

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

New results on CPV in charm & bottom at LHCb

8th Symposium on Prospects in the Physics of Discrete Symmetries Baden-Baden, 7-11 November 2022

Angelo Carbone on behalf of the LHCb Collaboration

INFN and University of Bologna

Outline

- CP violation in the Standard Model
- The LHCb detector and news from Upgrade-I commissioning
- Latest results on direct CP violation in beauty and charm decays
	- $B^+ \rightarrow hh'h'$ (model independent and resonances)
	- $D^0 \rightarrow K^-K^+$ (main focus of today's talk)
- LHCb combination on the CKM parameter γ and charm CPV and mixing parameters
- Conclusions

CP violation in the Standard Model

CP violation in the Standard Model

The weak interactions of quarks are described in terms of the unitary Cabibbo–Kobayashi–Maskawa (CKM) matrix.

CP violation implies a complex phase in the CKM matrix

$$
V_{CKM} = \begin{pmatrix} V_{ud}V_{us}V_{ub} \\ V_{cd}V_{cs}V_{cb} \\ V_{td}V_{ts}V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)
$$

CP violation is violated if $\eta \neq 0$ $|V_{CKM}| \simeq$ $1 \lambda \lambda^3$ $-\lambda$ 1 λ^2 λ^3 λ^2 1

The complex components reside only in V_{ub} and V_{td} at λ^3 order \rightarrow Higher order (λ^{5}) also in $V_{\rm cd}$ and $V_{\rm ts}$

CP violation in the decay (or direct CPV)

CP Violation in the decay consists of a difference in decay amplitude between the decay of a hadron $P \to f$ and its CP-conjugate $\bar{P} \to \bar{f}$

$$
a_f^d = \frac{|A_f|^2 - |\bar{A}_{\bar{f}}|^2}{|A_f|^2 + |\bar{A}_{\bar{f}}|^2}
$$

CPV can be observed, if the total amplitude of $P \rightarrow f$ (or $\bar{P} \rightarrow \bar{f}$) consists of two interfering amplitudes with difference phases

$$
A_f = A_1 e^{i\phi_1} e^{i\delta_1} + A_2 e^{i\phi_2} e^{i\delta_2}
$$

$$
\bar{A}_f = A_1 e^{-i\phi_1} e^{i\delta_1} + A_2 e^{-i\phi_2} e^{i\delta_2}
$$

$$
|A_f|^2 - |\bar{A}_f|^2 = 2|A_1||A_2|\sin(\phi_1 - \phi_2)\sin(\delta_1 - \delta_2)
$$

Only weak phases change under the action of the CP operator Strong phases can enhance the obserbed CP violation

The unitarity triangle

The CKM matrix is unitary implies constraints on CKM elements These constraints are usually expressed in terms of the Unitarity Triangle

The LHCb detector

The LHCb principle

The LHCb detector in RUN1 and RUN2

The LHCb-upgrade-I detector

Run3 commisioning

5-July-2022 First collisions at the world-record energy

SciFi Clusters

M2 Station

SIDE C

2000

 -2000 -1500 1000

SIDE A

Latest results on direct CP violation in beauty and charm decays

Direct CP violation in charmless three-body decays of B^{\pm} mesons LHCb-PAPER-2021-049 Search for direct CP violation in charged charmless $B \to PV$ decays LHCb-PAPER-2021-050 Measurement of time-integrated CP asymmetry in $D^0 \rightarrow K^- K^+$ decays LHCb-PAPER-2022-044

Charmless three-body decays $B^+ \rightarrow hh'h'$ LHCb-PAPER-2021-049

Analysis based on $\int \mathcal{L} dt = 5.9$ fb⁻¹

 $B^{\pm} \rightarrow \pi^{\pm} \pi^+ \pi^ B^{\pm} \rightarrow K^{\pm} K^+ K^ R^{\pm} \rightarrow \pi^{\pm} K^- K^+$ $B^{\pm} \rightarrow K^{\pm} \pi^+ \pi^-$

Phase-space integrated CP asymmetries and CP asymmetries in specific regions of the Dalitz plots

CPV already observed in previous LHCb analysis [Phys. Rev. D101 (2020) 012006, Phys. Rev. Lett. 124 (2020) 031801] [Phys. Rev. Lett. 123 (2019) 231802] [Phys. Rev. Lett. 112 (2014) 011801, Phys. Rev. D90 (2014) 112004]

Long-distance effects, interference between P and S-wave and $\pi\pi \rightarrow$ KK rescattering are the main sources of CP violation [Prog. Part. Nucl. Phys. 114 (2020) 103808]

Phase-space-integrated CP-violation LHCb-PAPER-2021-049

 $A_{CP}(B^{\pm} \to K^{\pm} \pi^+ \pi^-) = +0.011 \pm 0.002 \pm 0.003 \pm 0.003$ $A_{CP}(B^{\pm} \rightarrow K^{\pm} K^+ K^-) = -0.037 \pm 0.002 \pm 0.002 \pm 0.003$ $A_{CP}(B^{\pm} \rightarrow \pi^{\pm} \pi^+ \pi^-) = +0.080 \pm 0.004 \pm 0.003 \pm 0.003$ $A_{CP}(B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}) = -0.114 \pm 0.007 \pm 0.003 \pm 0.003$

