GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

Searching for Gravitational Waves from Domain Walls in the Early Universe

Alessio Notari¹

Universitat de Barcelona, on leave at Galileo Galliei Institute (GGI), Florence

talk@DISCRETE 2022, Baden-Baden November 2022

¹In collaboration with R.Z. Ferreira, F. Rompineve, O. Pujolas. Based on: arXiv 2204.04228, Phys.Rev.Lett. 128 (2022) 14, 141101

	Outline
GW from Domain Walls	
Domain Walls	
Gravitational Waves from DWs	1 Domain Walls
Pulsar Timing Arrays (PTA)	
	2 Gravitational Waves from DWs

3 Pulsar Timing Arrays (PTA)

Discrete symmetry breaking

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) • Simple example: scalar field with Z_2 symmetry $V(\phi) = \frac{\lambda}{4}(\phi^2 - \nu^2)^2$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ □ ● のへで

• Symmetry broken below some Temperature T_{PT}

Discrete symmetry breaking

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA) • Simple example: scalar field with Z_2 symmetry $V(\phi) = \frac{\lambda}{4}(\phi^2 - v^2)^2$

- Symmetry broken below some Temperature T_{PT}
- φ takes different (uncorrelated) values (±ν) in different Hubble patches

Discrete symmetry breaking

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA) • Simple example: scalar field with Z_2 symmetry $V(\phi) = \frac{\lambda}{4}(\phi^2 - v^2)^2$

- Symmetry broken below some Temperature T_{PT}
- φ takes different (uncorrelated) values (±ν) in different Hubble patches
- Domain walls, produced at T_{PT} , $\phi(z) = v \tanh(\sqrt{\frac{\lambda}{2}}vz)$

Domain Walls

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

•
$$\phi(z) = v \tanh(\sqrt{\lambda/2}vz).$$

- Thickness $\delta = (\sqrt{\lambda}v)^{-1}$
- Wall with energy per unit area (tension)

$$\sigma = 2 \int dz V(z) = \lambda v^3$$

(日)

Domain Walls

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) • Another example: Complex field with U(1) symmetry at high T, broken to Z_N at T = 0

$$egin{aligned} \mathcal{V}(\Phi) &= \lambda (|\Phi|^2 - v^2)^2 + V_0 \cos\left(Nrac{a}{v}
ight) \ \Phi &= |\Phi| e^{irac{a}{v}} \end{aligned}$$

- Symmetry broken below some T_{PT}
- Domain walls are produced at T_{PT}

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

- In expanding Universe with $H = \frac{\dot{a}}{a}$
- At *T_{PT}* (uncorrelated) values in different Hubble patches (*O*(*H*⁻¹))

(日)

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

- In expanding Universe with $H = \frac{\dot{a}}{a}$
- At *T_{PT}* (uncorrelated) values in different Hubble patches (*O*(*H*⁻¹))

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

- Initial complicated dynamics (need simulations)
- Reach "Scaling regime", $\mathcal{O}(1)$ walls per Hubble patch

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

- Initial complicated dynamics (need simulations)
- Reach "Scaling regime", $\mathcal{O}(1)$ walls per Hubble patch

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• By dimensional analysis $\rho_{DW}|_{\text{scaling}} \approx \sigma H$

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

- Initial complicated dynamics (need simulations)
- Reach "Scaling regime", $\mathcal{O}(1)$ walls per Hubble patch
- By dimensional analysis $\rho_{DW}|_{\text{scaling}} \approx \sigma H$
- For σ large enough they quickly dominate over radiation background, ρ_{RAD} = 3H²M²_{Pl}
- \implies Domain wall problem! (unless tension is small, $\sigma^{1/3} \lesssim 100 \text{ MeV}$)

Domain Walls Annihilation

GW from Domain Walls

Domain Walls

- Gravitationa Waves from DWs
- Pulsar Timing Arrays (PTA)

- Possible way out:
- Make them unstable, assuming a "bias" ΔV

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Domain Walls Annihilation

GW from Domain Walls

- Domain Walls
- Gravitationa Waves from DWs
- Pulsar Timing Arrays (PTA)

- Possible way out:
- Make them unstable, assuming a "bias" ΔV

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Annihilation happens when ΔV becomes $\simeq \rho_{DW}$

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA) • The physical metric for a GW (traveling along the z-axis)

$$g_{ab} = \eta_{ab} + h_{ab} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 + h_+ & h_\times & 0 \\ 0 & h_\times & 1 - h_+ & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

(日)

where $h_{+,\times} = h_{+,\times}(t-z)$

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA) • The physical metric for a GW (traveling along the z-axis)

$$g_{ab} = \eta_{ab} + h_{ab} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 + h_+ & h_\times & 0 \\ 0 & h_\times & 1 - h_+ & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

