

in collaboration with S.T. Petcov, P.P. Novichkov JHEP 04 (2021) 206 [2102.07488] JHEP 03 (2022) 149 [2201.02020]

João Penedo (CFTP, Lisbon)

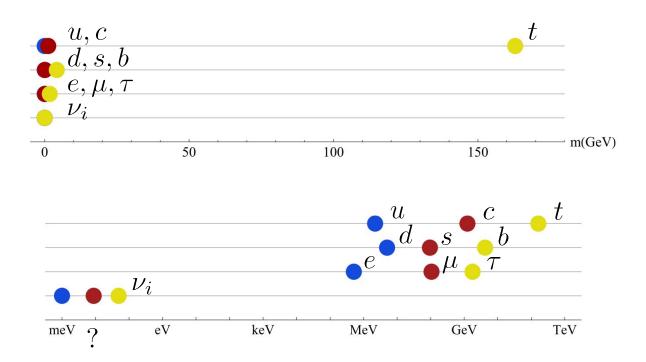
DISCRETE 2022, Baden²

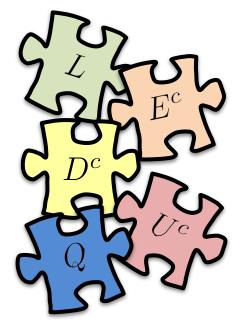
8 November 2022

Outline

- Why modular symmetries?
- How do modular symmetries work?
- Fermion mass hierarchies from mod. sym.
- Modulus stabilisation

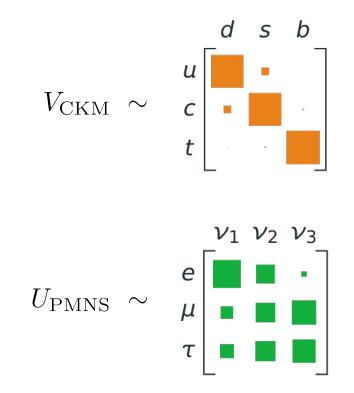
The flavour puzzle

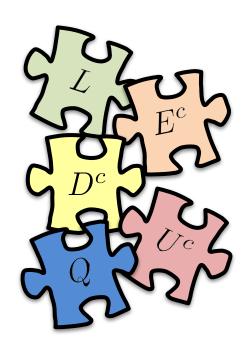




adapted from R. Toorop's PhD thesis

The flavour puzzle

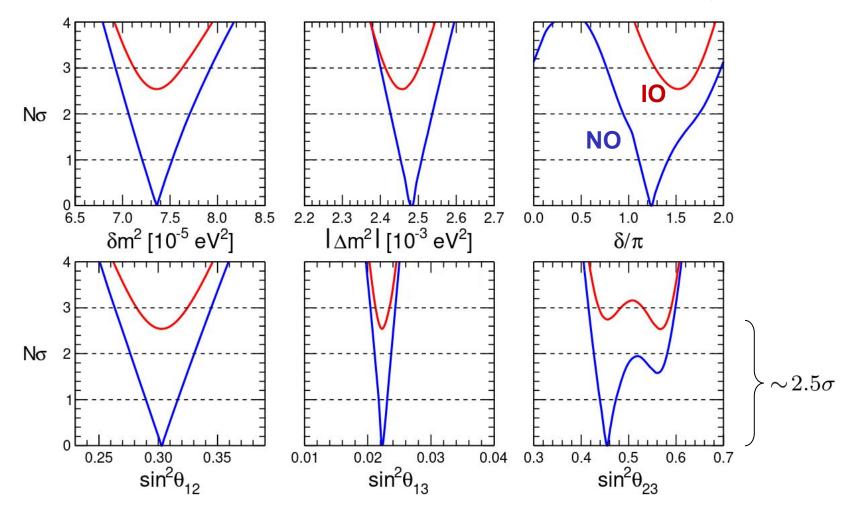




adapted from P. Novichkov's slides at PASCOS 2021

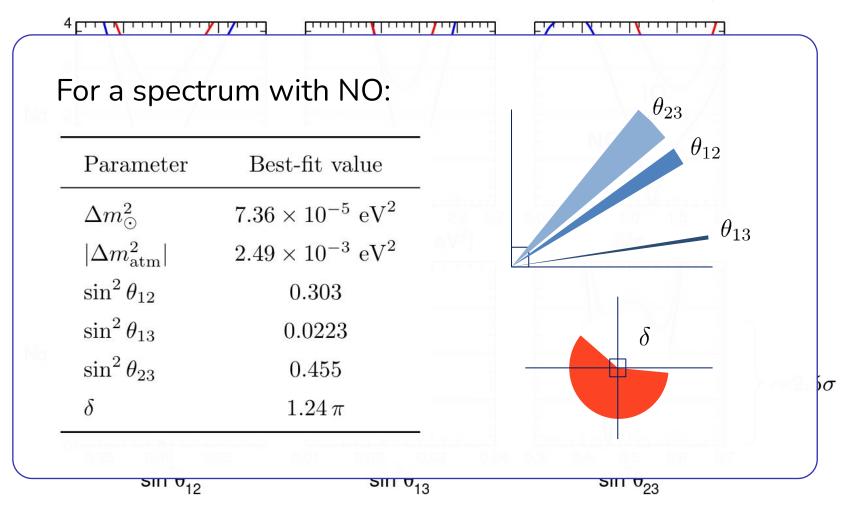
3v flavour paradigm

from Capozzi et al. 2107.00532, see also València 2006.11237, NuFIT 2007.14792

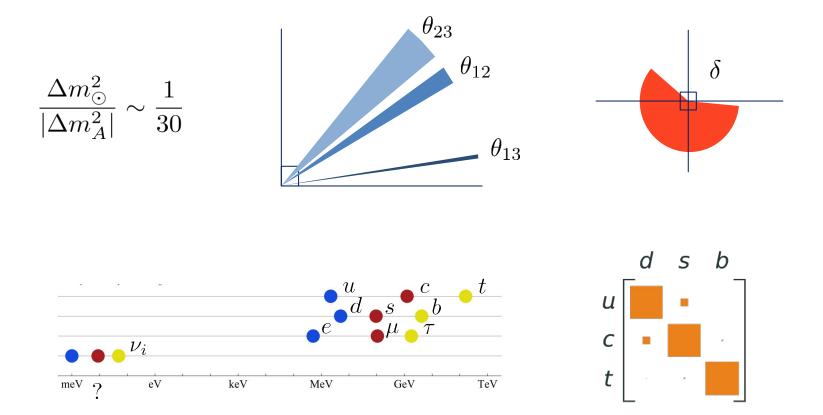


3v flavour paradigm

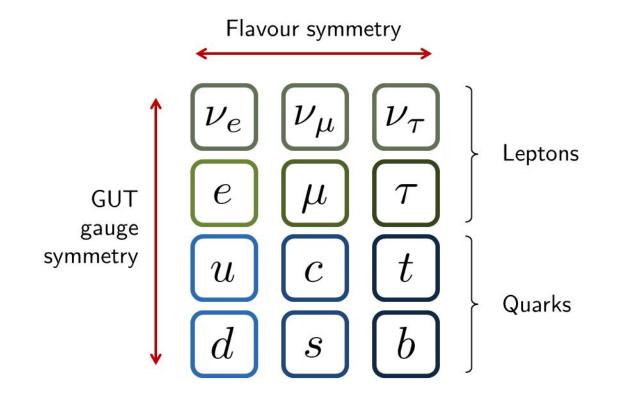
from Capozzi et al. 2107.00532, see also València 2006.11237, NuFIT 2007.14792



Is there an organizing principle behind this?



Flavour symmetries



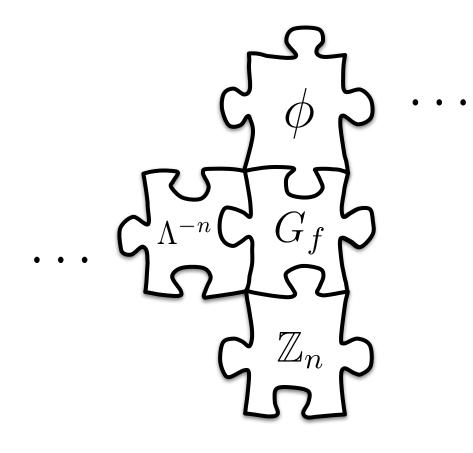
For reviews, see: Altarelli and Feruglio (2010), Ishimori et al. (2010), King and Luhn (2013), Petcov (2017), Feruglio and Romanino (2019)

Problems with the usual approach

Non-Abelian discrete flavour symmetries

model-independent approaches relying on residual symmetries constrain mixing and the Dirac phase

Problems with the usual approach

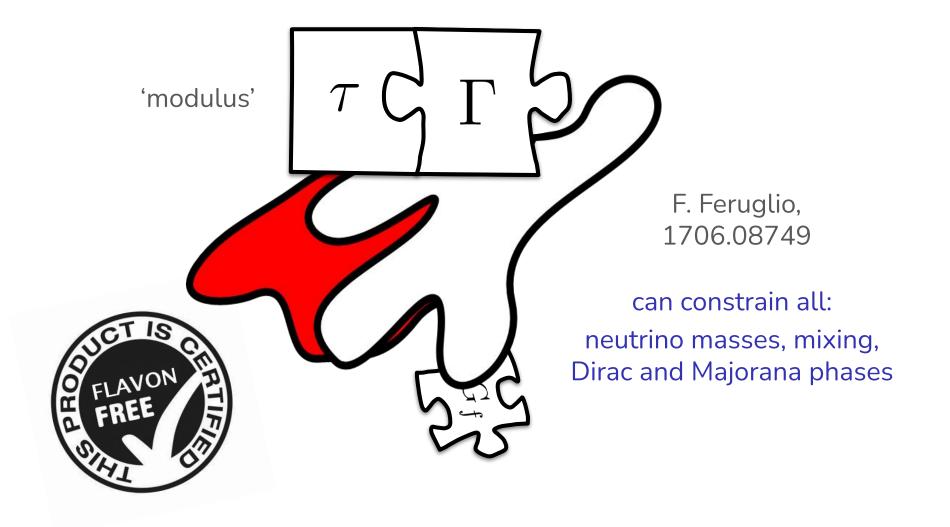


Modular symmetry to the rescue!

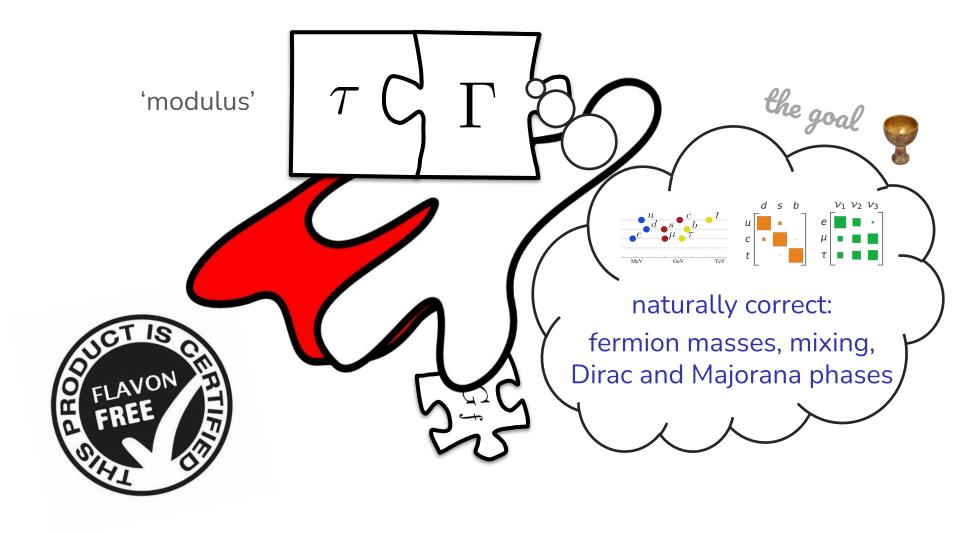
F. Feruglio, 1706.08749 can constrain all: neutrino masses, mixing, Dirac and Majorana phases **SUSY** (holomorphicity) required for predictivity

see also 2010.07952

Modular symmetry to the rescue!



Modular symmetry to the rescue!



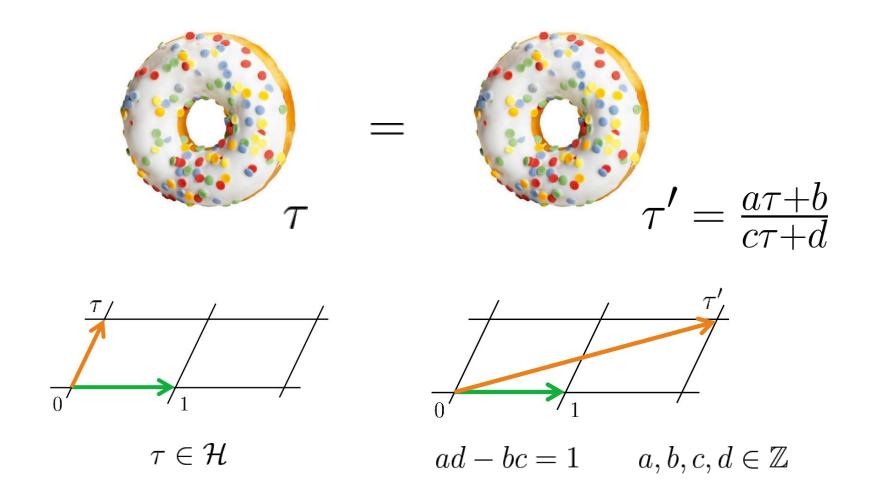
How?

