

The P2 Experiment

DISCRETE 2022, Kongresshaus Baden-Baden - High Intensity Frontier

Lars Steffen Weinstock, Dr.-Ing. Institute for Nuclear Physics, AG Berger Johannes-Gutenberg University Mainz

PHYSICS GOAL AND MOTIVATION

- **Goal:** Determination of electroweak mixing angle $sin^2\theta_w$ (s_w^2) with high precision at low four-momentum transfer $Q^2 = 4.5 \cdot 10^{-3} \, (\text{GeV/c})^2$
- Standard Model (SM) prediction of running of sw² fixed by Z-pole with high precision (SLAC, LEP, etc.)
 - ⇒ P2 will match precision of Z-pole measurements
 - ⇒ SM precision test
- Deviations from running hint towards new physics beyond the SM

EXPERIMENTAL SETUP

- Measurement of parity-violating asymmetry A^{PV} in electron-proton scattering (at low Q²)
- A^{PV} caused by Z-exchange coupled to protons weak charge Q_W(p):

$$A^{PV} = \frac{G_F Q^2}{4\pi\alpha_{em}\sqrt{2}} \left(Q_W(p) - F(E_i, Q^2) \right)$$

- Form factor $F(E_i,Q^2)$ accounts for proton's structure: $F(E_i,Q^2) = F^{EM}(E_i,Q^2) + F^A(E_i,Q^2) + F^S(E_i,Q^2)$
- A^{PV} dominated by Q_W(p)-contribution at at low Q²
 (i.e. low scattering angle θ_f)

 Precision measurement of A^{PV} gives precision Q_W(p) and therefore precision s_w²:

$$Q_W(p) = 1 - 4 s_w^2 \implies \frac{\Delta s_w^2}{s_w^2} \approx 0.09 \frac{\Delta Q_W(p)}{Q_W(p)}$$

 A^{PV} is measured by *counting* electrons N⁺ and N⁻ with respect to beam helicity:

$$A^{PV} = \frac{N^+ - N^-}{N^+ + N^-}$$

- To reach desired precision $\Delta s_w^2/s_w^2 = 0.14$ % need A^{PV} at 1.5 %
- Since $Q_W(p)$ is strongly suppressed in SM, A^{PV} is very small $(A^{PV} \approx 40 \text{ ppb} \Rightarrow \Delta A^{PV} \approx 0.6 \text{ ppb})$
- With $\Delta A^{PV} \sim 1/\sqrt{N} \Rightarrow$ Required number of scattered electrons: $N = O(10^{18})!$

PRECISION GOALS

- Additional sources of uncertainty: experimental setup, beam polarisation, form factors ...
- Numeric, Monte-Carlo driven error analysis:
 - Beam energy $E_{beam} = 155 \text{ MeV}$
 - Central scattering angle $\bar{\theta}_f = 35^{\circ}$
 - Detector acceptance $\delta \theta_f = 20^\circ$
 - Measurement time T = 11000 h

 \Rightarrow Achievable precision: $\Delta s_w^2 = 3.3 \cdot 10^{-4} (0.14 \%)$

- With $N = \mathcal{O}(10^{18})$ electrons in T = 11000 h \Rightarrow Expected electron rate $\mathcal{O}(0.1 \text{ THz})$
 - ⇒ Challenge for detector design; require integrating measurements

MAINZ ENERGY-RECOVERY SUPERCONDUCTING ACCELERATOR (MESA)

- Currently under construction in Mainz
- Provides polarised electron beam
 - $E_{beam} = 155 \text{ MeV}, I_{beam} = 150 \text{ }\mu\text{A}$
 - Helicity switched at $f_{sw} \sim 1 \text{ kHz}$
- Beam polarisation closely monitored by three independent measurements
- Hosts three experiments: MAGIX, Dark MESA and P2
- Additional mode; energy recovery

THE P2 SPECTROMETER

- Electron beam enters Scattering Chamber and hits 600 mm liquid Hydrogen target (*lH*₂)
- Kevlar Window separating Scattering Chamber and Helium-filled Gas Box
- Tracking detector: 8 modules arranged in two layers each covering 15° (no full azimuthal covering)
 - Each module has two layers of pixel detectors
 ⇒ 4 hits per track for track-fitting
- Enclosed by solenoid $\Rightarrow 0.6 \text{ T}$ along beam axis
- Integrating Detectors: 82 wedged silica bars read out by PMTs ⇒ photocurrent ∝ no. of electrons

INTEGRATING DETECTORS

SUMMARY

- P2 performs precision measurement of s_w² by measuring APV in e⁻p⁺ scattering
- A^{PV} caused by protons weak charge $Q_w(p)$
- Require *11000* h measurement time with electron rate of O(10¹⁸)

OUTLOOK

- MESA civil engineering almost completed
- First accelerator cavities arrived
- Tracker and integrating detectors under development

your attention!

PRISMA⁺ Prive JGU

BACKUP

CHOICE OF CENTRAL SCATTERING ANGLE

CHOICE OF BEAM ENERGY

E_{beam}	$155{ m MeV}$
$ar{ heta}_{ ext{f}}$	35°
$\delta heta_{ m f}$	20°
$\langle Q^2 angle_{L=600\mathrm{mm,\ }\delta heta_\mathrm{f}=20^\circ}$	$6 imes 10^{-3} ({ m GeV/c})^2$
$\langle A^{ m exp} angle$	$-39.94\mathrm{ppb}$
$({\it \Delta} A^{ m exp})_{ m Total}$	$0.56\mathrm{ppb}(1.40\%)$
$({\it \Delta} A^{ m exp})_{ m Statistics}$	$0.51\mathrm{ppb}(1.28\%)$
$({\it \Delta} A^{ m exp})_{ m Polarization}$	$0.21{ m ppb}(0.53\%)$
$({\it \Delta} A^{ m exp})_{ m Apparative}$	$0.10{ m ppb}(0.25\%)$

$\langle s_{ m W}^2 angle$	0.23116
$({\it \Delta} s_{ m W}^2)_{ m Total}$	$3.3 imes 10^{-4} \ (0.14 \ \%)$
$(\varDelta s_{ m W}^2)_{ m Statistics}$	$2.7 imes 10^{-4}~(0.12\%)$
$({\it \Delta} s_{ m W}^2)_{ m Polarization}$	$1.0 imes 10^{-4} \ (0.04 \ \%)$
$(\varDelta s_{ m W}^2)_{ m Apparative}$	$0.5 imes 10^{-4} \ (0.02 \ \%)$
$({\it \Delta} s_{ m W}^2)_{\Box_{\gamma Z}}$	$0.4 imes 10^{-4} \ (0.02 \ \%)$
$({\it \Delta} s_{ m W}^2)_{ m nucl. \ FF}$	$1.2 \times 10^{-4} \ (0.05 \ \%)$
$\langle Q^2 angle_{ m Cherenkov}$	$4.57 imes 10^{-3} ({ m GeV/c})^2$
$\langle A^{ m exp} angle_{ m Cherenkov}$	$-28.77\mathrm{ppb}$