(日)

where $h_{+,\times} = h_{+,\times}(t-z)$

• GW are generated by a large inhomogeneous stress energy tensor *T_{ab}* (Traceless and Transverse)

$$\Box h_{ab} = 2 rac{T_{ab}^{TT}}{M_{Pl}^2}$$

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA) • The physical metric for a GW (traveling along the z-axis)

$$g_{ab} = \eta_{ab} + h_{ab} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 + h_+ & h_\times & 0 \\ 0 & h_\times & 1 - h_+ & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

where $h_{+,\times} = h_{+,\times}(t-z)$

• GW are generated by a large inhomogeneous stress energy tensor *T_{ab}* (Traceless and Transverse)

$$\Box h_{ab} = 2 \frac{T_{ab}^{TT}}{M_{Pl}^2} \qquad \Longrightarrow \ H^2 h \sim \frac{\sigma H}{M_{Pl}^2}$$

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA) • The physical metric for a GW (traveling along the z-axis)

$$g_{ab} = \eta_{ab} + h_{ab} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 + h_+ & h_\times & 0 \\ 0 & h_\times & 1 - h_+ & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

where $h_{+,\times} = h_{+,\times}(t-z)$

• GW are generated by a large inhomogeneous stress energy tensor *T_{ab}* (Traceless and Transverse)

$$\Box h_{ab} = 2 \frac{T_{ab}^{TT}}{M_{Pl}^2}$$

 $\implies H^2 h \sim \frac{\sigma H}{M_{Pl}^2}$

• $\rho_{GW} = \frac{M_{Pl}^2}{4} \dot{h}_{ij} \dot{h}^{ij}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA) • The physical metric for a GW (traveling along the z-axis)

$$g_{ab} = \eta_{ab} + h_{ab} = \left(egin{array}{cccc} -1 & 0 & 0 & 0 \ 0 & 1 + h_+ & h_ imes & 0 \ 0 & h_ imes & 1 - h_+ & 0 \ 0 & 0 & 0 & 1 \end{array}
ight),$$

where $h_{+,\times} = h_{+,\times}(t-z)$

• GW are generated by a large inhomogeneous stress energy tensor *T_{ab}* (Traceless and Transverse)

$$\Box h_{ab} = 2 \frac{T_{ab}^{TT}}{M_{Pl}^2} \implies H^2 h \sim \frac{\sigma H}{M_{Pl}^2}$$

$$\rho_{GW} = \frac{M_{Pl}^2}{4} \dot{h}_{ij} \dot{h}^{ij} \implies \rho_{GW} \approx \frac{\sigma^2}{M_{Pl}^2}$$

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA) • Simple estimate, $\rho_{GW} = \frac{M_{Pl}^2}{4} \dot{h}_{ij} \dot{h}^{ij} \approx \rho_{GW} \approx \frac{\sigma^2}{M_{Pl}^2}$ (constant in time, as long as Domain walls exist)

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA) • Simple estimate, $\rho_{GW} = \frac{M_{Pl}^2}{4} \dot{h}_{ij} \dot{h}^{ij} \approx \rho_{GW} \approx \frac{\sigma^2}{M_{Pl}^2}$ (constant in time, as long as Domain walls exist)

• $\rho_{GW} \propto a^{-4}$ (like radiation) after Domain walls annihilate

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA) • Simple estimate, $\rho_{GW} = \frac{M_{Pl}^2}{4} \dot{h}_{ij} \dot{h}^{ij} \approx \rho_{GW} \approx \frac{\sigma^2}{M_{Pl}^2}$ (constant in time, as long as Domain walls exist)

• $ho_{GW} \propto a^{-4}$ (like radiation) after Domain walls annihilate

•
$$\frac{\rho_{\rm GW}}{\rho_{\rm RAD}}\Big|_{\rm ANN} \approx \frac{\frac{\sigma^2}{M_{P_l}^2}}{\rho_{\rm RAD}}\Big|_{\rm ANN}$$

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA) • Simple estimate, $\rho_{GW} = \frac{M_{Pl}^2}{4} \dot{h}_{ij} \dot{h}^{ij} \approx \rho_{GW} \approx \frac{\sigma^2}{M_{Pl}^2}$ (constant in time, as long as Domain walls exist)

• $ho_{GW} \propto a^{-4}$ (like radiation) after Domain walls annihilate

•
$$\frac{\rho_{\text{GW}}}{\rho_{\text{RAD}}}\Big|_{\text{ANN}} \approx \frac{\frac{\sigma^2}{M_{P_l}^2}}{\rho_{\text{RAD}}}\Big|_{\text{ANN}} \times \frac{g_*T^4}{g_*T^4}$$

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA)

