Theory of electric dipole moments

Yohei Ema

University of Minnesota

DISCRETE 2022 @ Baden-Baden 09.Nov.2022

Based on <u>2108.05398</u>, <u>2202.10524</u>, <u>2205.11532</u> and <u>2207.01679</u>

with T. Gao and M. Pospelov

CKM and muon EDM contributions to paramagnetic EDMs

Yohei Ema

University of Minnesota

DISCRETE 2022 @ Baden-Baden 09.Nov.2022

Based on 2108.05398, 2202.10524, 2205.11532 and 2207.01679

with T. Gao and M. Pospelov

Electric dipole moment

• Electric dipole moment of a particle is proportional to spin:

$$\mathscr{H} = -\overrightarrow{B}\cdot\overrightarrow{\mu} - \overrightarrow{E}\cdot\overrightarrow{d} = -2\overrightarrow{s}\cdot\left(\mu\overrightarrow{B} + d\overrightarrow{E}\right).$$

* μ : magnetic dipole moment, d :electric dipole moment.

EDM violates P and T (or CP).
$$\overrightarrow{B} \quad \overrightarrow{E} \quad \overrightarrow{S}$$

 $T \quad - \quad + \quad -$

• Flavor diagonal: standard model contribution extremely suppressed.

e.g. $d_e^{(\text{equiv})}(\delta_{\text{CKM}}) \simeq 10^{-35} \, e \text{cm}$ (\leftarrow will see it later)

c.f. the current best limit $|d_e(\text{ThO})| < 1.1 \times 10^{-29} e \text{cm}$ [ACME 18]

Background free probe of CP-odd new physics.

$$|d_e| < 1.1 \times 10^{-29} e \,\mathrm{cm} \implies \Lambda \gtrsim 50 \,\mathrm{TeV} \text{ if } \frac{d_e}{e} \sim \frac{\alpha}{\pi} \frac{m_e}{\Lambda^2}.$$

• CP violation motivated by baryogenesis, BSM such as 2HDM, SUSY, ...

EDM experiments

<u>Neutron</u>

- Sensitive to hadronic CP violation: θ_{QCD} , d_q , \tilde{d}_q , w, \cdots .
- $|d_n| < 1.8 \times 10^{-26} \, e\, {\rm cm}$. [PSI-nEDM 20]

Diamagnetic atom (all electrons paired)

- Sensitive to hadronic CP violation (not only to d_N but to CP-odd pion nucleon interactions).
- ¹⁹⁹Hg : $|d_{\text{Hg}}| < 7.4 \times 10^{-30} \, e \, \text{cm}$. [Graner+ 16]
- ${}^{129}\text{Xe}$: $|d_{\text{Xe}}| < 1.5 \times 10^{-27} \, e \, \text{cm}$. [Allmendinger+ 19]
 - * Sensitivity of 199 Hg to d_n comparable to the direct one due to Schiff screening, with different systematics.

Paramagnetic atom/molecule (unpaired electron)

- Sensitive to leptonic CP violation (not only to d_e but to CP-odd electron nucleon interactions).
- ThO: $|d_e^{\text{equiv}}| < 1.1 \times 10^{-29} \, e \, \text{cm}$. [Acme 18]
- HfF⁺: $|d_e^{\text{equiv}}| < 1.3 \times 10^{-28} \, e \, \text{cm}$. [Cairncross+ 17]

Today: CKM and muon EDM contributions to paramagnetic atomic EDM.

EDM experiments

<u>Neutron</u>

- Sensitive to hadronic CP violation: θ_{QCD} , d_q , \tilde{d}_q , w, \cdots .
- $|d_n| < 1.8 \times 10^{-26} \, e\, {\rm cm}$. [PSI-nEDM 20]

Diamagnetic atom (all electrons paired)

- Sensitive to hadronic CP violation (not only to d_N but to CP-odd pion nucleon interactions).
- ¹⁹⁹Hg : $|d_{\text{Hg}}| < 7.4 \times 10^{-30} \, e \, \text{cm}$. [Graner+ 16]
- ${}^{129}\text{Xe}$: $|d_{\text{Xe}}| < 1.5 \times 10^{-27} \, e \, \text{cm}$. [Allmendinger+ 19]
 - * Sensitivity of 199 Hg to d_n comparable to the direct one due to Schiff screening, with different systematics.

