majorana LZ 2022 [28]
model should be suppressed. LHC Dijets [14-22]
ATLAS monojet [23]
This should have very weak direct detection CMS monojet [24]
constraints relative to the other models. Fermi-LAT [25]

Planck 2018: 2h?* [26]
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Limits are formed from the most constraining dijet
search at a given mediator mass, scaled by the
branching fraction into quarks.

Experiment

100 4 —— CERN-EP-2018-347
~—— CMS-EX0O-18-012
—— ATLAS-CONF-2018-052
—— CERN-EP-2017-280
—— Dijet TLA

—— Dijet, 139invfb
—— CMS-EX0-19-012
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Excesses in individual signal regions tends to drive our likelihood
toregions that fit these. In particular, the 2018 data for the CMS
significantly underpredicts the # of events.

This is an artifact of their simplified likelihood, and is avoided in
their full fit of control and signal regions.

Experiment

CDMSlite [4]
CRESST-II [5]
CRESST-III [6]
DarkSide 50 (7]
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2 Annihilation channels: Experiment

CDMSlite [4
e DM DM ->quark pair CRESSSa‘?Ig %5]
DM DM -> mediator pair CRESST-III [6]
DarkSide 50 (7]
Only the Dirac fermion DM model has dominant LUX 2016 [8]
velocity independent (s-wave) annihilation to quarks. PICO-60 [9, 10]
PandaX [11, 12]
The other models will have weak gamma ray XENONIT [13]
LZ 2022 [28]

signatures when the mediator channel is closed.
LHC Dijets [14-22]
ATLAS monojet [23]
CMS monojet [24]
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Planck 2018: 2h?* [26]
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Direct and indirect detection signals are scaled by the
proportion of DM that each candidate would
comprise:

f Qpm

DM = ~—
QDM,ob.s

The 2 different annihilation channels will give 2
regions in parameter space where DM is not
overproduced.
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Each scan has 4 or 5 model parameters and 7 nuisance
parameters.

Collider:
1) uncapped
2) capped collider likelihood
Relic Density: DM candidate ...
1) is a subcomponent of the observed abundance
2) saturates the observed abundance.
Up to 4 scans per model.

I will only show a subset of these results.

Parameters

Range

DM mass, mps

[50, 10000] GeV

Mediator mass, mjps

[50, 10000] GeV

quark-mediator coupling, gq [0.01,1.0]
mediator-DM coupling (vector), g} s [0.01, 3.0]
mediator-DM coupling (axial vector), g,  [0.01,3.0]
Nuisance Parameters

Pion-nucleon sigma term, o, n [5,95] MeV
strange quark cont. to nucleon spin, As [—0.062, —0.008]
strange quark nuclear tensor charge, g7 [—0.075,0.021]

strange quark proton charge radius, r2

[~0.22, —0.01] GeV 2

Local DM density, po

[0.2,0.8] GeV cm ™3

Most probably speed, vesc

[216,264] km s™*

Galactic escape speed, Vpeak

[453,603] kms™*




Capped results are not necessary as any collider preferences occur where already excluded by other experiments.
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Much of the surviving parameter space predicts a very low DM relic abundance.
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Requiring DM abundance is saturated reduces the off-resonance allowed parameter space.
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Monojet likelihood gives preference to regions along the resonance.
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This interesting off resonance region is due to a
combination of two things:

DD limits give a lower bound on mediator

masses.
To avoid unitarity bounds, the axial-vector DM
coupling must be low, however this will prevent
sufficient annihilation of DM -> exceeding relic

abundance

Dark matter mass mp s [GeV]

GAMBIT v2.3

s-channel vector-mediated

Dirac DM

Capped collider likelihood
Relic abundance upper limit

102 10 10
Mediator mass my[GeV]

0.8

0.6

V O1yeI POOI[I o[JoI]

xewy/y



Monojet excesses are also fit by this model, but not only along the resonance.
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The reason why a lot of the off resonance parameter
space survives (where it doesn’t in the Dirac model) is
because the DD signals are suppressed for this model.

The non-smooth resonance region is due to competing
effects monojet, dijet and RD constraints.
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By combining constraints from direct detection,
indirect detection and colliders, simplified dark
matter models can be constrained greatly.

Scalar DM: Most of the parameter space that
survives is for large DM masses. However, most of
that underpredicts the DM abundance.

Dirac/Majorana DM: Scans are driven toward
monojet excesses. No lower bound on DM masses
for the parameters in these scans.

There is plenty of potential to constrain these
further in near-future experiments.

Thanks for Listening!
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