- Simple estimate, $\rho_{GW} = \frac{M_{Pl}^2}{4} \dot{h}_{ij} \dot{h}^{ij} \approx \rho_{GW} \approx \frac{\sigma^2}{M_{Pl}^2}$ (constant in time, as long as Domain walls exist)
- $\rho_{GW} \propto a^{-4}$ (like radiation) after Domain walls annihilate

$$\boxed{\frac{\rho_{\rm GW}}{\rho_{\rm RAD}} \Big|_{\rm ANN} \approx \frac{\frac{\sigma^2}{M_{Pl}^2}}{\rho_{\rm RAD}} \Big|_{\rm ANN} \times \frac{g_* T^4}{g_* T^4} = (\frac{\rho_{\rm DW}}{\rho_{\rm RAD}}) \Big|_{\rm ANN}^2 \equiv \alpha_*^2}$$

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA)

- Simple estimate, $\rho_{GW} = \frac{M_{P_l}^2}{4} \dot{h}_{ij} \dot{h}^{ij} \approx \rho_{GW} \approx \frac{\sigma^2}{M_{P_l}^2}$ (constant in time, as long as Domain walls exist)
- $\rho_{GW} \propto a^{-4}$ (like radiation) after Domain walls annihilate

$$\frac{\rho_{\rm GW}}{\rho_{\rm RAD}} \Big|_{\rm ANN} \approx \frac{\frac{\sigma^2}{M_{\rm Pl}^2}}{\rho_{\rm RAD}} \Big|_{\rm ANN} \times \frac{g_* T^4}{g_* T^4} = \left(\frac{\rho_{\rm DW}}{\rho_{\rm RAD}}\right) \Big|_{\rm ANN}^2 \equiv \alpha_*^2$$

• Today:
$$\Omega_{\sf GW}^0 pprox \Omega_\gamma^0 lpha_*^2$$

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA)

- Simple estimate, $\rho_{GW} = \frac{M_{P_l}^2}{4} \dot{h}_{ij} \dot{h}^{ij} \approx \rho_{GW} \approx \frac{\sigma^2}{M_{P_l}^2}$ (constant in time, as long as Domain walls exist)
- $\rho_{GW} \propto a^{-4}$ (like radiation) after Domain walls annihilate

$$\frac{\rho_{\rm GW}}{\rho_{\rm RAD}}\Big|_{\rm ANN} \approx \frac{\frac{\sigma^2}{M_{\rm Pl}^2}}{\rho_{\rm RAD}}\Big|_{\rm ANN} \times \frac{g_*T^4}{g_*T^4} = (\frac{\rho_{\rm DW}}{\rho_{\rm RAD}})\Big|_{\rm ANN}^2 \equiv \alpha_*^2$$

• Today:
$$\Omega_{
m GW}^0pprox\Omega_\gamma^0lpha_*^2pprox 10^{-5}lpha_*^2$$

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA)

- Simple estimate, $\rho_{GW} = \frac{M_{P_l}^2}{4} \dot{h}_{ij} \dot{h}^{ij} \approx \rho_{GW} \approx \frac{\sigma^2}{M_{P_l}^2}$ (constant in time, as long as Domain walls exist)
- $\rho_{GW} \propto a^{-4}$ (like radiation) after Domain walls annihilate

$$\boxed{ \frac{\rho_{\rm GW}}{\rho_{\rm RAD}} \Big|_{\rm ANN} \approx \frac{\frac{\sigma^2}{M_{P_l}^2}}{\rho_{\rm RAD}} \Big|_{\rm ANN} \times \frac{g_* T^4}{g_* T^4} = (\frac{\rho_{\rm DW}}{\rho_{\rm RAD}}) \Big|_{\rm ANN}^2 \equiv \alpha_*^2 }$$

- Today: $\Omega_{\rm GW}^0 pprox \Omega_\gamma^0 lpha_*^2 pprox 10^{-5} lpha_*^2$
- More precisely, simulations give $\Omega_{GW}h^2 \simeq 0.05 (\Omega_{\gamma}^0 h^2) \tilde{\epsilon} \left(\frac{\rho_{DW}}{\rho_{RAD}}\right)^2 |_{ANN},$ ($\tilde{\epsilon} = 0.1 - 1$ is an efficiency parameter)

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA)

•
$$\Omega_{\rm GW} h^2 \simeq 0.05 \ (\Omega_{\gamma}^0 h^2) \ ilde{\epsilon} \left(rac{
ho_{\rm dw}}{
ho_{\rm rad}}
ight)_{T=T_*}^2,$$

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA)

•
$$\Omega_{\rm GW} h^2 \simeq 0.05 \ (\Omega_{\gamma}^0 h^2) \ \tilde{\epsilon} \left(rac{
ho_{\rm dw}}{
ho_{\rm rad}}
ight)_{T=T_*}^2,$$

Peak at frequency *H*|_{*T*=*T**} (DW annihilation), redshifted to today:

(日)

f⁰_{peak}

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA)

•
$$\Omega_{\rm GW} h^2 \simeq 0.05 \ (\Omega_{\gamma}^0 h^2) \ \tilde{\epsilon} \left(rac{
ho_{\rm dw}}{
ho_{\rm rad}}
ight)_{T=T_*}^2,$$