The modulus

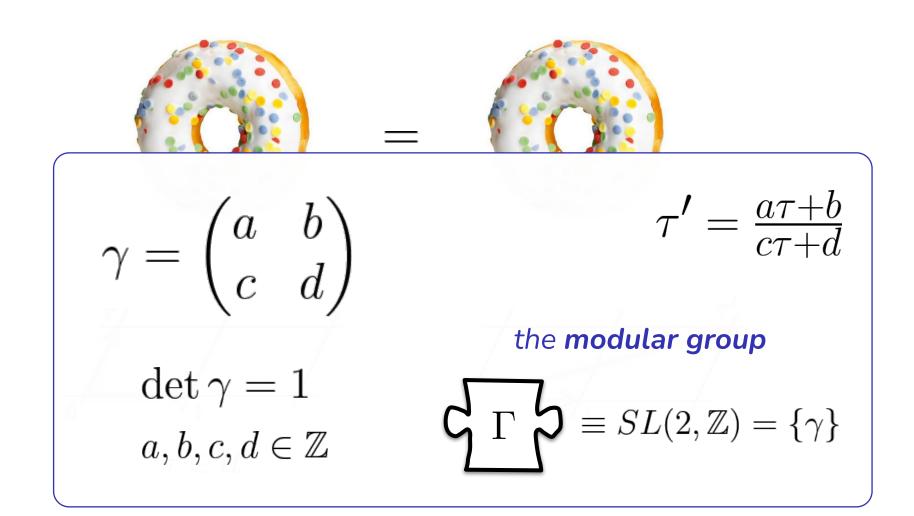
r may describe a torus compactification

In the **bottom-up** modular approach τ is a dimensionless **spurion**

The modulus



The modulus



The modular group

$$\tau \rightarrow \frac{a\tau + b}{c\tau + d}$$

$$\mathbf{\mathcal{L}} \mathbf{\mathcal{L}} = SL(2, \mathbb{Z}) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, \, \det \gamma = 1 \right\}$$

Presentation in terms of generators S, T, R:

$$S^2 = R, \quad (ST)^3 = R^2 = \mathbb{1}, \quad RT = TR$$

The modular group

$$\tau \rightarrow \frac{a\tau + b}{c\tau + d}$$

$$\mathbf{\mathcal{L}} \mathbf{\mathcal{L}} = SL(2, \mathbb{Z}) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, \, \det \gamma = 1 \right\}$$

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix};$$

$$\tau \to -1/\tau$$

inverSion
$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix};$$

$$\tau \to \tau + 1$$

Translation
$$R = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix};$$

$$\tau \to \tau$$

Redundant

but can affect fields...

The modular group

$$\langle \tau \rangle \not\rightarrow \frac{a\tau + b}{c\tau + d}$$

$$\sum SL(2,\mathbb{Z}) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, \det \gamma = 1 \right\}$$

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} :$$

$$\tau \to -1/\tau$$

inverSion

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} :$$

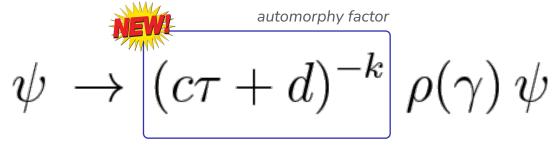
 $\tau \to \tau + 1$

Translation

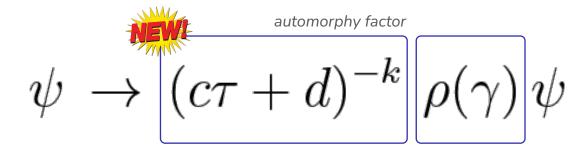
 $R = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} :$ $\tau \to \tau$ Redundant

but can affect fields...

 $\psi \to (c\tau + d)^{-k} \rho(\gamma) \psi$



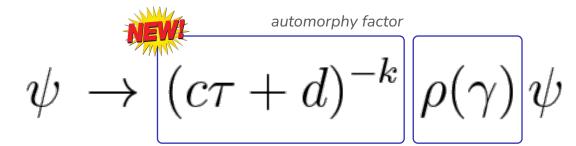
Weight $k\in\mathbb{Z}$



Weight $k\in\mathbb{Z}$

"Almost trivial" representation of the modular group

$$\begin{split} \rho\Big(\Gamma(N)\Big) &= \mathbb{1} \\ \rho\Big(T\,\Gamma(N)\Big) &= \rho(T) \\ \rho\Big(S\,\Gamma(N)\Big) &= \rho(S) \\ \cdots \\ & \text{Feruglio, 1706.08749} \end{split}$$



Weight $k\in\mathbb{Z}$

"Almost trivial" representation of the modular group

$$\Gamma(N) \subset \mathbf{G} \Gamma \mathbf{b}$$

Principal congruence subgroup of level N

$$\Gamma(N) \equiv \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$$

$$\rho(\Gamma(N)) = \mathbb{1}$$
$$\rho(T\Gamma(N)) = \rho(T)$$
$$\rho(S\Gamma(N)) = \rho(S)$$

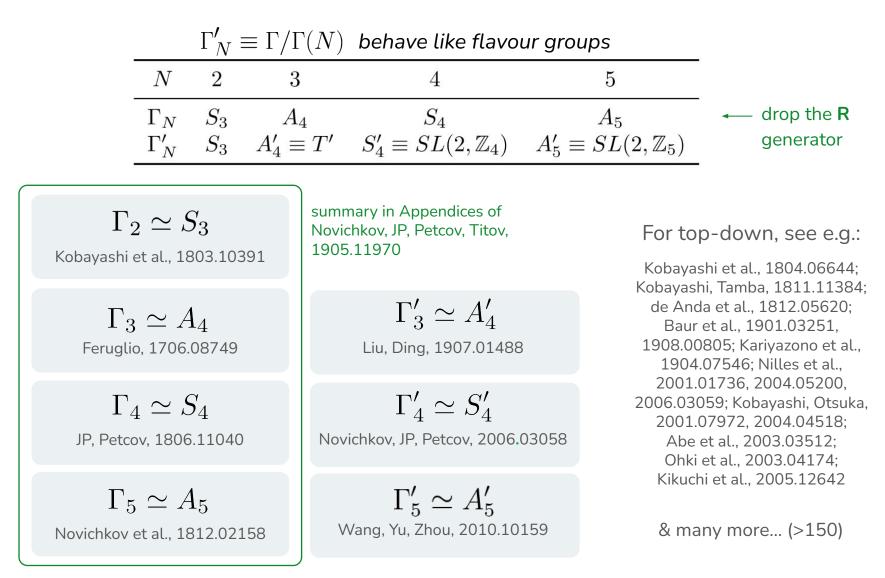
Feruglio, 1706.08749

 $\mathcal{O}(\gamma)$ is effectively a representation of $\ \Gamma'_N \equiv \Gamma/\Gamma(N)$

The finite modular groups

-	Γ'_N :	$\equiv \Gamma/\Gamma(N)$	behave like flavo		
N	2	3	4	5	
Γ_N	S_3	A_4	S_4	A_5	- drop the R
Γ'_N	S_3	$A_4' \equiv T'$	$S'_4 \equiv SL(2,\mathbb{Z}_4)$	$A_5' \equiv SL(2,\mathbb{Z}_5)$	generator

The finite modular groups



 $\psi \sim (\mathbf{r}, k)$

 $W \sim g(\psi_1 \dots \psi_n)_1$

 $\psi \rightarrow (c\tau + d)^{-k} \rho_{\mathbf{r}}(\gamma) \psi$

 $\psi \sim (\mathbf{r}, k)$

 $W \sim g(Y(\tau) \psi_1 \dots \psi_n)_1$

 $\psi \rightarrow (c\tau + d)^{-k} \rho_{\mathbf{r}}(\gamma) \psi$

 $\psi \sim (\mathbf{r}, k)$

Modular Kormsi

 $W \sim g(Y(\tau) \psi_1 \dots \psi_n)_1$

 $\psi \to (c\tau + d)^{-k} \rho_{\mathbf{r}}(\gamma) \psi$ $Y(\tau) \to (c\tau + d)^{k_Y} \rho_Y(\gamma) Y(\tau)$

 $\psi \sim (\mathbf{r}, k)$

 $W \sim g(Y(\tau) \psi_1 \dots \psi_n)_1$

$$\psi \rightarrow \underbrace{(c\tau + d)^{-k} \rho_{\mathbf{r}}(\gamma)}_{Y(\tau)} \psi$$

$$Y(\tau) \rightarrow \underbrace{(c\tau + d)^{k_{Y}} \rho_{Y}(\gamma)}_{\{k_{Y} = k_{1} + \ldots + k_{n} \atop \rho_{Y} \otimes \rho_{1} \otimes \ldots \otimes \rho_{n} \supset \mathbf{1}}}_{\{k_{Y} = k_{1} + \ldots + k_{n} \atop \rho_{Y} \otimes \rho_{1} \otimes \ldots \otimes \rho_{n} \supset \mathbf{1}}$$

 $\psi \sim (\mathbf{r}, k)$

 $W \sim q(Y(\tau) \psi_1 \dots \psi_n)_1$

 $\psi \to (c\tau + d)^{-k} \rho_{\mathbf{r}}(\gamma) \psi$ $Y(\tau) \to (c\tau + d)^{k_Y} \rho_Y(\gamma) Y(\tau)$ Modular Forms! $= Y\left(\frac{a\tau+b}{c\tau+d}\right)$

N	N 2		3 4		5		Not so many available.	
$egin{array}{ccc} \Gamma_N & S_3 \ \Gamma_N' & S_3 \end{array}$		$\begin{array}{c} A_4\\ A_4'\equiv T' \end{array}$	$S_4' \equiv \overset{S_4}{SL(2,\overline{z})}$		$\begin{array}{c} A_5\\ A_5'\equiv SL(2,\mathbb{Z}_5) \end{array}$		A finite set of	
$\dim \mathcal{M}_k(\Gamma(N))$	k/2 + 1	k+1	2k + 1	5k +	1	functions for eac		K Y
Lowest-weight <i>k</i> modular forms for each group:			$\Gamma_N^{(\prime)}$	$Y^{(k)}_{\mathbf{r}}$	Γ_2	$\simeq S_3$	$Y^{(2)}_{2}$	
		Γ	$\Gamma_3' \simeq A_4'$	$Y^{(1)}_{oldsymbol{\hat{2}}}$	Γ_3	$\simeq A_4$	$Y^{(2)}_{3}$	
		Ι	$\Gamma_4' \simeq S_4'$	$Y^{(1)}_{{f 3}}$	Γ_4	$\simeq S_4$	$Y^{(2)}_{\bf 2}, Y^{(2)}_{\bf 3'}$	
			$G_5' \simeq A_5'$	$Y^{(1)}_{\mathbf{\hat{6}}}$	Γ_5	$\simeq A_5$	$\begin{array}{c} Y^{(2)}_{{\bf 3}},Y^{(2)}_{{\bf 3'}},\\ Y^{(2)}_{{\bf 5}} \end{array}$	

The modular forms

 $W \supset NN$

Let's build a modular-invariant term!

 $W \supset NN$

Let's build a modular-invariant term!

$$\Gamma_3 \simeq A_4$$

 $N \sim (\mathbf{3}, 1)$

Let's build a modular-invariant term!

 $W \supset NN$

Let's build a modular-invariant term!

 $W \supset NN$

$$M_N = \Lambda \begin{pmatrix} 2Y_1(\tau) & -Y_3(\tau) & -Y_2(\tau) \\ -Y_3(\tau) & 2Y_2(\tau) & -Y_1(\tau) \\ -Y_2(\tau) & -Y_1(\tau) & 2Y_3(\tau) \end{pmatrix}$$

so now we can build models...

Novichkov, JP, Petcov, Titov, 1811.04933

Ingredients: Choose group, field content

 $\psi \sim (\mathbf{r}, k)$

Novichkov, JP, Petcov, Titov, 1811.04933

 $N^{c} \sim (\mathbf{3'}, 0), \quad L \sim (\mathbf{3}, 2)$ $E^{c} \sim (\mathbf{1'}, 0) \oplus (\mathbf{1}, 2) \oplus (\mathbf{1'}, 2)$

Ingredients: Choose group, field content

 $\psi \sim (\mathbf{r}, k)$

$$W = \alpha \left(E_{1}^{c} L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_{d} + \beta \left(E_{2}^{c} L Y_{\mathbf{3}}^{(4)} \right)_{\mathbf{1}} H_{d} + \gamma \left(E_{3}^{c} L Y_{\mathbf{3}'}^{(4)} \right)_{\mathbf{1}} H_{d} + g \left(N^{c} L Y_{\mathbf{2}}^{(2)} \right)_{\mathbf{1}} H_{u} + g' \left(N^{c} L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_{u} + \Lambda \left(N^{c} N^{c} \right)_{\mathbf{1}} ,$$

<u>Procedure</u>: Fit couplings and *T*

 $\min \chi^2(\tau, \, g'/g, \, g^2/\Lambda, \, \alpha, \beta, \gamma)$

Novichkov, JP, Petcov, Titov, 1811.04933

 $N^{c} \sim (\mathbf{3'}, 0), \quad L \sim (\mathbf{3}, 2)$ $E^{c} \sim (\mathbf{1'}, 0) \oplus (\mathbf{1}, 2) \oplus (\mathbf{1'}, 2)$

Ingredients: Choose group, field content

 $\psi \sim (\mathbf{r}, k)$

$$\begin{split} W &= \alpha \left(E_1^c L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_d + \beta \left(E_2^c L Y_{\mathbf{3}}^{(4)} \right)_{\mathbf{1}} H_d + \gamma \left(E_3^c L Y_{\mathbf{3}'}^{(4)} \right)_{\mathbf{1}} H_d \\ &+ g \left(N^c L Y_{\mathbf{2}}^{(2)} \right)_{\mathbf{1}} H_u + g \left(N^c L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_u + \Lambda \left(N^c N^c \right)_{\mathbf{1}} , \\ &\in \mathbb{C} \quad \text{only physical phase} \end{split}$$