Paramagnetic atom/molecule (unpaired electron)

- Sensitive to leptonic CP violation (not only to d_e but to CP-odd electron nucleon interactions).
- ThO: $|d_e^{\text{equiv}}| < 1.1 \times 10^{-29} \, e \, \text{cm}$. [Acme 18]
- HfF⁺: $|d_e^{\text{equiv}}| < 1.3 \times 10^{-28} \, e \, \text{cm}$. [Cairncross+ 17]

Today: CKM and muon EDM contributions to paramagnetic atomic EDM.

Paramagnetic atomic EDM

• Atom couples to \overrightarrow{E}_{ext} as

$$\mathscr{H}_A \sim -\sum_k \left(\overrightarrow{d}_k + e_k \overrightarrow{r}_k \right) \cdot \overrightarrow{E}_{\text{ext}},$$

- Two contributions to atomic EDM: $\vec{d}_A \sim \langle \Psi | \sum_k \left(\vec{d}_k + e_k \vec{r}_k \right) | \Psi \rangle$
 - 1. directly from constituent particle's EDM
 - 2. wave function mixing in $|\Psi\rangle$ due to P, CP-odd interaction

* these two cancel for non-relativistic neutral point particle's EDM: shielding theorem.

Paramagnetic atomic/molecular EDM sensitive only to a linear combination of

$$-\frac{id_e}{2}\bar{e}\sigma_{\mu\nu}\gamma_5 F^{\mu\nu}e \quad \text{and} \quad C_S \frac{G_F}{\sqrt{2}}\bar{e}i\gamma_5 e\,\bar{N}N.$$

$$d_e^{\text{equiv}} = d_e + C_S \times 1.5 \times 10^{-20} \, e\text{cm}$$
 for ThO.

• Experimental constraint: $|d_e^{\text{equiv}}| < 1.1 \times 10^{-29} ecm$. [ACME 18]

- 1. Introduction
- 2. CKM contribution to paramagnetic EDM
- 3. Indirect limits on muon EDM
- 4. Summary

1. Introduction

2. CKM contribution to paramagnetic EDM

3. Indirect limits on muon EDM

4. Summary

SM value of paramagnetic EDM

- SM breaks CP by CKM phase \rightarrow generate non-zero EDM.
- CKM contribution to electron EDM:
 - Short distance contribution appears at four-loop, $d_e^{(\text{short})} \sim \mathcal{O}(10^{-44}) e \, \text{cm}$. [Pospelov, Ritz 13]
 - Long distance contribution may be lager $d_e^{(\text{long})} \sim 6 \times 10^{-40} e \,\text{cm}$. [Yamaguchi, Yamanaka 20]
- CKM contribution to C_S :
 - Two photon exchange $d_e^{(\text{equiv})} \sim 10^{-38} \, e \, \text{cm}$. [Pospelov, Ritz 13]
 - Kaon exchange $d_e^{(\text{equiv})} = 1.0 \times 10^{-35} e \,\text{cm}$. [YE

* still well below experimental sensitivity $\sim 10^{-29} e \,\mathrm{cm}$.

• Calculable within ChPT (NLO calculated as $30 \sim 40\%$).

• Weak hyperon non-leptonic decay with $\Delta I = 1/2$ rule:

$$\mathscr{L}_{\text{eff}} = -a \operatorname{Tr}_{F} \left[\bar{B} \{ \xi^{\dagger} h \xi, B \} \right] - b \operatorname{Tr}_{F} \left[\bar{B} [\xi^{\dagger} h \xi, B] \right] = -\frac{\sqrt{2}K_{S}}{f_{\pi}} \left[(b-a)\bar{p}p + 2b\bar{n}n \right] + \cdots .$$
[Bijnens+ 85; Jenkins 91; ...