Peak at frequency *H*|_{*T*=*T**} (DW annihilation), redshifted to today:

(日)

$$f_{peak}^{0} = \frac{T_{*}^{2}}{M_{Pl}} \left(\frac{T_{0}}{T_{*}}\right)$$

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA)

•
$$\Omega_{\rm GW} h^2 \simeq 0.05 \ (\Omega_{\gamma}^0 h^2) \ \tilde{\epsilon} \left(rac{
ho_{\rm dw}}{
ho_{\rm rad}}
ight)_{T=T_*}^2,$$

Peak at frequency *H*|_{*T*=*T**} (DW annihilation), redshifted to today:

$$f_{peak}^{0} = \frac{T_{*}^{2}}{M_{Pl}} \left(\frac{T_{0}}{T_{*}}\right) \approx 10^{-9} \,\mathrm{Hz} \,\frac{g_{*}(T_{*})}{10.75}^{\frac{1}{6}} \frac{T_{*}}{10 \,\mathrm{MeV}} \,.$$

(日)

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA)

•
$$\Omega_{\rm GW} h^2 \simeq 0.05 \ (\Omega_{\gamma}^0 h^2) \ \tilde{\epsilon} \left(rac{
ho_{\rm dw}}{
ho_{\rm rad}}
ight)_{T=T_*}^2,$$

Peak at frequency *H*|_{*T*=*T**} (DW annihilation), redshifted to today:

$$f_{peak}^{0} = \frac{T_{*}^{2}}{M_{Pl}} \left(\frac{T_{0}}{T_{*}}\right) \approx 10^{-9} \,\mathrm{Hz} \,\frac{g_{*}(T_{\star})^{\frac{1}{6}}}{10.75} \frac{T_{\star}}{10 \,\mathrm{MeV}} \,.$$

(日)

• Two free parameters σ (or α_*) and T_*

GW spectra

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA) • GW spectrum $\rho_{\text{GW}} \equiv \int \frac{d\rho_{\text{GW}}}{d\log k} \frac{dk}{k}$:

$$rac{d
ho_{GW}}{d\log k} = egin{cases} f^3 ext{ for } f < f^0_{ ext{peak}}, ext{ (causality)} \ f^{-1} ext{ for } f > f^0_{ ext{peak}}, ext{ (until cutoff given by DW width)}. \end{cases}$$

(e.g. simulations, Hiramatsu, Kawasaki, Saikawa, 2014)

Pulsar Timing redshift

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA) • Consider a pulsar emitting in the \hat{p} direction with frequency ν_0

• And a GW traveling in the direction $\hat{\Omega}$

²see e.g. Anholm et al. PRD (2009)

Pulsar Timing redshift

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

- Consider a pulsar emitting in the \hat{p} direction with frequency ν_0
- And a GW traveling in the direction $\hat{\Omega}$
- The pulsar is redshifted as ²

$$z(t,\hat{\Omega})\equivrac{
u_0-
u(t)}{
u_0}=rac{1}{2}rac{\hat{
ho}^{j}\hat{
ho}^{j}}{1+\hat{\Omega}\cdot\hat{
ho}}(h_{ij}(t_{
m P},\hat{\Omega})-h_{ij}(t,\hat{\Omega}))$$

difference at the pulsar (t_P) and at the center of the solar system (t).

²see e.g. Anholm et al. PRD (2009)

Pulsar Timing redshift

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

- Consider a pulsar emitting in the \hat{p} direction with frequency ν_0
- And a GW traveling in the direction $\hat{\Omega}$
- The pulsar is redshifted as ²

$$z(t,\hat{\Omega})\equivrac{
u_0-
u(t)}{
u_0}=rac{1}{2}rac{\hat{
ho}^i\hat{
ho}^j}{1+\hat{\Omega}\cdot\hat{
ho}}(h_{ij}(t_{
m P},\hat{\Omega})-h_{ij}(t,\hat{\Omega}))$$

difference at the pulsar (t_P) and at the center of the solar system (t).

• Common assumption: Neglect the pulsar (t_P) term

²see e.g. Anholm et al. PRD (2009)
GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) Fourier transform and consider (z₁^{*}(f, Ω)z₂(f', Ω)) from two Pulsars (1 and 2)

(日)

Stochastic background: integrate over all possible Ω:

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

- Fourier transform and consider (z₁^{*}(f, Ω)z₂(f', Ω)) from two Pulsars (1 and 2)
- Stochastic background: integrate over all possible Ω:

$$\langle \tilde{z}_1^*(f)\tilde{z}_2(f')
angle = rac{H_0^2}{8\pi^2}\delta(f-f')|f|^{-3}\Omega_{\mathrm{GW}}(|f|)\Gamma_{12},$$

(日)

