The quantum nature of the "minimal" SO(10) GUT

Vasja Susič

IPNP, Charles University

in collaboration with Kateřina Jarkovská, Michal Malinský, Timon Mede

DISCRETE 2022, Baden Baden 2022-11-08

• Grand Unified Theories (GUT): \rightarrow SM interactions unify

 \rightarrow predict proton decay

Proton decay lifetime: usually significant uncertainty in prediction

Based on 2109.06784, further work to appear soon.

 $\blacksquare \ {\sf Grand \ Unified \ Theories \ ({\sf GUT}):} \quad \to {\sf SM \ interactions \ unify}$

 \rightarrow predict proton decay

- Proton decay lifetime: usually significant uncertainty in prediction
- "Minimal" SO(10) model: 45 + 126 + 10 in Higgs sector
 - \rightarrow interesting: better control of proton lifetime uncertainties
 - \rightarrow model however pathological at tree-level
 - \rightarrow important to determine:

Is the model saved at the quantum level (1-loop)?

Based on 2109.06784, further work to appear soon.

- non-SUSY renormalizable SO(10) GUT
- Matter content: \rightarrow fermions: $3 \times 16_F$

 \rightarrow scalars: $45+126+10_{\mathbb{C}}$

- non-SUSY renormalizable SO(10) GUT
- Matter content: \rightarrow fermions: $3 \times 16_F$

 \rightarrow scalars: $45 + 126 + 10_{\mathbb{C}}$

■ Breaking: 45 + 126 Higgs model, 2-stage (GUT & seesaw scale)

$$SO(10) \xrightarrow{\langle 45 \rangle} G \xrightarrow{\langle 126 \rangle} SU(3) \times SU(2) \times U(1)$$

- non-SUSY renormalizable SO(10) GUT
- Matter content: \rightarrow fermions: $3 \times 16_F$

 \rightarrow scalars: $45+126+10_{\mathbb{C}}$

■ Breaking: 45 + 126 Higgs model, 2-stage (GUT & seesaw scale)

$$SO(10) \xrightarrow{\langle 45 \rangle} G \xrightarrow{\langle 126 \rangle} SU(3) \times SU(2) \times U(1)$$

Yukawa sector: realistic, Y_{10} , \tilde{Y}_{10} , Y_{126} symmetric

 $16_F \ 16_F \ (Y_{10} \ 10 + \tilde{Y}_{10} \ 10^* + Y_{126} \ 126^*)$

- non-SUSY renormalizable SO(10) GUT
- Matter content: \rightarrow fermions: $3 \times 16_F$

 \rightarrow scalars: $45+126+10_{\mathbb{C}}$

■ Breaking: 45 + 126 Higgs model, 2-stage (GUT & seesaw scale)

$$SO(10) \xrightarrow{\langle 45 \rangle} G \xrightarrow{\langle 126 \rangle} SU(3) \times SU(2) \times U(1)$$

Yukawa sector: realistic, Y_{10} , \tilde{Y}_{10} , Y_{126} symmetric

 $16_F \ 16_F \ (Y_{10} \ 10 + \tilde{Y}_{10} \ 10^* + Y_{126} \ 126^*)$

■ Hope for robust proton decay prediction:

no $(45_{\textit{G}}\cdot45_{\textit{G}}\cdot\textit{S})/\textit{M}_{\textit{Pl}}$ operator modifying gauge coupling running

 \rightarrow GUT scale robustly determined

Breaking at tree level

- GUT-breaking (SM-singlet) VEVs: ω_{BL} , $\omega_{R} \in 45$, $\sigma \in 126$
- What are the possibilities for intermediate symmetry G?

Breaking at tree level

- GUT-breaking (SM-singlet) VEVs: ω_{BL} , $\omega_{R} \in 45$, $\sigma \in 126$
- What are the possibilities for intermediate symmetry G?

tachyonic states

Breaking at tree level

- GUT-breaking (SM-singlet) VEVs: ω_{BL} , $\omega_{R} \in 45$, $\sigma \in 126$
- What are the possibilities for intermediate symmetry G?