• Combining them we obtain

$$C_S = J \times \frac{N + 0.7Z}{A} \times \frac{13[m_\pi^2] f_\pi m_e G_F}{m_K^2} \times \frac{\alpha I(x_t)}{\pi s_W^2}.$$

* Reduced Jarlskog invariant $J = \text{Im}[V_{ts}^* V_{td} V_{ud}^* V_{us}]$ after summing over K_S and K_L .

 $d_e^{(\text{equiv})}(\text{ThO}) = 1.0 \times 10^{-35} \, e \, \text{cm}$ (after including NLO corrections).

[YE, Gao, Pospelov 22]

• $1/m_K^2 \propto 1/m_s$ singularity in chiral limit \rightarrow distinct from other contributions.

NLO correction

- NLO correction at $m_K/\Delta m_B \sim \sqrt{m_s/\Lambda_{had}}$ from baryon pole diagrams.
- Calculable within heavy baryon ChPT.
- Numerically we found

 \mathcal{N}

$$\frac{C_{S}^{\text{NLO}}}{C_{S}^{\text{LO}}}(p) \simeq 30 \%, \quad \frac{C_{S}^{\text{NLO}}}{C_{S}^{\text{LO}}}(n) \simeq 40 \%. \quad \text{[YE, Gao, Pospelov 22]}$$

$$\textcircled{} \qquad \textcircled{} \qquad \end{matrix}{} \qquad \textcircled{} \qquad \end{matrix}{} \qquad \textcircled{} \qquad \textcircled{} \qquad \textcircled{} \qquad \end{matrix}{} \qquad \textcircled{} \qquad \textcircled{} \qquad \end{matrix}{} \qquad \textcircled{} \qquad \textcircled{} \qquad \end{matrix}{} \qquad \textcircled{} \qquad \end{matrix}{} \qquad \textcircled{} \qquad \end{matrix}{} \qquad \end{matrix}{} \qquad \textcircled{} \qquad \textcircled{} \qquad \end{matrix}{} \qquad \end{matrix}{} \qquad \rule{} \qquad \textcircled{} \qquad \end{matrix}{} \qquad \rule{} \qquad \textcircled{} \qquad \end{matrix}{} \qquad \rule{} \qquad \textcircled{} \qquad \end{matrix}{} \qquad \rule{} \qquad \rule{} \qquad \rule{} \qquad \rule{} \qquad \rule{} \qquad \rule{} \qquad \rule{}$$

 Λ

1. Introduction

2. CKM contribution to paramagnetic EDM

3. Indirect limits on muon EDM

4. Summary

Muon EDM

• Recently FNAL confirms BNL muon g-2 result:

$$a_{\mu}(\exp) - a_{\mu}(SM) = (251 \pm 59) \times 10^{-11}$$
 (4.2 σ) [FNAL muon g-2 21]

• Muon g-2 and EDM can be closely related:

$$\mathscr{L} = -\frac{c}{2}\bar{\psi}_R \sigma \cdot F \psi_L + \text{h.c.} \Rightarrow \text{Re}[c] = \frac{e\Delta a_\mu}{2m_\mu}, \text{Im}[c] = d_\mu.$$

$$d_\mu \simeq 2 \times 10^{-22} e \text{ cm} \times \tan \phi \left(\frac{\Delta a_\mu}{2.5 \times 10^{-9}}\right) \text{ with } c = |c| e^{i\phi}.$$
[See e.g. Crivellin+ 18]

• Current/future direct measurements of muon EDM:

Brookhaven (existing limit): $|d_{\mu}| < 1.8 \times 10^{-19} e \text{ cm}$. Fermilab, J-PARC: $|d_{\mu}| \leq 10^{-21} e \text{ cm}$.