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

- Fourier transform and consider (z₁^{*}(f, Ω)z₂(f', Ω)) from two Pulsars (1 and 2)
- Stochastic background: integrate over all possible Ω:

$$\langle \tilde{z}_1^*(f)\tilde{z}_2(f')
angle = rac{H_0^2}{8\pi^2}\delta(f-f')|f|^{-3}\Omega_{\mathrm{GW}}(|f|)\Gamma_{12},$$

where

$$\begin{split} \Gamma_{12} &= \frac{3}{4\pi} \sum_{A} \int_{S^2} d\hat{\Omega} \, F_1^A(\hat{\Omega}) F_2^A(\hat{\Omega}) \\ &= 3 \left\{ \frac{1}{3} + \frac{1 - \cos\xi}{2} \left[\ln\left(\frac{1 - \cos\xi}{2}\right) - \frac{1}{6} \right] \right\}, \end{split}$$

(日) (日) (日) (日) (日) (日) (日)

 $\xi \equiv \arccos(\hat{p}_1 \cdot \hat{p}_2), \text{ and } F^A(\hat{\Omega}) \equiv e^A_{ij}(\hat{\Omega}) \frac{1}{2} \frac{\hat{\rho}^i \hat{\rho}^j}{1 + \hat{\Omega} \cdot \hat{\rho}}.$

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

- Fourier transform and consider (z₁^{*}(f, Ω)z₂(f', Ω)) from two Pulsars (1 and 2)
- Stochastic background: integrate over all possible Ω:

$$\langle \tilde{z}_1^*(f)\tilde{z}_2(f')\rangle = \frac{H_0^2}{8\pi^2}\delta(f-f')|f|^{-3}\Omega_{\rm GW}(|f|)\Gamma_{12},$$

where

$$\begin{split} \Gamma_{12} &= \frac{3}{4\pi} \sum_{A} \int_{S^2} d\hat{\Omega} \, F_1^A(\hat{\Omega}) F_2^A(\hat{\Omega}) \\ &= 3 \left\{ \frac{1}{3} + \frac{1 - \cos\xi}{2} \left[\ln\left(\frac{1 - \cos\xi}{2}\right) - \frac{1}{6} \right] \right\}, \end{split}$$

 $\xi \equiv \arccos(\hat{p}_1 \cdot \hat{p}_2), \text{ and } F^A(\hat{\Omega}) \equiv e^A_{ij}(\hat{\Omega}) \frac{1}{2} \frac{\hat{p}^i \hat{p}^j}{1 + \hat{\Omega} \cdot \hat{p}}.$

- Common spectrum $|f|^{-3}\Omega_{GW}(|f|)$
- Angular "Hellings-Downs" (HD) correlation Γ₁₂ between two pulsars, 1 and 2

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA)

- North American Nanohertz Observatory for Gravitational Waves
- 45 analyzed pulsars (Arzoumanian et al. Ap.J. Lett. (2020)) with at least 3 years data

 Strong evidence for common-spectrum stochastic process

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA)

- North American Nanohertz Observatory for Gravitational Waves
- 45 analyzed pulsars (Arzoumanian et al. Ap.J. Lett. (2020)) with at least 3 years data
- Strong evidence for common-spectrum stochastic process

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA)

- North American Nanohertz Observatory for Gravitational Waves
- 45 analyzed pulsars (Arzoumanian et al. Ap.J. Lett. (2020)) with at least 3 years data
- Strong evidence for common-spectrum stochastic process

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) • No evidence yet for HD angular correlation from GW

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

• Power-law fit, exponent γ_{CP}

Figure: Arzoumanian et al. Ap.J. Lett. (2020)

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

æ.

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

• Power-law fit, exponent γ_{CP}

Figure: Arzoumanian et al. Ap.J. Lett. (2020)

• Most "conservative" interpretation: GW from SuperMassive Black Hole Binaries (SMBHB) $h(f) = A \left(\frac{f}{f_{yr}}\right)^{-\frac{2}{3}} =$

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

• Power-law fit, exponent γ_{CP}

Figure: Arzoumanian et al. Ap.J. Lett. (2020)

• Most "conservative" interpretation: GW from SuperMassive Black Hole Binaries (SMBHB) $h(f) = A \left(\frac{f}{f_{yr}}\right)^{-\frac{2}{3}} = A \left(\frac{f}{f_{yr}}\right)^{\frac{3-\gamma_{CP}}{2}} \implies \gamma_{CP} = 4.33$

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

• Power-law fit, exponent γ_{CP}

Figure: Arzoumanian et al. Ap.J. Lett. (2020)

э.