<u>Procedure</u>: Fit couplings and *t*

 $\min\chi^2(\tau,\,g'/g,\,g^2/\Lambda,\,\alpha,\beta,\gamma)$

Novichkov, JP, Petcov, Titov, 1811.04933

 $N^{c} \sim (\mathbf{3'}, 0), \quad L \sim (\mathbf{3}, 2)$ $E^{c} \sim (\mathbf{1'}, 0) \oplus (\mathbf{1}, 2) \oplus (\mathbf{1'}, 2)$

Ingredients: Choose group, field content

 $\psi \sim (\mathbf{r}, k)$

$$W = \alpha \left(E_{1}^{c} L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_{d} + \beta \left(E_{2}^{c} L Y_{\mathbf{3}}^{(4)} \right)_{\mathbf{1}} H_{d} + \gamma \left(E_{3}^{c} L Y_{\mathbf{3}'}^{(4)} \right)_{\mathbf{1}} H_{d} + g \left(N^{c} L Y_{\mathbf{2}}^{(2)} \right)_{\mathbf{1}} H_{u} + g' \left(N^{c} L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_{u} + \Lambda \left(N^{c} N^{c} \right)_{\mathbf{1}} ,$$

<u>Procedure</u>: Fit couplings and *t*

 $\min \chi^2(\tau, g'/g, g^2/\Lambda, \alpha, \beta, \gamma)$

$$gCP \Rightarrow g' \in \mathbb{R}$$

Novichkov, JP, Petcov, Titov, 1905.11970

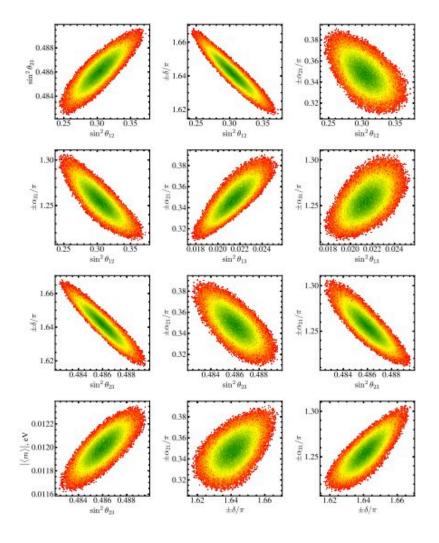
 τ can be the only source of CPV

Example: an S4 lepton model (results)

Novichkov, JP, Petcov, Titov, 1811.04933

 $\sin^2 \theta_{23} \sim 0.49$ $\delta \sim 1.6\pi$ $\alpha_{21} \sim 0.3\pi$ $\alpha_{31} \sim 1.3\pi$ $|\langle m \rangle|_{\beta\beta} \sim 12 \text{ meV}$ $\sum_i m_i \sim 0.08 \text{ eV}$

7 (4) parameters vs. 12 (9) observables



Summary (1/3)

Summary (1/3)

- Modular symmetry may strongly constrain masses and mixing.
- Fields carrying a non-trivial modular weight transform with a scale factor in addition to the usual unitary rotation.
- To build invariants one needs modular forms, which are functions of a **single complex parameter** *T*.

Fermion mass hierarchies from residual modular symmetries

JHEP 04 (2021) 206 [2102.07488]

Mass hierarchies from modular symmetry?

Much adoe about Mixing.

As it hath been sundrie times publikely acted by the right honourable, the Lord Chamberlaine his feruants.

Written by William Shakespeare.

Mass hierarchies from modular symmetry?

• Usually fermion mass hierarchies are put in **by hand**: hierarchies (or cancellations) between superpotential parameters

e.g. in the previous model, ~ $\gamma \ll \alpha \ll \beta$

Mass hierarchies from modular symmetry?

• Usually fermion mass hierarchies are put in **by hand**: hierarchies (or cancellations) between superpotential parameters

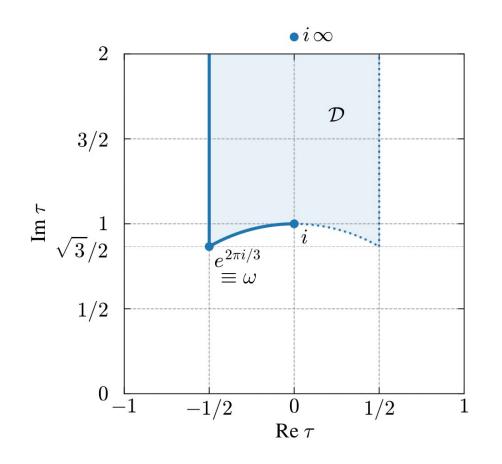
e.g. in the previous model, $\gamma \ll \alpha \ll \beta$

• Other approaches - new (weighted) scalars which enter the mass matrices a la Froggatt-Nielsen. Weights are analogous to FN charges Criado, Feruglio, King, 1908.11867

King, King, 1908.11867 King, King, 2002.00969

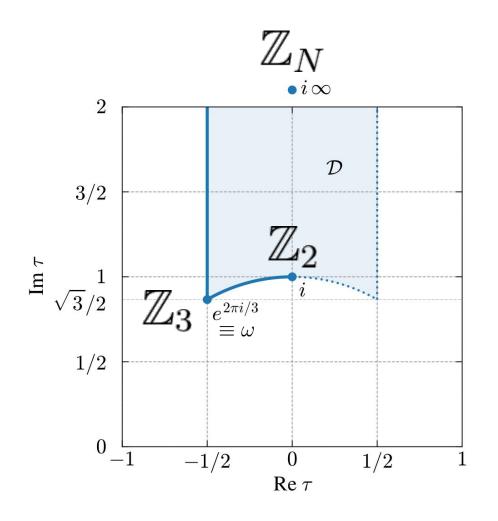
• **Our approach** - No new scalars, mechanism uses **only** *t*, common weights across generations (unlike FN charges)

Residual modular symmetries



- The **fundamental domain** is enough
- Any *t* breaks the modular symmetry

Residual modular symmetries



- The **fundamental domain** is enough
- Any **r** breaks the modular symmetry
- At special values of *t*, some residual symmetry remains

Key idea:

some couplings vanish as we approach a symmetric point

Corrections to vanishing couplings

$$\tau = \tau_{\rm sym} \\ M \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \psi^c M \psi$$

Key idea:

some couplings vanish as we approach a symmetric point

Corrections to vanishing couplings

$$\tau = \tau_{\text{sym}} \qquad \epsilon \sim |\tau - \tau_{\text{sym}}| > 0$$

$$M \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow M \sim \begin{pmatrix} 1 & \epsilon^{\cdots} & \epsilon^{\cdots} \\ \epsilon^{\cdots} & \epsilon^{\cdots} & \epsilon^{\cdots} \\ \epsilon^{\cdots} & \epsilon^{\cdots} & \epsilon^{\cdots} \end{pmatrix}$$

$$\psi^{c} M \psi$$

In the vicinity of the sym. point, the couplings are

$$\mathcal{O}(\epsilon^l)$$

Key idea:

some couplings vanish as we approach a symmetric point

Decompositions under residual groups (determine $\mathcal{O}(\epsilon^l)$)

$ au_{ m sym}$	Residual sym.	Possible powers ϵ^l
i	\mathbb{Z}_2	l = 0, 1
ω	\mathbb{Z}_3	l=0,1,2
$i\infty$	\mathbb{Z}_N	$l=0,1,\ldots,N$

Decompositions under residual groups (determine $\mathcal{O}(\epsilon^l)$)

$ au_{ m sym}$	Residual sym.	Possible powers ϵ^l	-
i	\mathbb{Z}_2	l = 0, 1	- Feruglio, Gherardi,
ω	\mathbb{Z}_3	l = 0, 1, 2	Romanino, Titov, 2101.08718
$i\infty$	\mathbb{Z}_N	$l=0,1,\ldots,N$	(for A4, me=0)

 $\psi^{c} M \psi$

$$\begin{split} \psi &\xrightarrow{\gamma} (c\tau + d)^{-k} \rho(\gamma) \psi \\ \psi^c &\xrightarrow{\gamma} (c\tau + d)^{-k^c} \rho^c(\gamma) \psi^c \\ M(\tau) &\xrightarrow{\gamma} M(\gamma\tau) = (c\tau + d)^K \rho^c(\gamma)^* M(\tau) \rho(\gamma)^\dagger \end{split}$$

 $\psi \rightsquigarrow \mathbf{1}_{...} \oplus \mathbf{1}_{...} \oplus \mathbf{1}_{...}$ $\psi^c \rightsquigarrow \mathbf{1}_{\dots} \oplus \mathbf{1}_{\dots} \oplus \mathbf{1}_{\dots}$

In general, depend on weights **Determined for all** $N \leq 5$

Example: hierarchical mass matrix (A5)

$$\begin{array}{l} \psi \sim (\mathbf{3}, k) \\ \psi^c \sim (\mathbf{3}', k^c) \end{array} \Rightarrow$$

Under the residual group of

 $\tau_{\text{sym}} = i\infty$ $\psi \rightsquigarrow 1_0 \oplus \mathbf{1}_1 \oplus \mathbf{1}_4$ $\psi^c \rightsquigarrow 1_0 \oplus \mathbf{1}_2 \oplus \mathbf{1}_3$

Example: hierarchical mass matrix (A5)

$$\begin{array}{c} \psi \sim (\mathbf{3}, k) \\ \psi^c \sim (\mathbf{3}', k^c) \end{array} \Rightarrow$$

Under the residual group of

$$\tau_{\text{sym}} = i\infty$$

$$\psi \rightsquigarrow 1_0 \oplus \mathbf{1}_1 \oplus \mathbf{1}_4$$

$$\psi^c \rightsquigarrow 1_0 \oplus \mathbf{1}_2 \oplus \mathbf{1}_3$$

For $\psi^c \, M \, \psi$, we expect:

$$M \sim \begin{pmatrix} 1 & \epsilon^4 & \epsilon \\ \epsilon^3 & \epsilon^2 & \epsilon^4 \\ \epsilon^2 & \epsilon & \epsilon^3 \end{pmatrix}$$

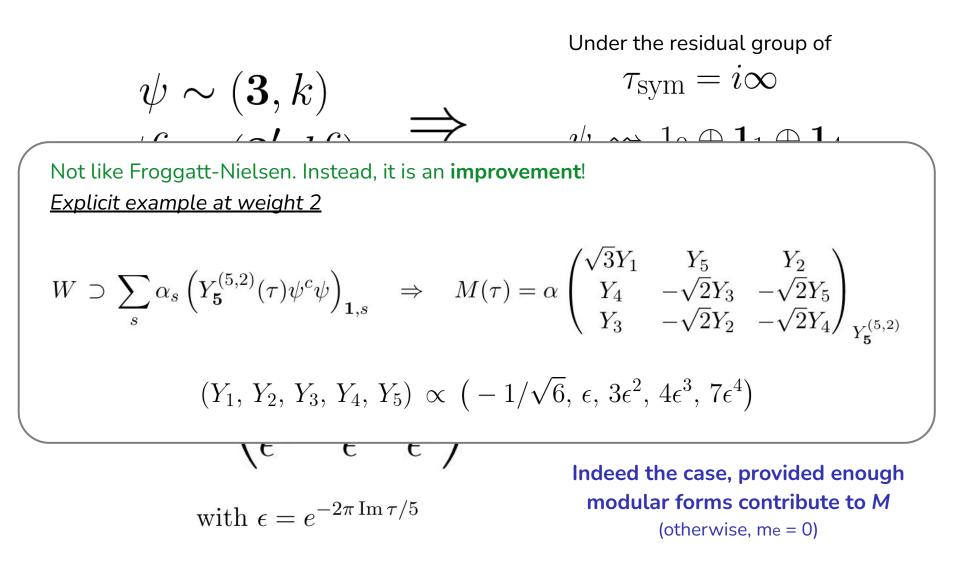
with $\epsilon = e^{-2\pi \operatorname{Im} \tau/5}$

fermion spectrum

 $\sim (1, \epsilon, \epsilon^4)$

Indeed the case, provided enough modular forms contribute to *M* (otherwise, me = 0)

Example: hierarchical mass matrix (A5)



Scan of possible mass patterns

Performed for 3 generations, for all $N \leq 5$

e.g. fermion spectra for multiplets of modular A5

-	\mathbf{r}^{c}		- origa		
r		$k+k^c\equiv 0$	$k+k^c\equiv 1$	$k+k^c\equiv 2$	$\tau \simeq i\infty$
3	3	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)
3	3 '	(1,1,1)	(1,1,1)	(1,1,1)	$(1,\epsilon,\epsilon^4)$
3 '	3 '	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)
3	$1\oplus1\oplus1$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^4)$
3 '	$1\oplus1\oplus1$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon^2,\epsilon^3)$
$1 \oplus 1 \oplus 1$	$1\oplus1\oplus1$	(1, 1, 1)	$(\epsilon^2,\epsilon^2,\epsilon^2)$	$(\epsilon,\epsilon,\epsilon)$	(1, 1, 1)

Promising hierarchical patterns

N	Γ_N'	Pattern	Sym. point	Viable $\mathbf{r} \otimes \mathbf{r}^c$
2	S_3	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$	
3	A_4'	$(1,\epsilon,\epsilon^2)$	$ au \simeq \omega$ $ au \simeq i\infty$	
4	S_4'	$egin{aligned} (1,\epsilon,\epsilon^2) \ (1,\epsilon,\epsilon^3) \end{aligned}$	$ au \simeq \omega$ $ au \simeq i\infty$	
5	A_5'	$(1,\epsilon,\epsilon^4)$	$\tau\simeq i\infty$	