PSI ("frozen spin"):
$$|d_{\mu}| < 6 \times 10^{-23} e \,\mathrm{cm}$$
.

understand indirect limits from atomic/molecular EDM experiments.

Toward observables

Many observables and many paths to get them

Toward observables

Many observables and many paths to get them

Electron EDM

• Muon EDM induces electron EDM at three-loop:

+ permutations * cross-dot: EDM operator insertion

• There are two types of contributions: * [Grozin, Khriplovich, Rudenko 08] computed only $S^{(1)}$.

$$i\mathcal{M} = i\tilde{F}^{\mu\nu}\,\bar{e}(p) \left[S^{(1)}m_e\sigma_{\mu\nu} + S^{(2)}\left\{\sigma_{\mu\nu}, \not\!\!\!p\right\}\right]e(p)\,. \label{eq:mass_static_st$$

• Combining two, the result is $\sim 40\%$ larger: [YE, Gao, Pospelov 22]

$$d_e = 2.75 \times d_\mu \left(\frac{\alpha}{\pi}\right)^3 \frac{m_e}{m_\mu} \sim 2 \times 10^{-10} \times d_\mu \quad \text{(UV finite)}.$$

Paramagnetic atom sensitive only to linear combination of d_e and C_S:
 d_e^{equiv} = d_e + C_S × 1.5 × 10⁻²⁰ e cm for ThO.
 Need to evaluate semi-leptonic CP-odd operator C_S.

Semi-leptonic CP-odd operator

- Paramagnetic atom EDM depends on C_S : $\mathscr{L} = C_S \frac{G_F}{\sqrt{2}} \bar{e} i \gamma_5 e \bar{N} N$.
- Muon EDM induces

• Nuclear electric field E_N^2 localized around nucleus.

•
$$\bar{e}i\gamma_5 e \times E_N^2 \sim \bar{e}i\gamma_5 e \times \bar{N}N$$
 : equivalent to C_S .

* Fudge factor included in our actual computation.

• ACME experiment: $|d_e^{\text{equiv}}| < 1.1 \times 10^{-29} e \text{ cm}$ [ACME 18]

 $|d_{\mu}(\text{ThO})| < 1.7 \times 10^{-20} \, e \, \text{cm}$ [YE, Gao, Pospelov 21, 22]

* C_S dominates over d_e by a factor 4, better than direct bound by BNL $|d_{\mu}| < 1.8 \times 10^{-19} e \,\mathrm{cm}$.

- 1. Introduction
- 2. CKM contribution to paramagnetic EDM
- 3. Indirect limits on muon EDM
- 4. Summary

CKM contribution to paramagnetic EDM:

- paramagnetic EDM sensitive to both d_e and C_S .
- Kaon exchange induces $d_e^{(\text{equiv})} = 1.0 \times 10^{-35} e \,\text{cm}$.
- Distinct $1/m_s$ structure in the chiral limit.
- NLO correction calculable and under control.

Indirect constraints on muon EDM:

- Muon EDM is interesting, given the muon g 2 anomaly.
- From ThO we get $|d_{\mu}(\text{ThO})| < 1.7 \times 10^{-20} e \text{cm}.$
- From ¹⁹⁹Hg we get $|d_{\mu}(\text{Hg})| < 6.4 \times 10^{-20} e \text{cm}.$
- Similar constraints on tau/charm/bottom EDMs.