- Most "conservative" interpretation: GW from SuperMassive Black Hole Binaries (SMBHB) $h(f) = A \left(\frac{f}{f_{yr}}\right)^{-\frac{2}{3}} = A \left(\frac{f}{f_{yr}}\right)^{\frac{3-\gamma_{CP}}{2}} \implies \gamma_{CP} = 4.33$
- Alternative: GWB from Early Universe

IPTA DR2 Dataset

GW from Domain Walls

- Domain Walls
- Gravitational Waves from DWs

Pulsar Timing Arrays (PTA)

- International Collaboration (North America, Europe, Australia) (J. Antoniadis et al. MNRAS (2022))
- Combination of European Pulsar Timing Array (EPTA), NANOGrav, and the Parkes Pulsar Timing array (PPTA)

• 53 pulsars

IPTA DR2 Dataset

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA)

- International Collaboration (North America, Europe, Australia) (J. Antoniadis et al. MNRAS (2022))
- Combination of European Pulsar Timing Array (EPTA), NANOGrav, and the Parkes Pulsar Timing array (PPTA)

- 53 pulsars
- Use only first 13 datapoints

IPTA DR2 Dataset

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA)

- International Collaboration (North America, Europe, Australia) (J. Antoniadis et al. MNRAS (2022))
- Combination of European Pulsar Timing Array (EPTA), NANOGrav, and the Parkes Pulsar Timing array (PPTA)
- 53 pulsars
- Use only first 13 datapoints

Similar results (slightly smaller γ_{CP})

GW Search from Domain Walls in NANOGRAV and IPTA

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) • Search for GW from Domain Walls ³:

$$\Omega_{\rm GW,DW}(f)h^2 \simeq 10^{-10} \,\tilde{\epsilon} \left(\frac{10.75}{g_*(T_\star)}\right)^{\frac{1}{3}} \left(\frac{\alpha_\star}{0.01}\right)^2 \, \mathcal{S}\left(\frac{f}{f_\rho^0}\right),$$

• S(x) models the shape:

³R. Z. Ferreira, A.N., O. Pujolas, F. Rompineve, e-Print: 2204.04228 on contract of the second sec

GW Search from Domain Walls in NANOGRAV and IPTA

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) • Search for GW from Domain Walls ³:

$$\Omega_{ ext{GW,DW}}(f)h^2 \simeq 10^{-10}\, ilde{\epsilon} \left(rac{10.75}{g_*(T_\star)}
ight)^{rac{1}{3}} \left(rac{lpha_\star}{0.01}
ight)^2 \, \mathcal{S}\left(rac{f}{f_
ho^0}
ight),$$

• S(x) models the shape:

$$\mathcal{S}(x) = rac{(\gamma+eta)^{\delta}}{(eta x^{-rac{\gamma}{\delta}}+\gamma x^{rac{eta}{\delta}})^{\delta}},$$

 $\begin{cases} \text{At low frequency } \mathbf{S} \propto f^3 \\ \text{At high } f, \text{ simulations suggest } \delta \approx \beta \approx 1 \implies \mathbf{S} \propto f^{-1} \end{cases}$

³R. Z. Ferreira, A.N., O. Pujolas, F. Rompineve, e-Print: 2204.04228 on control of the second seco

GW from **Domain Walls**

Pulsar Timing Arrays (PTA)

- Assume DW decay into ϕ quanta and subsequently:
- Two scenarios
 - $\begin{cases} \phi \text{ Decay to Dark Radiation problem if too much} \\ \phi \text{ Decay to Standard Model Before BBN } \mathsf{T}_* \gtrsim 3 \text{MeV} \end{cases}$

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

- Assume DW decay into ϕ quanta and subsequently:
- Two scenarios
 - $\begin{cases} \phi \text{ Decay to Dark Radiation problem if too much} \\ \phi \text{ Decay to Standard Model Before BBN } \mathsf{T}_* \gtrsim 3 \text{MeV} \end{cases}$

- CASE I: Decay into DR
- Abundance of DR, standard parameterization

$$\Delta N_{\rm eff} = \frac{\rho_{\rm DR}}{\rho_{\nu}}$$

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

- Assume DW decay into ϕ quanta and subsequently:
- Two scenarios
 - $\begin{cases} \phi \text{ Decay to Dark Radiation problem if too much} \\ \phi \text{ Decay to Standard Model Before BBN } \mathsf{T}_* \gtrsim 3 \text{MeV} \end{cases}$

- CASE I: Decay into DR
- Abundance of DR, standard parameterization

$$\Delta N_{\rm eff} = \frac{\rho_{\rm DR}}{\rho_{\nu}} \approx \frac{\rho_{\rm DW}}{\rho_{\nu}}$$

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA)

- $\bullet\,$ Assume DW decay into ϕ quanta and subsequently:
- Two scenarios

,

 $\begin{cases} \phi \text{ Decay to Dark Radiation problem if too much} \\ \phi \text{ Decay to Standard Model Before BBN } \mathsf{T}_* \gtrsim 3 \text{MeV} \end{cases}$