Tachyonicity example at tree level: for $\omega_{BL} \ll \omega_R$

$$M_{(8,1,0)}^2 = -2 a_2 \omega_R^2,$$

$$M_{(1,3,0)}^2 = +4 a_2 \omega_R^2.$$

Take $|a_2| \ll 1$: stabilized at 1-loop?

Saved at 1-loop?

■ Treatment at 1-loop: Coleman-Weinberg effective potential

$$V_1(\phi) = \frac{1}{64\pi^2} \operatorname{Tr}\left[\mathsf{M}_5^4(\phi) \left(\log\left[\frac{\mathsf{M}_5^2(\phi)}{\mu_R^2}\right] - \frac{3}{2}\right) + 3\mathsf{M}_G^4(\phi) \left(\log\left[\frac{\mathsf{M}_G^2(\phi)}{\mu_R^2}\right] - \frac{5}{6}\right)\right].$$

To obtain mass estimates: additional subtleties.

Saved at 1-loop?

Treatment at 1-loop: Coleman-Weinberg effective potential

 $V_1(\phi) = \frac{1}{64\pi^2} \operatorname{Tr}\left[\mathsf{M}_5^4(\phi) \left(\log\left[\frac{\mathsf{M}_5^2(\phi)}{\mu_R^2}\right] - \frac{3}{2}\right) + 3\mathsf{M}_G^4(\phi) \left(\log\left[\frac{\mathsf{M}_G^2(\phi)}{\mu_R^2}\right] - \frac{5}{6}\right)\right].$

To obtain mass estimates: additional subtleties.

Analysis considerations:

(1) non-tachyonicity (all states)

(2) perturbativity (definition: degree of arbitrariness)
(2a) corrections to masses δm² under control
(2b) RGE (of scalar potential parameters) under control
(3) unification of gauge couplings

Saved at 1-loop?

Treatment at 1-loop: Coleman-Weinberg effective potential

 $V_1(\phi) = \frac{1}{64\pi^2} \operatorname{Tr}\left[\mathsf{M}_{\mathcal{S}}^4(\phi) \left(\log\left[\frac{\mathsf{M}_{\mathcal{S}}^2(\phi)}{\mu_R^2}\right] - \frac{3}{2}\right) + 3\mathsf{M}_{\mathcal{G}}^4(\phi) \left(\log\left[\frac{\mathsf{M}_{\mathcal{G}}^2(\phi)}{\mu_R^2}\right] - \frac{5}{6}\right)\right].$

To obtain mass estimates: additional subtleties.

Analysis considerations:

(1) non-tachyonicity (all states)

- (2) perturbativity (definition: degree of arbitrariness) (2a) corrections to masses δm^2 under control (2b) RGE (of scalar potential parameters) under control (3) unification of gauge couplings
- Observation: universal ratio $\chi := \frac{\omega_R \omega_{BL}}{|\sigma|^2}$

e.g.
$$\tau = 2\beta'_4(3\omega_{BL} + 2\omega_R) + a_2 \chi(\omega_{BL} + \omega_R).$$

Breaking at 1-loop: Higgs model

• Perturbativity: $|\chi| \lesssim 1$: 2 potentially viable scenarios

Breaking at 1-loop: Higgs model

• Perturbativity: $|\chi| \lesssim 1$: 2 potentially viable scenarios

Next step: Yukawa sector

- Under further consideration: scenario $\sqrt{4}$
- Doublets $(1, 2, \pm 1/2)$: 2 in 126, 2 in 10_C

$$\mathcal{L}_{Yuk} = 16_F \ 16_F \ (Y_{10} \ \langle 10 \rangle + \widetilde{Y}_{10} \ \langle 10^* \rangle + Y_{126} \ \langle 126^* \rangle \)$$

all need EW VEVs for proper Yukawa fit

Next step: Yukawa sector

- Under further consideration: scenario $\sqrt{4}$
- Doublets $(1, 2, \pm 1/2)$: 2 in 126, 2 in 10_C

$$\mathcal{L}_{Yuk} = 16_{F} \ 16_{F} \ (Y_{10} \ \langle 10 \rangle + \widetilde{Y}_{10} \ \langle 10^{*} \rangle + Y_{126} \ \langle 126^{*} \rangle \)$$

all need EW VEVs for proper Yukawa fit

■ SM Higgs must be an admixture...