Promising hierarchical patterns

N	Γ_N'	Pattern	Sym. point	Viable $\mathbf{r} \otimes \mathbf{r}^c$
2	S_3	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$	$[2\oplus1^{(\prime)}]\otimes[1\oplus1^{(\prime)}\oplus1^{\prime}]$
3	A_4'	$(1,\epsilon,\epsilon^2)$	$ au \simeq \omega$ $ au \simeq i\infty$	$egin{aligned} & [1_a \oplus 1_a'] \otimes [1_b \oplus 1_b \oplus 1_b''] \ & [1_a \oplus 1_a \oplus 1_a'] \otimes [1_b \oplus 1_b \oplus 1_b''] ext{ with } 1_a eq (1_b)^* \end{aligned}$
4	S'_4	$egin{aligned} (1,\epsilon,\epsilon^2) \ (1,\epsilon,\epsilon^3) \end{aligned}$	$ au \simeq \omega$ $ au \simeq i\infty$	$egin{aligned} &[3_a, \mathrm{or} \; 2 \oplus 1^{(\prime)}, \mathrm{or} \; \mathbf{\hat{2}} \oplus \mathbf{\hat{1}}^{(\prime)}] \otimes [1_b \oplus 1_b \oplus 1_b'] \ &3 \otimes [2 \oplus 1, \mathrm{or} \; 1 \oplus 1 \oplus 1'], 3' \otimes [2 \oplus 1', \mathrm{or} \; 1 \oplus 1' \oplus 1'], \ &\mathbf{\hat{3}}' \otimes [\mathbf{\hat{2}} \oplus \mathbf{\hat{1}}, \mathrm{or} \; \mathbf{\hat{1}} \oplus \mathbf{\hat{1}} \oplus \mathbf{\hat{1}}'], \mathbf{\hat{3}} \otimes [\mathbf{\hat{2}} \oplus \mathbf{\hat{1}}', \mathrm{or} \; \mathbf{\hat{1}} \oplus \mathbf{\hat{1}}' \oplus \mathbf{\hat{1}}'] \end{aligned}$
5	A_5'	$(1,\epsilon,\epsilon^4)$	$\tau\simeq i\infty$	$3\otimes3'$

Promising hierarchical patterns (try leptons)

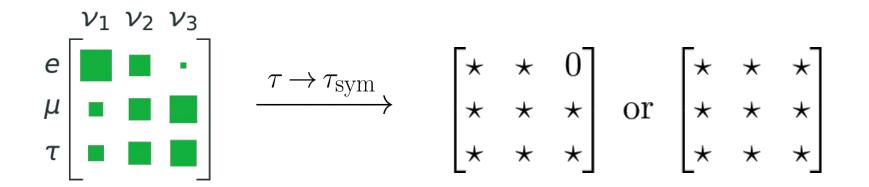
N	Γ'_N	Pattern	Sym. point	Viable $\mathbf{r} \otimes \mathbf{r}^c$
2	S_3	$\left(1,\epsilon,\epsilon^2\right)$	$\tau\simeq\omega$	
3	A_4'	$(1,\epsilon,\epsilon^2)$	$ au \simeq \omega$ $ au \simeq i\infty$	
4	S'_4	$(1,\epsilon,\epsilon^2)$ $(1,\epsilon,\epsilon^3)$	$ au \simeq \omega$ $ au \simeq i\infty$	$\begin{array}{c} L\sim(\mathbf{\hat{2}\oplus\hat{1}},2),\ E^c\sim(\mathbf{\hat{3}}',2),\ N^c\sim(3,1)\\ \mathbf{\hat{3}}'\otimes(\mathbf{\hat{2}\oplus\hat{1}}) \end{array} \end{array}$ 8 parameters
5	A_5'	$(1,\epsilon,\epsilon^4)$	$\tau\simeq i\infty$	$3\otimes3'$
Mas	ses ar	e OK :)		L ~ (3,3), $E^c \sim (3',1), \ N^c \sim ({\bf \hat{2}},2)$ 8 parameters

Promising hierarchical patterns (try leptons)

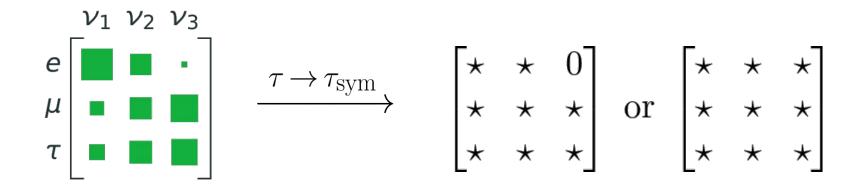
N	Γ_N'	Pattern	Sym. point	Viable $\mathbf{r} \otimes \mathbf{r}^c$				
2	S_3	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$					
3	A'_4	$(1,\epsilon,\epsilon^2)$	$ au \simeq \omega$ $ au \simeq i\infty$					
4	S'_4	$egin{aligned} (1,\epsilon,\epsilon^2) \ (1,\epsilon,\epsilon^3) \end{aligned}$	$ au \simeq \omega$ $ au \simeq i\infty$	$\begin{array}{c} L\sim(\mathbf{\hat{2}\oplus\hat{1}},2),\ E^c\sim(\mathbf{\hat{3}}',2),\ N^c\sim(3,1)\\ \mathbf{\hat{3}}'\otimes(\mathbf{\hat{2}\oplus\hat{1}}) \end{array} \end{array} \\ \textbf{8 parameters} \end{array}$				
5	A_5'	$(1,\epsilon,\epsilon^4)$	$\tau\simeq i\infty$	$3\otimes\mathbf{3'}$				
	Masses are OK, but mixing is tuned :(Wrong PMNS in the symmetric limit: $L \sim (3,3), E^c \sim (3',1), N^c \sim (\hat{2},2)$ 8 parameters							

parameters are driven into cancellations

How to avoid fine-tuning (in the lepton sector)



How to avoid fine-tuning (in the lepton sector)



Reyimuaji, Romanino, 1801.10530

1.
$$\begin{cases} L \sim 1 \oplus 1 \oplus 1 \\ E^c \sim 1 \oplus \mathbf{r} \not\supseteq 1 \end{cases}$$
2.
$$\begin{cases} L \sim \mathbf{1} \oplus \mathbf{1} \oplus \overline{\mathbf{1}} \\ E^c \sim \overline{\mathbf{1}} \oplus \mathbf{r} \not\supseteq \mathbf{1}, \overline{\mathbf{1}} \end{cases}$$
3.
$$m_e = m_\mu = m_\tau = 0$$
4.
$$m_{\nu_1} = m_{\nu_2} = m_{\nu_3} = 0$$

for mixing near symmetric points, see also Okada, Tanimoto, 2009.14242

Promising hierarchical patterns (leptons)

N	Γ_N'	Pattern	Sym. point	Viable $\mathbf{r}_{E^c} \otimes \mathbf{r}_L$	Case
2	S_3	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$	$[2\oplus1^{(\prime)}]\otimes[1\oplus1^{(\prime)}\oplus1^{\prime}]$	1 or 4
3	A_4'	$(1,\epsilon,\epsilon^2)$	$ au \simeq \omega$ $ au \simeq i\infty$	$egin{aligned} & [1_a \oplus 1_a'] \otimes [1_b \oplus 1_b \oplus 1_b''] \ & [1 \oplus 1 \oplus 1'] \otimes [1'' \oplus 1'' \oplus 1'], \ & [1 \oplus 1 \oplus 1''] \otimes [1' \oplus 1' \oplus 1''] \end{aligned}$	2 2
4	S_4'	$(1,\epsilon,\epsilon^2)$	$ au\simeq\omega$	$[3_a,\mathrm{or}2\oplus1^{(\prime)},\mathrm{or}\mathbf{\hat{2}}\oplus\mathbf{\hat{1}}^{(\prime)}]\otimes[1_b\oplus1_b\oplus1_b']$	1 or 4
5	A_5'	—		—	—

1.
$$\begin{cases} L \sim 1 \oplus 1 \oplus 1 \\ E^c \sim 1 \oplus \mathbf{r} \not\supseteq 1 \end{cases}$$
2.
$$\begin{cases} L \sim \mathbf{1} \oplus \mathbf{1} \oplus \overline{\mathbf{1}} \\ E^c \sim \overline{\mathbf{1}} \oplus \mathbf{r} \not\supseteq \mathbf{1}, \overline{\mathbf{1}} \end{cases}$$
3.
$$m_e = m_\mu = m_\tau = 0$$
4.
$$m_{\nu_1} = m_{\nu_2} = m_{\nu_3} = 0$$

Promising hierarchical patterns (leptons)

	N	Γ_N'	Pattern	Sym. point	Viable $\mathbf{r}_{E^c}\otimes\mathbf{r}_L$		Case
	2	S_3	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$			1 or 4
				$\tau\simeq\omega$			2
	3	A'_4	$(1,\epsilon,\epsilon^2)$	$\tau\simeq i\infty$			2
	4	S_4'	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$	$[3_{a}%] = (3_{a})^{T} 1_{a}^{T} 1_{a}^{T}$	$]\otimes [1_b\oplus1_b\oplus1_b']$	1 or 4
	5	A_5'	—		—		
1	$\begin{cases} L \sim 1 \oplus 1 \oplus 1 \\ E^c \sim 1 \oplus \mathbf{r} \not\supseteq 1 \end{cases} 2. \begin{cases} L \sim 1 \oplus 1 \oplus \mathbf{\overline{1}} \\ E^c \sim \mathbf{\overline{1}} \oplus \mathbf{r} \not\supseteq 1, \mathbf{\overline{1}} \end{cases} 3. \ m_e = m_\mu = m_\tau \\ E^c \sim \mathbf{\overline{1}} \oplus \mathbf{r} \not\supseteq 1, \mathbf{\overline{1}} \end{cases} 4. \ m_{\nu_1} = m_{\nu_2} = m_\tau$						

Example: lepton model close to $\boldsymbol{\omega}$

Only S₄' model from a scan requiring minimal # params., $m_e > 0$, and Dirac phase within 2σ range (otherwise unconstrained):

 $L \sim (\hat{\mathbf{1}} \oplus \hat{\mathbf{1}} \oplus \hat{\mathbf{1}}', 2), E^c \sim (\hat{\mathbf{3}}, 4), N^c \sim (\mathbf{3}', 1)$

Example: lepton model close to ω

Only S₄' model from a scan requiring minimal # params., $m_e > 0$, and Dirac phase within 2σ range (otherwise unconstrained):

$$L \sim (\mathbf{\hat{1}} \oplus \mathbf{\hat{1}} \oplus \mathbf{\hat{1}}', 2), E^c \sim (\mathbf{\hat{3}}, 4), N^c \sim (\mathbf{3}', 1)$$

Superpotential:

$$\begin{split} W &= \left[\alpha_1 \left(Y_{\mathbf{3}',1}^{(4,6)} E^c L_1 \right)_{\mathbf{1}} + \alpha_3 \left(Y_{\mathbf{3}',1}^{(4,6)} E^c L_2 \right)_{\mathbf{1}} + \alpha_4 \left(Y_{\mathbf{3}',2}^{(4,6)} E^c L_2 \right)_{\mathbf{1}} + \alpha_5 \left(Y_{\mathbf{3}}^{(4,6)} E^c L_3 \right)_{\mathbf{1}} \right] H_d \\ &+ \left[g_1 \left(Y_{\mathbf{\hat{3}}}^{(4,3)} N^c L_1 \right)_{\mathbf{1}} + g_2 \left(Y_{\mathbf{\hat{3}}}^{(4,3)} N^c L_2 \right)_{\mathbf{1}} + g_3 \left(Y_{\mathbf{\hat{3}}'}^{(4,3)} N^c L_3 \right)_{\mathbf{1}} \right] H_u \\ &+ \Lambda \left(Y_{\mathbf{2}}^{(4,2)} (N^c)^2 \right)_{\mathbf{1}} . \end{split}$$

with gCP imposed

Example: lepton model close to ω

Only S₄' model from a scan requiring minimal # params., $m_e > 0$, and Dirac phase within 2σ range (otherwise unconstrained):

$$L \sim (\hat{\mathbf{1}} \oplus \hat{\mathbf{1}} \oplus \hat{\mathbf{1}}', 2), E^c \sim (\hat{\mathbf{3}}, 4), N^c \sim (\mathbf{3}', 1)$$

$$M_e \propto \begin{pmatrix} 1 & \alpha - 2\beta & 2\sqrt{3}i\gamma \\ \sqrt{3}\epsilon & \sqrt{3}(\alpha + 2\beta)\epsilon & 2i\gamma\epsilon \\ \frac{5}{2}\epsilon^2 & \left(\frac{5}{2}\alpha - \beta\right)\epsilon^2 & -\frac{5}{\sqrt{3}}i\gamma\epsilon^2 \end{pmatrix} \qquad |\epsilon| \simeq 2.8 \left|\frac{\tau - \omega}{\tau - \omega^2}\right| \\ \sim \left|\tau - e^{2\pi i/3}\right| \\ M_\nu \propto \epsilon \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & a \\ 1 & a & 2i\sqrt{\frac{2}{3}b} \end{pmatrix}$$

Example: lepton model close to $\boldsymbol{\omega}$

Only S₄' model from a scan requiring minimal # params., $m_e > 0$, and Dirac phase within 2σ range (otherwise unconstrained):

$$L \sim (\mathbf{\hat{1}} \oplus \mathbf{\hat{1}} \oplus \mathbf{\hat{1}}', 2), E^c \sim (\mathbf{\hat{3}}, 4), N^c \sim (\mathbf{3}', 1)$$

$$\begin{split} M_e \propto \begin{pmatrix} 1 & \alpha - 2\beta & 2\sqrt{3}i\gamma \\ \sqrt{3}\epsilon & \sqrt{3}(\alpha + 2\beta)\epsilon & 2i\gamma\epsilon \\ \frac{5}{2}\epsilon^2 & \left(\frac{5}{2}\alpha - \beta\right)\epsilon^2 & -\frac{5}{\sqrt{3}}i\gamma\epsilon^2 \end{pmatrix} & |\epsilon| \simeq 2.8 \left| \frac{\tau - \omega}{\tau - \omega^2} \right| \\ \sim \left| \tau - e^{2\pi i/3} \right| \\ M_\nu \propto \epsilon \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & a \\ 1 & a & 2i\sqrt{\frac{2}{3}}b \end{pmatrix} & u \equiv \frac{\tau - \omega}{\tau - \omega^2} & \text{ind} \\ \left| u \right| & \text{quantifies the deviation of } r \\ \text{from the left cusp} \end{split}$$