- CASE I: Decay into DR
- Abundance of DR, standard parameterization

$$\Delta N_{\rm eff} = \frac{\rho_{\rm DR}}{\rho_{\nu}} \approx \frac{\rho_{\rm DW}}{\rho_{\nu}} = 13.6 g_* |_{T_*}^{-1/3} \alpha_*$$

(日)

 Current limited by CMB: △N_{eff} ≤ 0.3 (*Planck 2018 + BAO*)

Results (CASE I): Decay into Dark Radiation

Results (CASE I): Decay into Dark Radiation

• Future Forecast: visible by CMB experiments

Results (CASE II): Decay into Standard Model

Results (CASE II): Decay into Standard Model

- IPTA prefers a peak
- NANOGrav ok with a power-law

Results: Decay into Standard Model

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) Decay Temperature *T*_{*} and fraction *α*_{*} could be traded for bias (Δ*V*) and tension (*σ*),

(日)

Results: Decay into Standard Model

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) Decay Temperature *T*_{*} and fraction *α*_{*} could be traded for bias (Δ*V*) and tension (*σ*),

- In a \mathbb{Z}_2 model with $V(\phi) = \lambda(\phi^2 v^2)^2$, $\implies v \approx (10 100 \, \text{TeV})/\lambda^{1/3}$
- Bias scale: $\Delta V^{\frac{1}{4}} = 10 100 \text{ MeV}$, close to QCD scale

Results: Combine with SMBHM

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) • We also combined with "standard" expected signal from Supermassive Black Holes Mergers (SMBHM)

Results: Combine with SMBHM

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) We also combined with "standard" expected signal from Supermassive Black Holes Mergers (SMBHM)

• We also compared models via Bayes factors log₁₀ B_{i,i}

Results: Combine with SMBHM

GW from Domain Walls

Domain Walls

Gravitational Waves from DWs

Pulsar Timing Arrays (PTA) • We also combined with "standard" expected signal from Supermassive Black Holes Mergers (SMBHM)

- We also compared models via Bayes factors log₁₀ B_{i,i}
- For NG12, we find: $\log_{10} B_{\text{SMBHBs, DW}} \simeq 0.16$, $\log_{10} B_{\text{DW, DW+SMBHBs}} \simeq 0.07$.
- For IPTADR2, we find: $\log_{10} B_{\text{DW, SMBHBs}} \simeq 0.48$, $\log_{10} B_{\text{DW, DW+SMBHBs}} \simeq 0.38$.
- → no substantial evidence for one model against any other one.

Conclusions

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

• Did NANOGrav/IPTA see GWs?

• Wait for Hellings-Downs angular correlations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Conclusions

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

• Did NANOGrav/IPTA see GWs?

• Wait for Hellings-Downs angular correlations

• If yes, decaying DWs fit well the data

• Interesting scales: $\sigma^{1/3} \approx 10 - 100 \text{ TeV}$ and $\Delta V \approx 10 - 100 \text{ MeV}$ (close to QCD PT)

GW	fr	om	
Domai	in	Wa	lls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

THE END

(EXTRA SLIDES)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

NANOGRAV 12.5 year: Phase Transitions

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

Figure: Arzoumanian et al. Phys.Rev.Lett. 127 (2021)

Cosmology of "Heavy" axion

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) • Heavy axion with a small bias:

$$egin{aligned} V_{TOT}(a) = & \left(\Lambda_{ ext{QCD}}^4 + \Lambda_{ ext{H}}^4
ight) \left(1 - \cos rac{a}{f}
ight) \ & - \mu_b^4 \cos \left(rac{a}{v} - \delta_0
ight), \end{aligned}$$

(日)

with $\Lambda_H \gg \mu_b$ (and Λ_{QCD} negligible)

Cosmology of "Heavy" axion

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) • Heavy axion with a small bias:

$$egin{aligned} V_{TOT}(a) = & \left(\Lambda_{ ext{QCD}}^4 + \Lambda_{ ext{H}}^4
ight) \left(1 - \cos rac{a}{f}
ight) \ & - \mu_b^4 \cos \left(rac{a}{v} - \delta_0
ight), \end{aligned}$$

with $\Lambda_H \gg \mu_b$ (and Λ_{QCD} negligible)

 When U(1) symmetry of Φ = |Φ|e^{i^a/v} is broken at scale f (V_{TOT} is negligible)

(日) (日) (日) (日) (日) (日) (日)

• a takes random values in different Hubble patches
Cosmology of "Heavy" axion

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) • Heavy axion with a small bias:

$$egin{aligned} V_{TOT}(a) = & \left(\Lambda_{ ext{QCD}}^4 + \Lambda_{ ext{H}}^4
ight) \left(1 - \cos rac{a}{f}
ight) \ & - \mu_b^4 \cos \left(rac{a}{v} - \delta_0
ight), \end{aligned}$$

with $\Lambda_H \gg \mu_b$ (and Λ_{QCD} negligible)