$e \xrightarrow{K} \\ K \\ N \xrightarrow{K} \\ N \xrightarrow{K}$

<u>2108.05398</u>, <u>2207.01679</u>

2202.10524

• EDM observable: spin precession

$$\frac{d\vec{s}}{dt} = \vec{\omega} \times \vec{s}, \quad \vec{\omega} = 2\mu \vec{B} + 2d\vec{E}.$$

• Extract EDM by flipping \overrightarrow{E} :

EDM experiments

Many efforts on detecting EDM in different systems

[Taken from Kirch & Schmidt-Wellenburg 20]

Shielding theorem

• (Non-relativistic) atomic Hamiltonian with external \vec{E} and EDM:

$$\mathcal{H}_{A} = \mathcal{H}_{N} + \mathcal{H}_{e} + \Phi - \sum_{k} \left(e_{k} \vec{r}_{k} \cdot \vec{E}_{ext} + \vec{d}_{k} \cdot \vec{E}(\vec{r}_{k}) \right),$$

where Φ : coulomb potential btw particles and $\vec{E} = \vec{E}_{int} + \vec{E}_{ext}$.

*
$$\vec{E}_{int}(\vec{r}_k) = -\frac{\vec{\nabla}_k}{e_k} \Phi = -\frac{i}{e_k} \left[\vec{p}_k, \mathcal{H}_0\right]$$
 where $\mathcal{H}_0 = \mathcal{H}_N + \mathcal{H}_e + \Phi$.

• EDM without \overrightarrow{E}_{ext} induces mixing of (unperturbed) states as

$$\Psi\rangle \simeq |0\rangle - \sum_{n\neq 0} \frac{\langle n | \sum_{k} \vec{d}_{k} \cdot \vec{E}_{int}(\vec{r}_{k}) | 0\rangle}{E_{0} - E_{n}} |n\rangle = \left(1 + \sum_{k} \frac{i}{e_{k}} \vec{d}_{k} \cdot \vec{p}_{k}\right) |0\rangle.$$

• This cancels the direct contribution to the atomic EDM:

$$\vec{d}_A = \langle \Psi | \sum_k \left(\vec{d}_k + e_k \vec{r}_k \right) | \Psi \rangle \simeq \sum_k \langle 0 | \left(\vec{d}_k - \sum_l \frac{ie_l}{e_k} \left[\vec{d}_k \cdot \vec{p}_k, \vec{r}_l \right] \right) | 0 \rangle = 0,$$

"Schiff shielding theorem"

[Purcell, Ramsey 50; Garwin, Lederman 59; Schiff 63]

Shielding theorem

• Two contributions to atomic EDM:

(1) direct contribution from the constituent particle's EDM

(2) mixing of opposite parity wave functions through P,CP-odd interaction

$$\overrightarrow{d}_A \ni 2\sum_{n \neq 0} \frac{\langle 0 | \sum_k e \overrightarrow{r}_k | n \rangle \langle n | \mathcal{H}_{\text{int}} | 0 \rangle}{E_n - E_0}.$$

doesn't have to be EDM

these two cancel for non-relativistic neutral point particle's EDM.

• This is a rearrangement due to the constitutions.

• Two ways out:

(a) relativistic correction \rightarrow paramagnetic atom (an unpaired electron)

(b) finite size correction \rightarrow diamagnetic atom (all electrons paired)

Paramagnetic atom/molecule

• Electron actually relativistic $v \sim Z\alpha \rightarrow d_e$ can induce d_A :

$$\vec{d}_{A} = d_{e} \sum_{i=1}^{Z} \left[\langle 0_{e} | \left(\gamma_{0}^{(i)} - 1 \right) \vec{\Sigma}^{(i)} | 0_{e} \rangle + 2 \sum_{n \neq 0} \frac{\langle 0_{e} | e\vec{r}_{i} | n_{e} \rangle}{E_{0} - E_{n}} \langle n_{e} | \left(\gamma_{0}^{(i)} - 1 \right) \vec{\Sigma}^{(i)} \cdot \vec{E}_{int} | 0_{e} \rangle \right]$$

relativistic correction to shielding where $\vec{\Sigma} = \gamma_{5} \gamma^{0} \vec{\gamma}$.