Example: lepton model close to ω

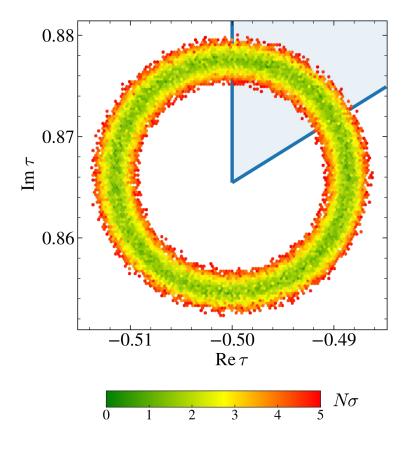
Only S₄' model from a scan requiring minimal # params., $m_e > 0$, and Dirac phase within 2σ range (otherwise unconstrained):

$$L \sim (\mathbf{\hat{1}} \oplus \mathbf{\hat{1}} \oplus \mathbf{\hat{1}}', 2), E^c \sim (\mathbf{\hat{3}}, 4), N^c \sim (\mathbf{3}', 1)$$

$$M_e \propto \begin{pmatrix} 1 & \alpha - 2\beta & 2\sqrt{3}i\gamma \\ \sqrt{3}\epsilon & \sqrt{3}(\alpha + 2\beta)\epsilon & 2i\gamma\epsilon \\ \frac{5}{2}\epsilon^2 & \left(\frac{5}{2}\alpha - \beta\right)\epsilon^2 & -\frac{5}{\sqrt{3}}i\gamma\epsilon^2 \end{pmatrix} \quad |\epsilon| \simeq 2.8 \left|\frac{\tau - \omega}{\tau - \omega^2}\right|$$
$$M_\nu \propto \epsilon \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & a \\ 1 & a & 2i\sqrt{\frac{2}{3}b} \end{pmatrix} \quad \left|\epsilon| \simeq 0.02 & \alpha = 2.45 \pm 0.44 \\ a = 1.5 \pm 0.15 & \beta = 2.14 \pm 0.32 \\ b = 2.22 \pm 0.17 & \gamma = 0.91 \pm 0.05 \end{pmatrix}$$

Example: lepton model close to ω

 $|\epsilon| \simeq 0.02 \Leftrightarrow |u| \simeq 0.007$



$$m_e = \mathcal{O}(\epsilon^2)$$
$$m_\mu = \mathcal{O}(\epsilon) \qquad \checkmark$$
$$m_\tau = \mathcal{O}(1)$$

NO,
$$m_{\nu_1} = 0$$
 $\delta \simeq \pi$
 $m_{\beta\beta} = (1.44 \pm 0.33) \text{ meV}$

Naturally allows for **hierarchies**, **large mixing**, and some **predictivity**

Summary (2/3)

Summary (2/3)

• Fermion **mass hierarchies** can naturally arise if *t* is in the vicinity of a point of residual symmetry,

$$au_{\mathrm{sym}} = \omega, i\infty, (i)$$

• This mechanism works without flavons.

- Natural lepton mixing can also arise in such models. Requiring no fine-tuning in the whole lepton sector is remarkably restrictive.
- As seen in the model and anticipated from the hierarchical patterns, $|u| \simeq 0.007$ is required. Ad hoc?

Modulus stabilisation

JHEP 03 (2022) 149 [2201.02020]

Simplest modular-invariant potentials?

- Studied by Cvetič, Font, Ibáñez, Lüst and Quevedo (1991) $\mathcal{N}=1~\text{SUGRA}$

$$K(\tau, \overline{\tau}) = -\Lambda_K^2 \log(2 \operatorname{Im} \tau)$$

$$G(\tau, \overline{\tau}) = \kappa^2 K(\tau, \overline{\tau}) + \log \left| \kappa^3 W(\tau) \right|^2 \qquad \kappa^2 = \frac{8\pi}{M_P^2}$$

• Superpotential has modular weight $-n = -1, -2, -3, \dots$

$$W(\tau) \ = \ \Lambda^3_W \ \frac{H(\tau)}{\eta(\tau)^{2\mathfrak{n}}} \qquad \qquad \mathfrak{n} = \kappa^2 \Lambda^2_K$$

• Simplified model, independent of the level *N*

Simplest modular-invariant potentials?

- Studied by Cvetič, Font, Ibáñez, Lüst and Quevedo (1991) $\mathcal{N}=1~\text{SUGRA}$

$$K(\tau, \overline{\tau}) = -\Lambda_K^2 \log(2 \operatorname{Im} \tau)$$

$$G(\tau, \overline{\tau}) = \kappa^2 K(\tau, \overline{\tau}) + \log \left| \kappa^3 W(\tau) \right|^2 \qquad \kappa^2 = \frac{8\pi}{M_F^2}$$

• Superpotential has modular weight -n = -1, -2 [-3, ...]

$$W(\tau) = \Lambda_W^3 \frac{H(\tau)}{\eta(\tau)^{2\mathfrak{n}}} \qquad \qquad \mathfrak{n} = \kappa^2 \Lambda_K^2$$

• Simplified model, independent of the level *N*

$$W(\tau) = \Lambda_W^3 \frac{H(\tau)}{\eta(\tau)^{2\mathfrak{n}}} \quad \left[V = e^{\kappa^2 K} \left(K^{i\bar{j}} D_i W D_{\bar{j}} W^* - 3\kappa^2 |W|^2 \right) \right]$$

$$W(\tau) = \Lambda_W^3 \frac{H(\tau)}{\eta(\tau)^{2\mathfrak{n}}} \qquad V = e^{\kappa^2 K} \left(K^{i\,\bar{j}} D_i W D_{\,\bar{j}} W^* - 3\kappa^2 |W|^2 \right)$$
$$V(\tau,\bar{\tau}) = \frac{\Lambda_V^4}{(2\,\mathrm{Im}\,\tau)^{\mathfrak{n}} |\eta(\tau)|^{4\mathfrak{n}}} \left[\left| iH'(\tau) + \frac{\mathfrak{n}}{2\pi} H(\tau) \hat{G}_2(\tau,\bar{\tau}) \right|^2 \frac{(2\,\mathrm{Im}\,\tau)^2}{\mathfrak{n}} - 3|H(\tau)|^2 \right]$$

$$W(\tau) = \Lambda_W^3 \frac{\underline{H(\tau)}}{\eta(\tau)^{2\mathfrak{n}}} \qquad V = e^{\kappa^2 K} \left(K^{i\bar{j}} D_i W D_{\bar{j}} W^* - 3\kappa^2 |W|^2 \right)$$

$$\Lambda_V = \left(\kappa^2 \Lambda_W^6 \right)^{1/4}$$

$$V(\tau, \bar{\tau}) = \frac{\Lambda_V^4}{(2 \operatorname{Im} \tau)^{\mathfrak{n}} |\eta(\tau)|^{4\mathfrak{n}}} \left[\left| i\underline{H'(\tau)} + \frac{\mathfrak{n}}{2\pi} \underline{H(\tau)} \hat{G}_2(\tau, \bar{\tau}) \right|^2 \frac{(2 \operatorname{Im} \tau)^2}{\mathfrak{n}} - 3 |\underline{H(\tau)}|^2 \right]$$

$$\hat{G}_2(\tau, \bar{\tau}) = G_2(\tau) - \frac{\pi}{\operatorname{Im} \tau}$$

$$\downarrow$$

$$\frac{\eta'(\tau)}{\eta(\tau)} = \frac{i}{4\pi} G_2(\tau)$$

$$\begin{split} W(\tau) \, &= \, \Lambda_W^3 \, \frac{H(\tau)}{\eta(\tau)^{2\mathfrak{n}}} \qquad V = e^{\kappa^2 K} \left(K^{i\,\bar{j}} D_i W D_{\bar{j}} W^* - 3\kappa^2 |W|^2 \right) \\ V(\tau, \bar{\tau}) &= \frac{\Lambda_V^4}{(2\,\mathrm{Im}\,\tau)^{\mathfrak{n}} |\eta(\tau)|^{4\mathfrak{n}}} \left[\left| iH'(\tau) + \frac{\mathfrak{n}}{2\pi} H(\tau) \hat{G}_2(\tau, \bar{\tau}) \right|^2 \frac{(2\,\mathrm{Im}\,\tau)^2}{\mathfrak{n}} - 3[H(\tau)]^2 \right] \\ \mathfrak{n} &= 3 \\ V(\tau, \bar{\tau}) &= \frac{\Lambda_V^4}{8(\mathrm{Im}\,\tau)^3 |\eta|^{12}} \left[\frac{4}{3} \left| iH' + \frac{3}{2\pi} H \hat{G}_2 \right|^2 (\mathrm{Im}\,\tau)^2 - 3H^2 \right] \end{split}$$

The superpotential

$$W(\tau) = \Lambda_W^3 \frac{H(\tau)}{\eta(\tau)^6} \qquad V(\tau, \overline{\tau}) = \frac{\Lambda_V^4}{8(\operatorname{Im} \tau)^3 |\eta|^{12}} \left[\frac{4}{3} \left| iH' + \frac{3}{2\pi} H \hat{G}_2 \right|^2 (\operatorname{Im} \tau)^2 - 3|H|^2 \right]$$

• Most general holomorphic $H(\tau)$ (except at $i\infty$) Cvetič et al (1991)

$$H(\tau) = (j(\tau) - 1728)^{m/2} j(\tau)^{n/3} \mathcal{P}(j(\tau))$$

$$m, n = 0, 1, 2, \dots$$

$$j = \left(\frac{72}{\pi^2} \frac{\eta \eta'' - 3\eta'^2}{\eta^{10}}\right)^3 = \left[\frac{72}{\pi^2 \eta^6} \left(\frac{\eta'}{\eta^3}\right)'\right]^3$$

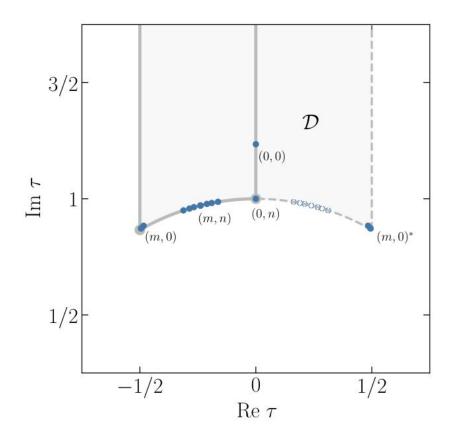
The superpotential

$$W(\tau) = \Lambda_W^3 \frac{H(\tau)}{\eta(\tau)^6} \qquad V(\tau, \overline{\tau}) = \frac{\Lambda_V^4}{8(\operatorname{Im} \tau)^3 |\eta|^{12}} \left[\frac{4}{3} \left| iH' + \frac{3}{2\pi} H \hat{G}_2 \right|^2 (\operatorname{Im} \tau)^2 - 3|H|^2 \right]$$

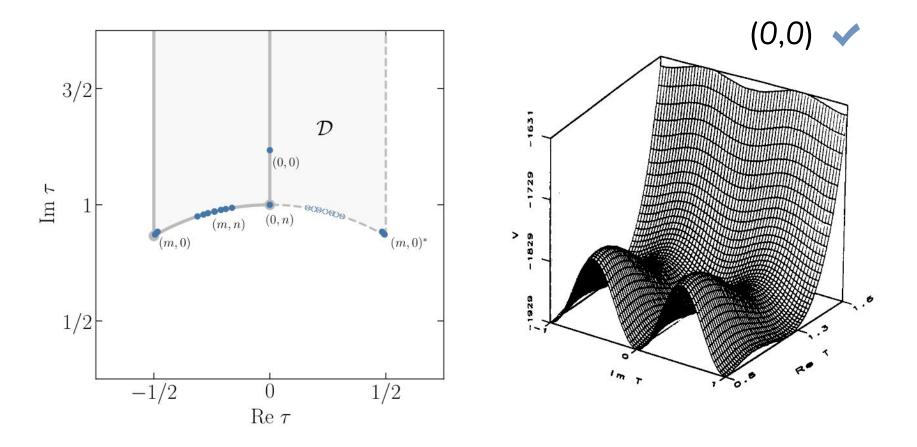
• Most general holomorphic $H(\tau)$ (except at $i\infty$) Cvetič et al (1991)

$$\begin{split} H(\tau) &= (j(\tau) - 1728)^{\underline{m/2}} j(\tau)^{\underline{n/3}} \mathcal{P}(j(\tau)) \\ \\ \xrightarrow{m, n = 0, 1, 2, \dots} & j = \left(\frac{72}{\pi^2} \frac{\eta \eta'' - 3\eta'^2}{\eta^{10}}\right)^3 = \left[\frac{72}{\pi^2 \eta^6} \left(\frac{\eta'}{\eta^3}\right)'\right]^3 \\ \mathcal{P}(j) &= 1 & \text{simplest choice} \end{split}$$

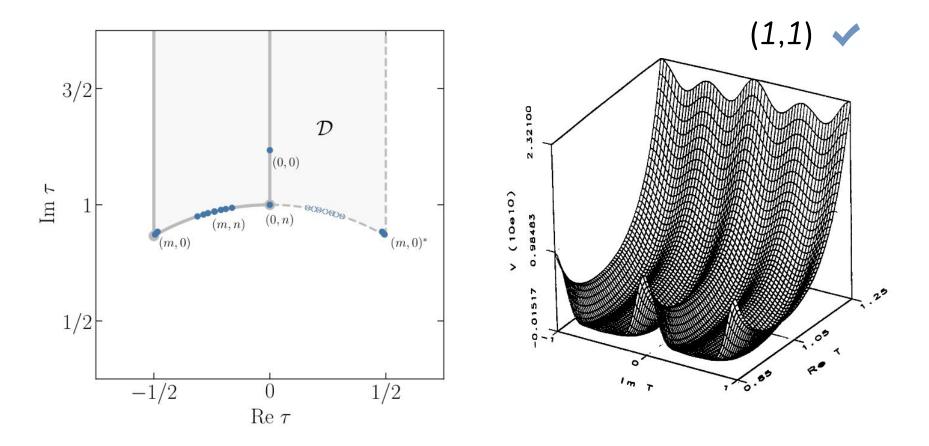
- This potential is modular- and CP-invariant (also for some other P(j)'s)
- Everything can be expressed in terms of η and its derivatives...