- When U(1) symmetry of Φ = |Φ|e^{i^a/v} is broken at scale f (V_{TOT} is negligible)
- a takes random values in different Hubble patches
- Cosmic strings formation (where *a* goes from 0 to 2π)
- Strings radiate axion quanta, reach scaling regime $\rho_S \approx f^2 H^2$

Cosmology of "Heavy" axion

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

$$\begin{split} V_{TOT} &= \left(\Lambda_{\text{QCD}}^4 + \Lambda_{\text{H}}^4 \right) \left(1 - \cos \frac{a}{f} \right) - \mu_b^4 \cos \left(\frac{a}{v} - \delta_0 \right), \\ \implies m_a^2 \approx \frac{\Lambda_{\text{H}}^4}{f^2} \end{split}$$

(日)

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

$$V_{TOT} = \left(\Lambda_{\text{QCD}}^4 + \Lambda_{\text{H}}^4
ight) \left(1 - \cos rac{a}{f}
ight) - \mu_b^4 \cos \left(rac{a}{v} - \delta_0
ight),$$

$$\implies m_a^2 \approx \frac{\Lambda_{\rm H}^4}{f^2}$$

• When $m_a \approx 3H$, potential becomes important,

• Inhomogeneous field \implies domain walls (where $\frac{a}{t} \approx \pi$)

Domain walls attached to strings

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

$$V_{TOT} = \left(\Lambda_{\text{QCD}}^4 + \Lambda_{\text{H}}^4
ight) \left(1 - \cos rac{a}{f}
ight) - \mu_b^4 \cos \left(rac{a}{v} - \delta_0
ight),$$

 $\implies m_a^2 \approx \frac{\Lambda_H^2}{f^2}$ • When $m_a \approx 3H$, potential becomes important,

• Inhomogeneous field \implies domain walls (where $\frac{a}{t} \approx \pi$)

Domain walls attached to strings

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA)

$$V_{TOT} = \left(\Lambda_{\text{QCD}}^4 + \Lambda_{\text{H}}^4
ight) \left(1 - \cos rac{a}{f}
ight) - \mu_b^4 \cos \left(rac{a}{v} - \delta_0
ight),$$

 $\implies m_a^2 \approx \frac{\Lambda_H^*}{f^2}$ • When $m_a \approx 3H$, potential becomes important,

• Inhomogeneous field \implies domain walls (where $\frac{a}{t} \approx \pi$)

Domain walls attached to strings

• Tension $\sigma = m_a f^2$ (much larger than for "Standard" QCD Axion)

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) Simulations from Kawasaki, Saikawa, Sekiguchi 14, PRD 91

 $N_{\rm DW} = 6$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) Simulations from Kawasaki, Saikawa, Sekiguchi 14, PRD 91

 $N_{\rm DW} = 6$

• Later μ_b breaks degeneracy among vacua \implies DW decay \implies *a* sits in true vacuum \implies \implies \implies \implies \implies \implies \implies \implies \implies

Small CP violation at the minimum

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Heavy Axion at LIGO/Virgo/KAGRA and LISA

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) • Heavy axion with High scale $\Lambda_H \implies$ signals at Interferometers (R. Z. Ferreira, A.N., O. Pujolas, F. Rompineve, PRL 2022)

(日)

Heavy Axion at LIGO/Virgo/KAGRA and LISA

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) Heavy axion with High scale Λ_H ⇒ signals at Interferometers (R. Z. Ferreira, A.N., O. Pujolas, F. Rompineve, PRL 2022)
 Correlated with nEDM signal:

$$\Delta heta \simeq \left(rac{\mu_b^4}{\Lambda_{
m H}^4}
ight) \sin \delta_0 \ll 1$$

Heavy Axion at LIGO/Virgo/KAGRA and LISA

GW from Domain Walls

Domain Walls

Gravitationa Waves from DWs

Pulsar Timing Arrays (PTA) Heavy axion with High scale Λ_H ⇒ signals at Interferometers (R. Z. Ferreira, A.N., O. Pujolas, F. Rompineve, PRL 2022)
 Correlated with nEDM signal:

$$\Delta heta \simeq \left(rac{\mu_b^4}{\Lambda_{
m H}^4}
ight) \sin \delta_0 \ll 1$$

Figure: GW spectra ($N_b = 1$, $N_{DW} = 6$, $\delta_0 = 0.3$). Dashed: $\Lambda_{\rm H} = 10^{10}$ GeV, $f = 10^{11}$ GeV and $\Delta \theta \simeq 8 \cdot 10^{-13}$. Dotted: $\Lambda_{\rm H} = 10^7$ GeV, $f = 2.5 \cdot 10^{10}$ GeV $\Delta \theta \simeq 8 \cdot 10^{-13}$. Dot-dashed: $\Lambda_{\rm H} = 10^{11}$ GeV, $f = 1.6 \cdot 10^{11}$ GeV and $\Delta \theta \simeq 1.5 \pm 10^{-11}$.