 $(\gamma_0 - 1)\overrightarrow{\Sigma} = -2\begin{pmatrix} 0 & 0\\ 0 & \overrightarrow{\sigma} \end{pmatrix}$ in Dirac rep. \rightarrow need an unpaired electron = paramagnetic atom.

- The latter (mixing of states) dominant, [Sandars 65; ...] and this is actually an enhancement: $d_A/d_e \sim Z^3 \alpha^2 \sim \mathcal{O}(10^2)$.
- CP-odd operator $C_S(G_F/\sqrt{2}) \bar{e}i\gamma_5 e \times \bar{N}N$ also induces mixing of states.

• d_e and C_S degenerate.

 $d_e^{\text{equiv}} = d_e + C_S \times 1.5 \times 10^{-20} \, e\text{cm} \text{ for ThO.}$

• Experimental constraint: $|d_e^{\text{equiv}}| < 1.1 \times 10^{-29} ecm$ [ACME 18].

¹⁹⁹Hg experiment

[Graner et.a. 16]

ACME ThO experiment

Electroweak penguin

• EW penguin (+ W box) induces

W penguin (+ W box) induces

$$\mathscr{L}_{eff} = \frac{G_F}{\sqrt{2}} \frac{\alpha}{4\pi s_W^2} \left[\bar{e} \gamma^{\mu} (1 - \gamma_5) e \right] \sum_{i=c,t} I(x_i) \left[V_{is}^* V_{id} \bar{s} \gamma_{\mu} (1 - \gamma_5) d + (h \cdot c.) \right]^{q}$$
where $x_i = m_i^2 / m_W^2$ and $I(x) = \frac{3}{4} \left(\frac{x}{x-1} \right)^2 \log x + \frac{x}{4} - \frac{3}{4} \frac{x}{x-1}$. [Inami, Lim 81]

* Essentially no G_F suppression for top, $m_t^2/m_W^2 \sim \mathcal{O}(1)$.

Below QCD scale:

$$V_{is}^* V_{id} \bar{s} \gamma_{\mu} (1 - \gamma_5) d + (h.c.) \rightarrow \sqrt{2} f_K \partial_{\mu} \left(\operatorname{Re}[V_{is}^* V_{id}] K_L + \operatorname{Im}[V_{is}^* V_{id}] K_S \right).$$

$$\mathscr{L}_{\text{eff}} = \frac{\alpha}{2\pi s_W^2} G_F f_K m_e I(x_t) \text{Im}[V_{ts}^* V_{td}] \times K_S \bar{e} i \gamma_5 e + \cdots, \text{ with electron EoM used.}$$

This induces e.g. (short distance contribution to) $K_S \rightarrow \mu^+ \mu^-$. [Isidori, Unterdorfer 03] •

Not observed yet, $Br(K_S \to \mu^+ \mu^-)_{short} \sim 10^{-13}$ vs $Br(K_S \to \mu^+ \mu^-)_{exp} < 2.1 \times 10^{-10}$.

• This contains 27 and 8 but 8 is enhanced below QCD scale: $\Delta I = 1/2$ rule.

$$\mathscr{L}_{\text{eff}} = -a \operatorname{Tr}_{F} \left[\bar{B} \{ \xi^{\dagger} h \xi, B \} \right] - b \operatorname{Tr}_{F} \left[\bar{B} [\xi^{\dagger} h \xi, B] \right],$$

where B : baryon octet, $\xi = \exp(i\pi/f)$ with π : meson octet, $h_{ij} = \delta_i^2 \delta_j^3$: spurion.

• This induces weak hyperon decay $\Sigma \to N\pi$, $\Lambda \to N\pi$, $\Xi \to \Lambda\pi$.

 $a = 0.56G_F[m_{\pi}^2]f_{\pi}, \ b = -1.42G_F[m_{\pi}^2]f_{\pi}, \ \text{from experiments}$ [Bijnens+ 03].