$$M_{(1,2,\pm 1/2)}^{2} = \begin{pmatrix} M_{126}^{2} & M_{mix}^{2} \\ M_{mix}^{2\dagger} & M_{10}^{2} \end{pmatrix} \sim \begin{pmatrix} M_{GUT}^{2} & |\sigma|^{2} \\ |\sigma|^{2} & M_{GUT}^{2} \end{pmatrix}$$

 2×2 blocks $\textit{M}^2_{10,126}:$ one state in each must be tuned to $\sigma\text{-scale}$

Next step: Yukawa sector

- Under further consideration: scenario $\sqrt{4}$
- Doublets $(1, 2, \pm 1/2)$: 2 in 126, 2 in 10_C

$$\mathcal{L}_{Yuk} = 16_{F} \ 16_{F} \ (Y_{10} \ \langle 10 \rangle + \widetilde{Y}_{10} \ \langle 10^{*} \rangle + Y_{126} \ \langle 126^{*} \rangle \)$$

all need EW VEVs for proper Yukawa fit

■ SM Higgs must be an admixture...

$$M^2_{(1,2,\pm 1/2)} = \begin{pmatrix} M^2_{126} & M^2_{mix} \\ M^{2\dagger}_{mix} & M^2_{10} \end{pmatrix} \sim \begin{pmatrix} M^2_{GUT} & |\sigma|^2 \\ |\sigma|^2 & M^2_{GUT} \end{pmatrix}$$

 2×2 blocks $M^2_{10,126}:$ one state in each must be tuned to $\sigma\text{-scale}$

• Behavior of tuning M_{126}^2 :

- Tree level: cannot be tuned to $|\sigma|^2$ (another state becomes tachyonic first) \rightarrow but can be tuned to size of 1-loop level
- 1-loop level: numeric scan (preliminary) suggests block cannot be tuned to 2-loop estimated level → PROBLEM!
 If above is true, model not viable.

 $\mathrm{SO}(10)$ GUT model with scalar sector $45+126+10_{\mathbb{C}}$:

- Interesting: "minimal", should give robust proton decay prediction
- Tricky: 1-loop is first consistent perturbative order
 - Technically challenging
 - Symmetry breaking does work in a small patch of parameter space
 - \rightarrow in that regard very predictive (requiring perturbativity)
 - Obtaining a good Higgs does not seem to work
 - \leftarrow SM Higgs component in 126 too small for Yukawa fit
- Ultimately unviable it seems

Thank you for your attention!

Backup: technical challenges

- A lot of particles: scalar mass matrix $M_S^2(\phi)$ in V_1 is 297 × 297 in Higgs model, 317 × 317 in full theory
- A lot of parameters: the scalar potential written schematically is

$$V(45, 126) = \mu^{2} 45^{2} + a 45^{4} + \nu^{2} |126|^{2} + \lambda |126|^{4} + \eta 126^{4} + \tau 45 \cdot |126|^{2} + (\alpha, \beta) 45^{2} \cdot |126|^{2} + \gamma 45^{2} \cdot 126^{2} + h.c.,$$

$$V(45, 126, 10) = V(45, 126) + \xi^{2} 10^{2} + h 10^{4} + \kappa 10^{2} 45^{2} + \zeta 45^{2} \cdot 126 \cdot 10 + \rho 10^{2} |126|^{2} + \rho' 10^{2} 126^{2} + \varphi |126|^{2} \cdot 126 \cdot 10 + h.c.$$

(possibly >1 independent contraction, for brevity 10* was written as 10)Parameters in full theory:

(15 $\mathbb{R}+14$ $\mathbb{C})$ dimensionless, (5 $\mathbb{R}+1$ $\mathbb{C})$ massive