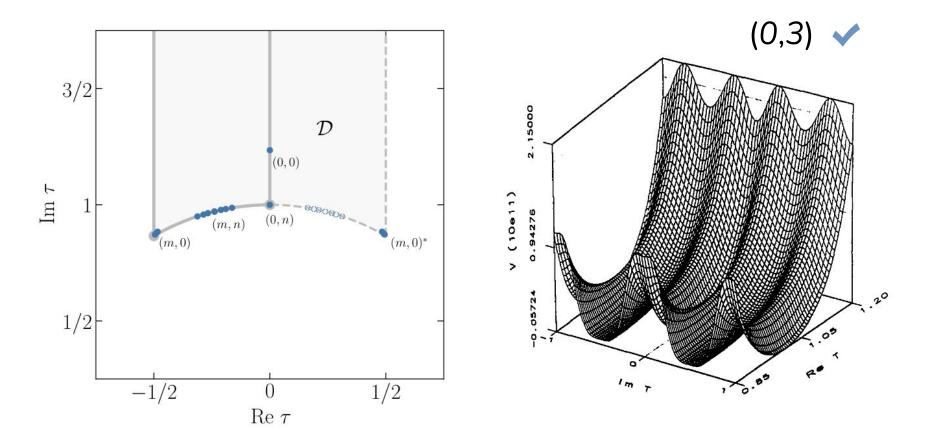
"(...) we conjecture that all extrema of V entirely lie on [the boundary]." — Cvetič et al.



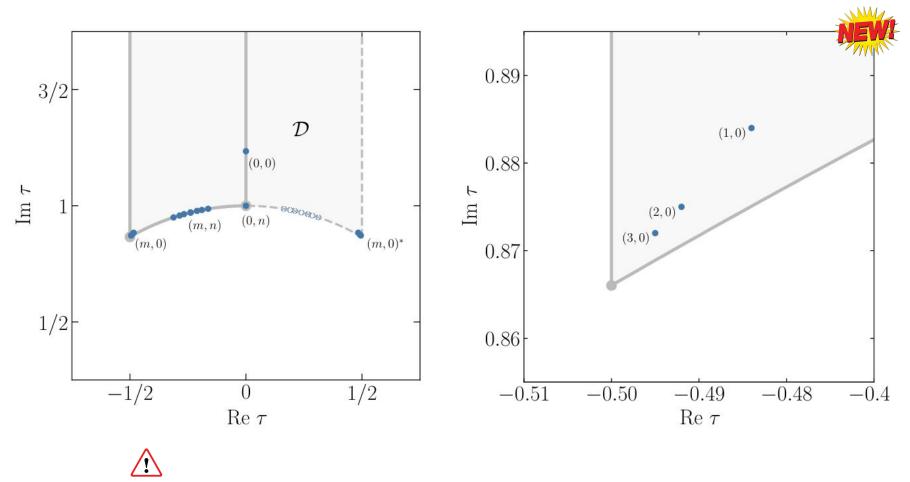
"(...) we conjecture that all extrema of V entirely lie on [the boundary]." — Cvetič et al.



"(...) we conjecture that all extrema of V entirely lie on [the boundary]." — Cvetič et al.



"(...) we conjecture that all extrema of V entirely lie on [the boundary]." — Cvetič et al.



"(...) we conjecture that all extrema of V entirely lie on [the boundary]." — Cvetič et al.

The (m,0) family of potentials

• *u*-expand (*m*,0) potentials to analyse them near the left cusp

$$V_{m,0} = \Lambda_V^4 \frac{1728^m}{\sqrt{3} \tilde{\eta}_0^{12}} \left\{ -1 - 2 |u|^2 + (A_m^2 - 3) |u|^4 \right\} + \mathcal{O}(|u|^6)$$

Mexican hat potential
(cusp is a maximum!)
$$A_m \equiv \frac{864 |\tilde{\eta}_3|^3}{\pi^6 \tilde{\eta}_0^{27}} m + \frac{6 |\tilde{\eta}_3|}{\tilde{\eta}_0}$$
$$\simeq 68.78 m + 4.30$$
$$|u|_{\min} \simeq (A_m^2 - 3)^{-1/2}$$
$$\simeq A_m^{-1} = \frac{0.0145}{m + 0.0625}$$

The (m,0) family of potentials $u=|u|e^{i\phi}$ (phase dependence)

• *u*-expanding to higher order shows dependence on $\phi \in [-\pi/3, 0]$

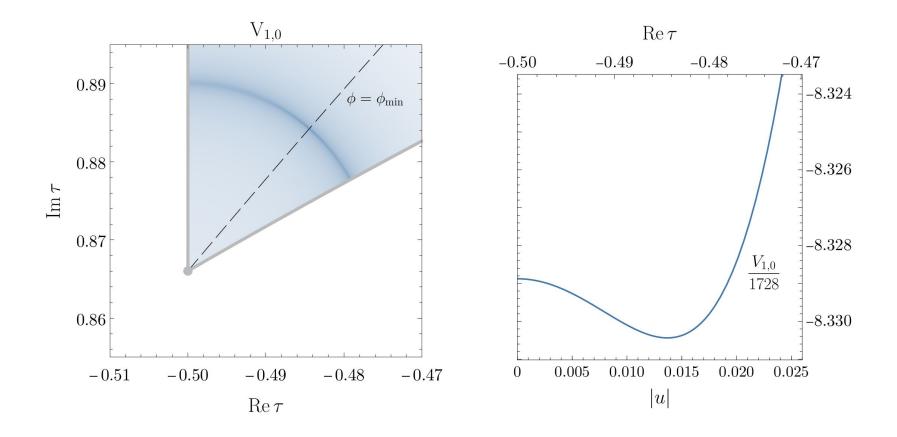
$$V_{m,0} \propto -1 - 2 |u|^{2} + (A_{m}^{2} - 3) |u|^{4} + (-4 + 2A_{m}^{2} + B_{m}^{2} \cos 6\phi) |u|^{6} + 2A_{m}B_{m}^{2} \cos 3\phi |u|^{7} + (-5 + 3A_{m}^{2} + 2B_{m}^{2} \cos 6\phi) |u|^{8} + \mathcal{O}(|u|^{9})$$

$$B_{m}^{2} \equiv \frac{864 |\tilde{\eta}_{3}|^{3}}{\pi^{6} \tilde{\eta}_{0}^{27}} m \left[\frac{864 |\tilde{\eta}_{3}|^{3}}{\pi^{6} \tilde{\eta}_{0}^{27}} (m - 2) + \frac{3 (31 \tilde{\eta}_{3}^{2} - 10 \tilde{\eta}_{0} \tilde{\eta}_{6})}{\tilde{\eta}_{0} |\tilde{\eta}_{3}|}\right] + \frac{6 (7 \tilde{\eta}_{3}^{2} - 2 \tilde{\eta}_{0} \tilde{\eta}_{6})}{\tilde{\eta}_{0}^{2}} \simeq 4730.60 m^{2} - 2069.73 m + 33.26.$$

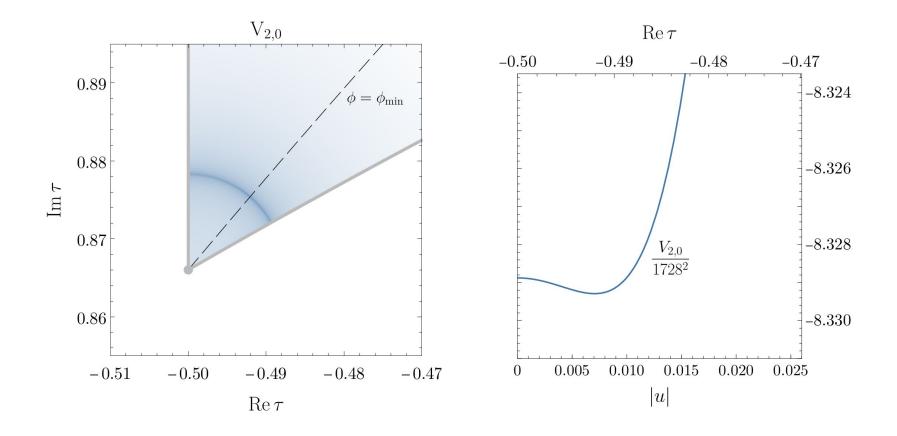
• Phase of u mostly determined by $|u|^6$ and $|u|^7$ terms

$$\phi_{\min} \simeq -\frac{2\pi}{9} = -40^{\circ}$$

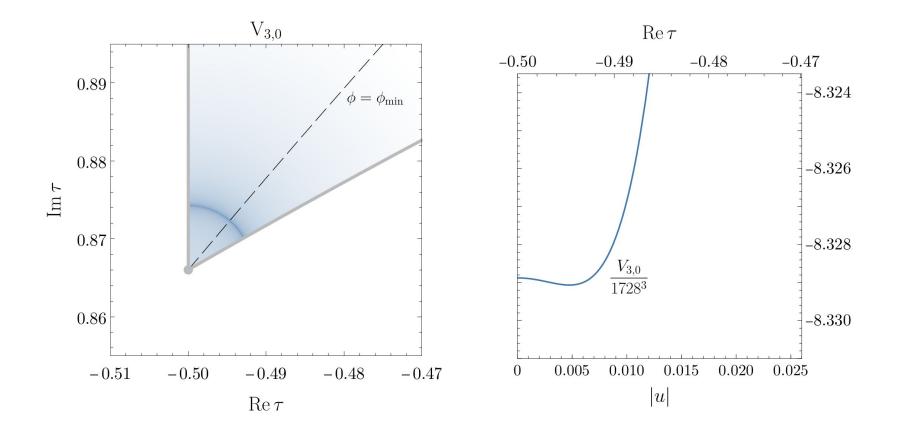
The (m,0) family of potentials (m = 1)



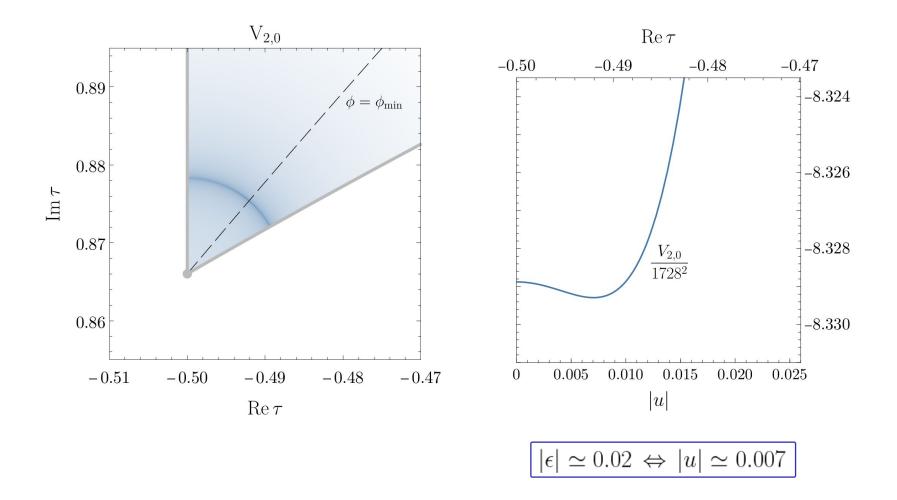
The (m,0) family of potentials (m = 2)



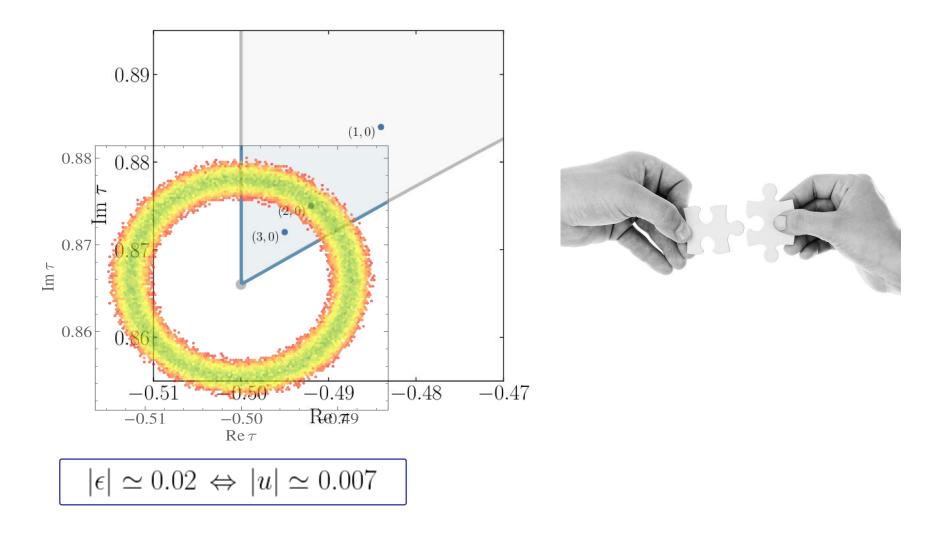
The (m,0) family of potentials (m = 3)



The (m,0) family of potentials (m = 2)



Matching puzzle pieces?