• Focusing on Kaon part:

$$\mathscr{L}_{\text{eff}} = -\frac{\sqrt{2}K_S}{f_{\pi}} \left[(b-a)\bar{p}p + 2b\bar{n}n \right] + \cdots.$$

Nuclear electric field

• Nuclear electric field given by the charge distribution inside nuclei:

$$e\vec{E}_{N}(\vec{r}) = \frac{Ze^{2}}{4\pi} \int d^{3}r_{N}\rho_{q}(\vec{r}_{N})\vec{\nabla}\frac{1}{|\vec{r}-\vec{r_{N}}|}$$

• We simply take the charge distribution as

$$\rho_q(r_N) = \frac{3}{4\pi R_N^3} \Theta \left(R_N - r_N \right), \quad R_N = \sqrt{\frac{5}{3}} r_c, \quad r_c = 5.45 \,\text{fm for }^{199}\text{Hg}.$$

• The Woods-Saxon shape different only within 10% in the final result.

Nuclear magnetic field

• ¹⁹⁹Hg has an unpaired outermost neutron with $2p_{1/2}$ (n = 2, l = 1, j = 1/2).

 \overrightarrow{B}_N dominantly provided by this neutron.

• As a result \overrightarrow{B}_N is given by

$$e\vec{B}_{N}(\vec{r}) = \frac{2e\mu_{n}}{3}\psi_{n}^{\dagger}(\vec{r})\vec{\sigma}\psi_{n}(\vec{r}) + \frac{e\mu_{n}}{4\pi}\left[\vec{\nabla}\left(\vec{\nabla}\cdot\right) - \frac{\vec{\nabla}^{2}}{3}\right]\int d^{3}r_{n}\frac{\psi_{n}^{\dagger}(\vec{r}_{n})\vec{\sigma}\psi_{n}(\vec{r}_{n})}{|\vec{r}_{n} - \vec{r}|}$$
$$= e\mu_{n}\frac{\left|R(r)\right|^{2}}{4\pi}\chi^{\dagger}\left[\left(\vec{n}\cdot\vec{\sigma}\right)\vec{n}-\vec{\sigma}\right]\chi + \frac{e\mu_{n}}{4\pi}\int_{0}^{\infty}dr_{n}r_{n}^{2}\left|R(r_{n})\right|^{2}\chi^{\dagger}\vec{g}(\vec{r},r_{n})\chi,$$

where $\mu_n \simeq -1.91 \frac{e}{2m_p}$: neutron magnetic moment, ψ_n : neutron wave function, R_n : neutron radial wave function, χ neutron spinor, $\vec{n} = \vec{r}/r$.

• We use the nuclear shell model to obtain ψ_n .

Fudge factor from E_N^2 to $\bar{N}N$

- E_N^2 and $\overline{N}N$ are both localized around nuclei, but not exactly the same.
- Relevant electron transition btw $s_{1/2}$ and $p_{1/2}$ states.

matrix element:

$$\begin{cases} \int d^3 r \rho_N \psi_p^{\dagger} \gamma^0 \gamma_5 \psi_s \propto \int dr \, r^2 \bar{\rho}_N \left(f_p g_s + f_s g_p \right) & \text{for } \bar{N} N \bar{e} i \gamma_5 e, \\ \int d^3 r \, |\vec{E}_N|^2 \psi_p^{\dagger} \gamma^0 \gamma_5 \psi_s \propto \int dr \, r^2 \bar{\rho}_{E^2} \left(f_p g_s + f_s g_p \right) & \text{for } E_N^2 \bar{e} i \gamma_5 e. \end{cases}$$

• We compute the fudge factor κ by solving the Dirac equation and get

$$\kappa = \frac{\int dr \, r^2 \bar{\rho}_{E^2} \left(f_p g_s + f_s g_p \right)}{\int dr \, r^2 \bar{\rho}_N \left(f_p g_s + f_s g_p \right)} \simeq 0.66.$$

Schiff moment

• Schiff moment: $\mathscr{H}_{int} = -4\pi\alpha(\vec{S}/e)\cdot\vec{\nabla}_e\delta^{(3)}(\vec{r}_e)$.

$$\overrightarrow{d}_A = \sum_{i=1}^Z \langle \Psi \,|\, e\vec{r}_i \,|\, \Psi \rangle = -\sum_{n \neq 0} \frac{2}{E_0 - E_n} \sum_{i=1}^Z \langle 0_e |e\vec{r}_i |n_e \rangle \langle n_e |4\pi\alpha(\overrightarrow{S}/e) \cdot \overrightarrow{\nabla}_i \delta^{(3)}(\vec{r}_i) |0_e \rangle \,.$$

• $E^{3}B$ with two E_{N} and one B_{N} induces effective EDM distribution:

$$e \xrightarrow{e} e = \int d^3r \left(\overrightarrow{\nabla}_e \frac{\alpha}{|\vec{r} - \vec{r}_e|} \right) \cdot \frac{\overrightarrow{d}_N(\vec{r})}{e}, \quad \overrightarrow{d}_N \propto d_\mu \left(2\overrightarrow{E}_N(\overrightarrow{E}_N \cdot \overrightarrow{B}_N) + \overrightarrow{B}_N E_N^2 \right).$$

• Difference between EDM and charge distribution gives Schiff moment:

$$\mathcal{H}_{\rm eff} = \int d^3 r \left(\frac{\overrightarrow{d_N}}{e} - \rho_q \frac{\langle \overrightarrow{d_N} \rangle}{e} \right) \cdot \overrightarrow{\nabla}_e \frac{\alpha}{|\overrightarrow{r} - \overrightarrow{r_e}|} = -4\pi \alpha \frac{\overrightarrow{S}}{e} \cdot \overrightarrow{\nabla}_e \delta^{(3)}(\overrightarrow{r_e}) + \cdots.$$

• ¹⁹⁹Hg constraint: $|S_{199Hg}| < 3.1 \times 10^{-13} \, e \mathrm{fm}^3$. [Graner et.a. 16]

$$|d_{\mu}(\text{Hg})| < 6.4 \times 10^{-20} \, e\text{cm}$$

[YE, Gao, Pospelov 21]

Magnetic quadrupole moment

• Magnetic quadrupole moment (MQM) also violates P and CP:

$$\mathcal{H}_{\text{eff}} = -\frac{M}{6} \nabla_j B_i I_{ij}, \quad I_{ij} \equiv \frac{3}{2I(I-1)} \left(I_i I_j + I_j I_i - \frac{2}{3} \delta_{ij} I(I+1) \right).$$

• The E^3B operator converts EQM Q to MQM as

$$\frac{M}{e} \simeq -\frac{Z^2 \alpha^3 d_{\mu}/e}{5\pi m_{\mu}^2 R_N^3} \frac{Q}{e} \simeq 1.1 \times 10^{-4} \,\mathrm{fm} \left(\frac{Q/e}{300 \,\mathrm{fm}^2}\right) \times d_{\mu}/e \,.$$

• Q can be large in nuclei with $I \ge 1$ and large deformation.

can be an interesting observable in future.

Heavy quark EDMs

• The same technique can be used to constrain charm/bottom quark EDMs.

• These CP-odd operators source $C_{\rm S}$ and neutron EDM.

$$\begin{cases} |d_c| < 1.3 \times 10^{-20} e \text{ cm} |d_b| < 7.6 \times 10^{-19} e \text{ cm} \text{ from } C_S, \\ |d_c| < 6 \times 10^{-22} e \text{ cm}, |d_b| < 2 \times 10^{-20} e \text{ cm} \text{ from } d_n. \end{cases}$$
 [YE, Gao, Pospelov 22]

• Constraints from d_n stronger but with more hadronic uncertainties.

* Top quark EDM has a larger contribution through other diagrams with intermediate Higgs. [Cirigliano+ 16]