Summary (3/3)

Summary (3/3)

- There are simple potentials for modulus stabilisation, which are independent of the level *N*
- Novel CP-breaking minima are found, located in the vicinity of (but not directly on) the cusps
- The found deviation |u| matches the BU requirement

Pieces of a puzzle / future (a personal view)

- use TD to fix irreps, weights? (Andreas' talk, in 5 mins)
- hints of universality? (Feruglio 2211.00659)
- phenomenology beyond masses and mixing?
- modular symmetry breaking as the only source of CPV?
- do away with SUSY?

Vielen Dank!

Backup slides

Modular-invariant SUSY actions Ferrar

Ferrara et al, '89

$$W(\psi;\tau) = \sum_{n} \sum_{\{i_1,...,i_n\}} \sum_{s} g_{i_1...i_n,s} (Y_{i_1...i_n,s}(\tau) \psi_{i_1}...\psi_{i_n})_{1,s}$$

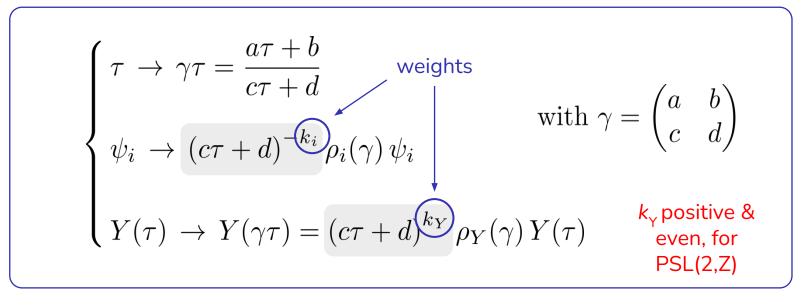
$$\mathcal{S} = \int d^4x \, d^2\theta \, d^2\overline{\theta} \, K(\psi, \overline{\psi}; \tau, \overline{\tau}) + \int d^4x \, d^2\theta \, W(\psi; \tau) + \text{h.c.}$$

t is a dimensionless spurion: once its value is fixed, it **parameterises all** modular sym. breaking

One may argue that Y's play the role of flavons, but structures are **completely fixed** given the modulus VEV

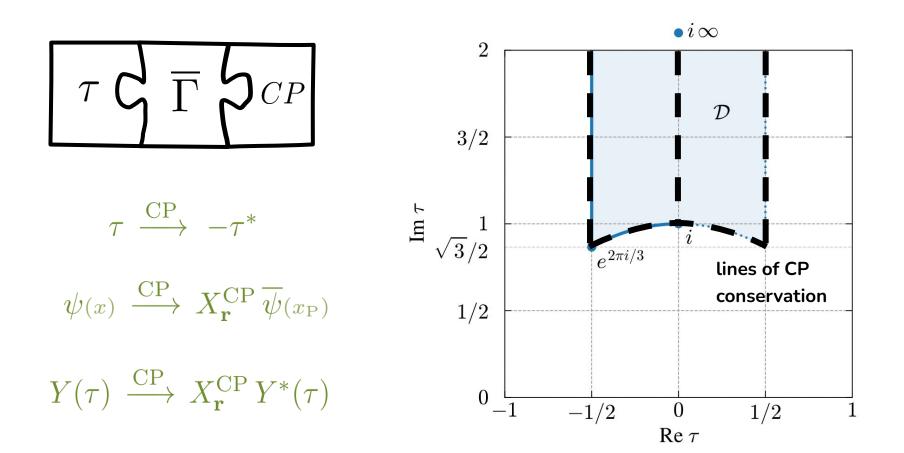
Modular-invariant SUSY actions

$$W(\psi;\tau) = \sum_{n} \sum_{\{i_1,\dots,i_n\}} \sum_{s} g_{i_1\dots i_n,s} (Y_{i_1\dots i_n,s}(\tau)\psi_{i_1}\dots\psi_{i_n})_{1,s}$$



Y(τ) are modular forms obeying $\begin{cases} k_Y = k_{i_1} + \ldots + k_{i_n} \\ \rho_Y \otimes \rho_{i_1} \otimes \ldots \otimes \rho_{i_1} \supset 1 \end{cases}$ Live in linear spaces of finite dimension

Combining modular and CP symmetries



Constraints on the Kähler potential?

- Kähler not constrained by the symmetry.
- Under a modular transformation, invariant up to: $K(\chi_i, \overline{\chi}_i; \tau, \overline{\tau}) \rightarrow K(\chi_i, \overline{\chi}_i; \tau, \overline{\tau}) + f(\chi_i; \tau) + f(\overline{\chi}_i; \overline{\tau})$
- Minimal choice:

$$K(\chi_i, \overline{\chi}_i; \tau, \overline{\tau}) = -h \Lambda_0^2 \log(-i(\tau - \overline{\tau})) + \sum_i \frac{|\chi_i|^2}{(-i(\tau - \overline{\tau}))^{k_i}}$$

should be justified from the top-down

Chen, Ramos-Sánchez and Ratz, 1909.06910

• Further constraints may arise from combining modular group + traditional finite flavour symmetry

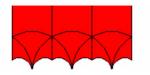
Nilles, Ramos-Sanchez, Vaudrevange, 2004.05200

SUSY breaking effects?

- **RGEs & threshold corrections** need to be considered, depend on tan β and unknown SUSY spectrum
- **SUSY-breaking** corrections can be made negligible via separation of scales (power counting argument)
- Under reasonable conditions, predictions may be unaffected

Feruglio and Criado, 1807.01125

Larger fundamental domains?



- Despite working with representations of the quotients, our theories are **fully modular invariant**
- To have canonical kinetic terms,

$$\tau \to \frac{a\tau + b}{c\tau + d} \quad \Rightarrow \quad g_i \to (c\tau + d)^{-k_{Y_i}} g_i$$

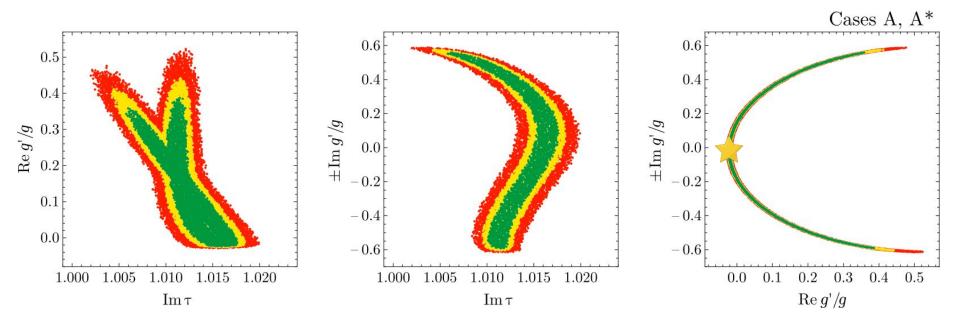
• e.g. in a particular model, see sec. 4 of Novichkov, JP, Petcov, Titov, 1811.04933

$$\left(\frac{a\tau+b}{c\tau+d}, (c\tau+d)^{-2} \beta/\alpha, (c\tau+d)^{-2} \gamma/\alpha, g'/g, \dots, \Lambda'/\Lambda, \dots\right) \rightarrow$$

these different parameter sets lead to the same observables

• Things may be different if **flavons** are present!

Correlations between parameters in the first S4 example model



see Novichkov, JP, Petcov, Titov, 1811.04933

Decompositions under residual groups: S3, A4'

r	$\mathbb{Z}_{4}^{S}\left(\tau=i\right)$	$\mathbb{Z}_{3}^{ST}\times\mathbb{Z}_{2}^{R}\left(\tau=\omega\right)$	$\mathbb{Z}_2^T\times\mathbb{Z}_2^R(\tau=i\infty)$
1	1_k	1_k^\pm	1_0^{\pm}
1′	1_{k+2}	1_k^\pm	1_1^{\pm}
2	$1_k \oplus 1_{k+2}$	$1_{k-1}^{\pm} \oplus 1_{k+1}^{\pm}$	$1_0^\pm\oplus 1_1^\pm$
r	$\mathbb{Z}_4^S \left(\tau = i \right)$	$\mathbb{Z}_{3}^{ST}\times\mathbb{Z}_{2}^{R}\left(\tau=\omega\right)$	$\mathbb{Z}_3^T\times\mathbb{Z}_2^R(\tau=i\infty)$
1	1_k	1_k^{\pm}	1_0^{\pm}
1′	1_k	1_{k+1}^{\pm}	1_1^{\pm}
1 ''	1_k	1_{k+2}^{\pm}	1_2^\pm
$\hat{2}$	$1_{k+1} \oplus 1_{k+3}$	$1_{k}^{\mp} \oplus 1_{k+1}^{\mp}$	$1_0^{\mp} \oplus 1_1^{\mp}$
$\hat{2}'$	$1_{k+1} \oplus 1_{k+3}$	$1_{k+1}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_1^{\mp} \oplus 1_2^{\mp}$
$\hat{2}''$	$1_{k+1} \oplus 1_{k+3}$	$1_{k}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_0^{\mp} \oplus 1_2^{\mp}$
3	$1_k \oplus 1_{k+2} \oplus 1_{k+2}$	$1_{k}^{\pm} \oplus 1_{k+1}^{\pm} \oplus 1_{k+2}^{\pm}$	$1_0^\pm\oplus 1_1^\pm\oplus 1_2^\pm$

Decompositions under residual groups: S4'

r	$\mathbb{Z}_4^S \left(\tau = i \right)$	$\mathbb{Z}_3^{ST}\times\mathbb{Z}_2^R(\tau=\omega)$	$\mathbb{Z}_4^T\times\mathbb{Z}_2^R(\tau=i\infty)$
1	1_k	1_k^\pm	1_0^{\pm}
î	1_{k+1}	1_k^{\mp}	1_3^{\mp}
1 '	1_{k+2}	1_k^\pm	1^{\pm}_2
$\mathbf{\hat{1}}'$	1_{k+3}	1_k^{\mp}	1_1^{\mp}
2	$1_{k+2}\oplus1_k$	$1_{k+1}^{\pm} \oplus 1_{k+2}^{\pm}$	$1_0^\pm\oplus 1_2^\pm$
$\hat{2}$	$1_{k+1} \oplus 1_{k+3}$	$1_{k+1}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_1^{\mp} \oplus 1_3^{\mp}$
3	$1_{k+2}\oplus1_k\oplus1_k$	$1_k^\pm\oplus1_{k+1}^\pm\oplus1_{k+2}^\pm$	$1_1^\pm \oplus 1_2^\pm \oplus 1_3^\pm$
ŝ	$1_{k+1} \oplus 1_{k+1} \oplus 1_{k+3}$	$1_{k}^{\mp} \oplus 1_{k+1}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_0^{\mp} \oplus 1_1^{\mp} \oplus 1_2^{\mp}$
3 '	$1_{k+2} \oplus 1_{k+2} \oplus 1_k$	$1_k^\pm\oplus1_{k+1}^\pm\oplus1_{k+2}^\pm$	$1_0^\pm\oplus 1_1^\pm\oplus 1_3^\pm$
$\hat{3}'$	$1_{k+1} \oplus 1_{k+3} \oplus 1_{k+3}$	$1_{k}^{\mp} \oplus 1_{k+1}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_0^{\mp} \oplus 1_2^{\mp} \oplus 1_3^{\mp}$

Decompositions under residual groups: A5'

r	$\mathbb{Z}_4^S \left(au = i ight)$	$\mathbb{Z}_3^{ST} \times \mathbb{Z}_2^R \left(\tau = \omega \right)$	$\mathbb{Z}_5^T \times \mathbb{Z}_2^R \left(\tau = i \infty \right)$
1	1_k	1_k^{\pm}	1_0^{\pm}
$\hat{2}$	$1_{k+1} \oplus 1_{k+3}$	$1_{k+1}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_2^{\mp} \oplus 1_3^{\mp}$
$\hat{2}'$	$1_{k+1} \oplus 1_{k+3}$	$1_{k+1}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_1^{\mp} \oplus 1_4^{\mp}$
3	$1_k \oplus 1_{k+2} \oplus 1_{k+2}$	$1_{k}^{\pm} \oplus 1_{k+1}^{\pm} \oplus 1_{k+2}^{\pm}$	$1_0^\pm\oplus 1_1^\pm\oplus 1_4^\pm$
3 '	$1_k \oplus 1_{k+2} \oplus 1_{k+2}$	$1_k^\pm \oplus 1_{k+1}^\pm \oplus 1_{k+2}^\pm$	$1_0^\pm\oplus 1_2^\pm\oplus 1_3^\pm$
4	$1_k \oplus 1_k \oplus 1_{k+2} \oplus 1_{k+2}$	$1_k^\pm \oplus 1_k^\pm \oplus 1_{k+1}^\pm \oplus 1_{k+2}^\pm$	$1_1^\pm\oplus1_2^\pm\oplus1_3^\pm\oplus1_4^\pm$
Â	$1_{k+1} \oplus 1_{k+1} \oplus 1_{k+3} \oplus 1_{k+3}$	$1_{k}^{\mp} \oplus 1_{k}^{\mp} \oplus 1_{k+1}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_1^{\mp} \oplus 1_2^{\mp} \oplus 1_3^{\mp} \oplus 1_4^{\mp}$
5	$1_k \oplus 1_k \oplus 1_k \oplus 1_{k+2} \oplus 1_{k+2}$	$1_{k}^{\pm} \oplus 1_{k+1}^{\pm} \oplus 1_{k+1}^{\pm} \oplus 1_{k+2}^{\pm} \oplus 1_{k+2}^{\pm}$	$1_0^\pm\oplus 1_1^\pm\oplus 1_2^\pm\oplus 1_3^\pm\oplus 1_4^\pm$
Ĝ	$1_{k+1} \oplus 1_{k+1} \oplus 1_{k+1} \oplus 1_{k+3} \oplus 1_{k+3} \oplus 1_{k+3}$	$1_{k}^{\mp} \oplus 1_{k}^{\mp} \oplus 1_{k+1}^{\mp} \oplus 1_{k+1}^{\mp} \oplus 1_{k+2}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_0^{\mp} \oplus 1_0^{\mp} \oplus 1_1^{\mp} \oplus 1_2^{\mp} \oplus 1_3^{\mp} \oplus 1_4^{\mp}$

Details of the model fit

Model	Section 4.2 (S'_4)
$\operatorname{Re} \tau$	$-0.496\substack{+0.009\\-0.016}$
$\operatorname{Im}\tau$	$0.877\substack{+0.0023\\-0.024}$
α_2/α_1	3 -3
α_3/α_1	$2.45_{-0.42}^{+0.44}$
α_4/α_1	$-2.37\substack{+0.36\\-0.3}$
$\alpha_5/lpha_1$	$1.01\substack{+0.06 \\ -0.06}$
g_2/g_1	$1.5\substack{+0.15 \\ -0.14}$
g_3/g_1	$2.22\substack{+0.17\\-0.15}$
$v_d \alpha_1, \mathrm{GeV}$	$4.61^{+1.32}_{-1.33}$
$v_u^2 g_1 / \Lambda$, eV	$0.268\substack{+0.057\\-0.063}$
$\epsilon(au)$	$0.0186\substack{+0.0028\\-0.0023}$
CL mass pattern	$(1,\epsilon,\epsilon^2)$
$\max(BG)$	0.848

m_e/m_μ	$0.00475^{+0.00061}_{-0.00052}$
$m_\mu/m_ au$	$0.0556\substack{+0.0136\\-0.0116}$
r	$0.0298\substack{+0.00196\\-0.0023}$
$\delta m^2, 10^{-5} \mathrm{eV}^2$	$7.38\substack{+0.35 \\ -0.44}$
$ \Delta m^2 , 10^{-3} {\rm eV}^2$	$2.48\substack{+0.05 \\ -0.04}$
$\sin^2\theta_{12}$	$0.304\substack{+0.039\\-0.036}$
$\sin^2 \theta_{13}$	$0.0221\substack{+0.0019\\-0.002}$
$\sin^2 \theta_{23}$	$0.539\substack{+0.0522\\-0.099}$
m_1,eV	0
m_2, eV	$0.0086\substack{+0.0002\\-0.00026}$
m_3, eV	$0.0502\substack{+0.00046\\-0.00043}$
$\Sigma_i m_i$, eV	$0.0588\substack{+0.0002\\-0.0002}$
$ \langle m \rangle ,\mathrm{eV}$	$0.00144\substack{+0.00035\\-0.00033}$
δ/π	$1\pm \mathcal{O}(10^{-6})$
α_{21}/π	0
$lpha_{31}/\pi$	$1\pm \mathcal{O}(10^{-5})$
Νσ	0.563

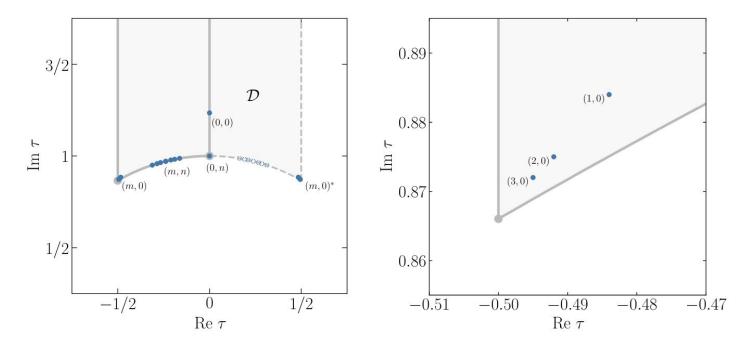
$$q- \text{ and } u-\text{expansions of } \eta$$

$$(q \equiv e^{2\pi i\tau})$$

$$(q = q^{1/24} \sum_{n=-\infty}^{\infty} (-1)^n q^{\frac{3n^2-n}{2}} = q^{1/24} \left(1-q-q^2+q^5+q^7-q^{12}-q^{15}+\mathcal{O}(q^{22})\right)$$

$$\begin{split} u &\equiv \frac{\tau - \omega}{\tau - \omega^2} & \tilde{\eta}(u) \equiv \frac{\eta(u)}{\sqrt{1 - u}} \\ u &\xrightarrow{ST} \omega^2 u & \tilde{\eta}(u) \xrightarrow{ST} \tilde{\eta}(u) \end{split}$$

$$\begin{split} \tilde{\eta}(u) &\simeq e^{-i\pi/24} \left(0.800579 - 0.573569 u^3 - 0.780766 u^6 - 0.150007 u^9 \right) + \mathcal{O}(u^{12}) \\ &\equiv e^{-i\pi/24} \left(\tilde{\eta}_0 + \tilde{\eta}_3 u^3 + \tilde{\eta}_6 u^6 + \tilde{\eta}_9 u^9 \right) + \mathcal{O}(u^{12}) \,, \end{split}$$



(0,0) is a single minimum at $\tau \simeq 1.2i$ on the imaginary axis, corresponding to the case m = n = 0;

(0, n) is a single minimum at the symmetric point $\tau = i$ attained when $m = 0, n \neq 0$;

- (m, 0) and $(m, 0)^*$ are a pair of degenerate minima for each $m \neq 0$ and n = 0: (m, 0) is located in the vicinity of the left cusp $\tau = \omega$, approaching this symmetric point as m increases, while $(m, 0)^*$ is its CP-conjugate;
- (m, n) is a series of minima on the unit arc, corresponding to $m \neq 0$, $n \neq 0$; these minima shift towards $\tau = \omega$ ($\tau = i$) along the arc as m (n) grows.

Extrema at $\tau = i, \omega$

Gonzalo, Ibáñez and Uranga, 1812.06520

	$V\left(T=1\right)$	Type of Extrema	Η	$\frac{dH}{dT}$	SUSY
m > 1	V = 0	Min	0	0	Yes
m = 1	$\frac{1}{T_I^3 \eta ^{12}} \left\{ a ^2 C ^2 \right\} > 0$	$Max - 2.57 < \frac{H'''}{H'} < -1.57$	0	$\neq 0$	No
	• 13 14 20 1995 - 92 ⁴	SP $\frac{H^{\prime\prime\prime\prime}}{H^\prime} < -2.57$ or $\frac{H^{\prime\prime\prime\prime}}{H^\prime} > -1.57$			
m = 0	$\propto rac{ P(0) ^2}{T_I^3 \eta ^{12}} \{-3\} < 0$	$\operatorname{Min}\left \frac{H''}{H} + 1.19\right > \frac{3}{2}$	$\neq 0$	0	Yes
		$Max - \frac{3}{4} < \frac{H''}{H} + 1.19 < \frac{3}{4}$			
		SP (Saddle Point) if else			

Table 2. Classification of the extrema found at T = i.

	$V\left(T=\rho\right)$	Type of Extrema	Н	$\frac{dH}{dT}$	SUSY
n > 1	V = 0	Minimum	0	0	Yes
n = 1	$\frac{1}{ \eta ^{12}} \left\{ \frac{4}{3} \left \mathcal{P}(1728) \right ^2 \left D \right ^2 \right\} > 0$	Maximum	0	$\neq 0$	No
n = 0	$\propto \frac{1728^m \mathcal{P}(1728) ^2}{T_I^3 \eta ^{12}} \left\{ -3 \right\} < 0$	Maximum	$\neq 0$	0	Yes

Table 3. Classification of the extrema found at $T = \rho$.

No, there is no tuning in choosing this form of the superpotential (arguably)

$$H(\tau) \propto (J(\tau) - 1)^{m/2}$$

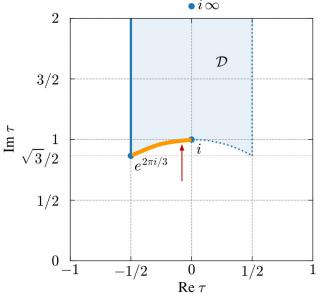
Subset of all possible $H(\tau)$ which vanish only at the symmetric point $\tau=i$ (itself distinguished by modular symmetry)

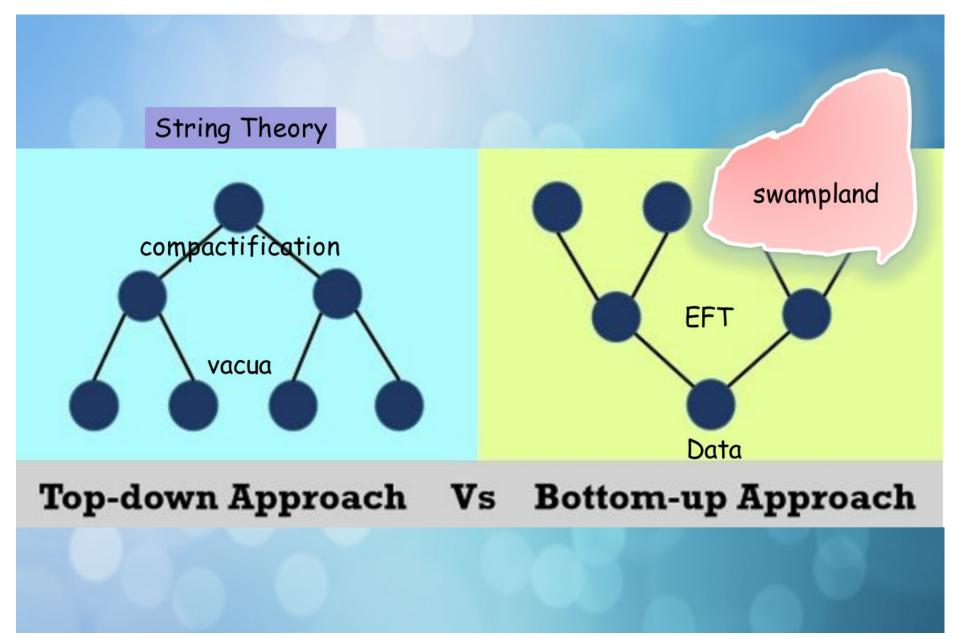
 $J(\tau) \equiv j(\tau)/1728$

The global SUSY limit (a comment)

$$\mathbf{n} = \kappa^2 \Lambda_K^2 \to \mathbf{0} \qquad \begin{array}{c} K(\tau, \overline{\tau}) = -\Lambda_K^2 \log(2 \operatorname{Im} \tau) \\ \kappa^2 = 8\pi/M_P^2 \end{array}$$
$$W(\tau) = \Lambda_W^3 H(\tau) \qquad H(\tau) = (j(\tau) - 1728)^{m/2} j(\tau)^{n/3} \mathcal{P}(j(\tau)) \end{aligned}$$
$$V(\tau, \overline{\tau}) = \frac{4\Lambda_W^6}{\Lambda_K^2} (\operatorname{Im} \tau)^2 \left| H'(\tau) \right|^2 \qquad 2 \overset{i}{}$$

- Global minima are zeros of *H*'
- non-trivial $\mathcal{P}(j)$ can be engineered to produce minima at arbitrary points in the fundamental domain





from Feruglio's slides at Mod. Symmetry Bethe Workshop

G-J. Ding, FF,

2003.13448

tests of modulus couplings

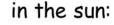
non standard neutrino interactions

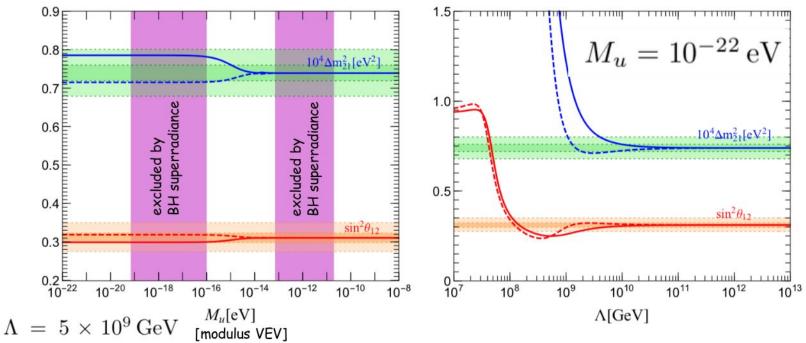
$$\mathcal{L} = i \sum_{f=e,e^{c},\nu} \overline{f} \ \overline{\sigma}^{\mu} \partial_{\mu} f + \frac{1}{2} \partial_{\mu} \varphi_{\alpha} \partial^{\mu} \varphi_{\alpha} - \frac{1}{2} M_{\alpha}^{2} \varphi_{\alpha}^{2}$$
$$- (m_{e} + \mathcal{Z}_{\alpha}^{e} \varphi_{\alpha}) e^{c} e - \frac{1}{2} \nu (m_{\nu} + \mathcal{Z}_{\alpha}^{\nu} \varphi_{\alpha}) \nu + h.c. + \dots$$
$$\tau = \langle \tau \rangle + \frac{\varphi_{u} + i \ \varphi_{v}}{\sqrt{2}}$$

in medium with non-zero electron number density

small, unless the modulus is very light

$$\delta m_{\nu}(0) = -n_e^0 \frac{\operatorname{Re}(\mathcal{Z}^e)\mathcal{Z}^{\nu}}{M^2(R)} \,,$$





from Feruglio's slides at Mod. Symmetry Bethe Workshop