14

Localised CP-violation

$$
A_{raw} = \frac{N_B^i - N_{B^+}^i}{N_{B^-}^i + N_{B^+}^i}
$$

Rich pattern of large and localized asymmetry from interference between the resonant contributions, and possible $\pi\pi \leftrightarrow KK$ rescattering

LHCb-PAPER-2021-049

Localised CP-violation

CP asymmetry presents positively and negatively in left and right region of $m^2(\pi^+\pi^-)$ high projection

Large CP asymmetry A_{CP} = (74.5 \pm 2.7 \pm 1.8)% in the charmonium region

CP violation in $B \rightarrow PV$ **decays**

 $B\to PV$ decays are quasi-two-body decays that result in threebody final states due to V decays

Given the large phase space of these B-meson decays, different types of resonant contributions are allowed where the vector resonances interfere with other resonant components

The CP asymmetry is measured using RUN2 data corresponding to 5.9 fb⁻¹ for the following decays

$$
B^{\pm} \rightarrow \overline{K}^* (892)^0 \pi^{\pm} \text{ from } B^{\pm} \rightarrow K^{\pm} \pi^+ \pi^-
$$

\n
$$
B^{\pm} \rightarrow \phi (1020) \pi^{\pm} \text{ from } B^{\pm} \rightarrow K^{\pm} K^+ K^-
$$

\n
$$
B^{\pm} \rightarrow \rho (770)^0 \pi^{\pm}.
$$
 from
$$
B^{\pm} \rightarrow \pi^{\pm} \pi^+ \pi^-
$$

\n
$$
B^{\pm} \rightarrow K^* (892)^0 K^{\pm} \text{ from } B^{\pm} \rightarrow \pi^{\pm} K^+ K^-
$$

Results

For isolated vector resonance the squared module of the amplitude is given by

$$
|\mathcal{M}_{\pm}|^{2} = f(\cos\theta(m_{V}^{2}, s_{\perp})) = p_{0}^{\pm} + p_{1}^{\pm} \cos\theta(m_{V}^{2}, s_{\perp}) + p_{2}^{\pm} \cos^{2}\theta(m_{V}^{2}, s_{\perp})
$$

\n
$$
|\mathcal{M}_{\pm}|^{2} = f(\cos\theta(m_{V}^{2}, s_{\perp})) + p_{2}^{\pm} \cos^{2}\theta(m_{V}^{2}, s_{\perp})
$$

\n
$$
|\mathcal{M}_{\pm}|^{2} = \sqrt{100}
$$

\n
$$
B^{\pm} \rightarrow R(h_{1}^{-}h_{2}^{+})h_{3}^{\pm}
$$
 where R is the resonance
\n m_{V} is the vector mass
\n s_{\perp} is $m^{2}(h_{1}^{-}h_{3}^{+})$
\n
$$
A_{CP}^{V} = \frac{|\mathcal{M}_{-}|^{2} - |\mathcal{M}_{+}|^{2}}{|\mathcal{M}_{-}|^{2} + |\mathcal{M}_{+}|^{2}} = \frac{p_{2}^{-} - p_{2}^{+}}{p_{2}^{-} + p_{2}^{+}}
$$

\n
$$
A_{CP}(\rho(770)^{0}K^{\pm}) = +0.150 \pm 0.019 \pm 0.011 \text{ and } 7.9 \text{ or}
$$

\n
$$
18 \text{ First CP violation observation at } 7.9 \text{ or}
$$

\n
$$
S_{\pm} = m^{2}(K^{*}\pi^{*})[\text{GeV}^{2}/c^{4}]
$$

LHCb-PAPER-2019-006

CP violation in charm

CP violation was observed in 2019 by LHCb with $D^0 \rightarrow K^-K^+$ and $D^0 \rightarrow \pi^- \pi^+$ decays measuring the difference of the time-integrated CP asymmetry

$$
\Delta A_{CP} = A_{CP}(KK) - A_{CP}(\pi \pi)
$$

LHCb observed (5.3 σ) CP violation in the neutral charm decay

$$
\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}
$$

Time-integratede CP asymmetry

$$
A_{CP}(f) = \frac{\int \epsilon(t) \left[\Gamma(D^0 \to f)(t) - \Gamma(D^0 \to \bar{f})(t) \right] dt}{\int \epsilon(t) \left[\Gamma(D^0 \to f)(t) + \Gamma(D^0 \to \bar{f})(t) \right] dt} = a_f^d + \frac{lt}{\tau_{D^0}} \Delta Y_f
$$

 $\epsilon(t)$ is the time-depedent reconstruction efficiency

 ΔY_f is related to charm mixing parameters

 $< t > f$ is the average acceptance-dependent decay time of the D^0 mesons in the experimental sample

CP violation in $D^0 \rightarrow K^-K^+$

The flavour of the initial state (D^o or $\overline{D}{}^{\,0}$) is tagged by the charge of the pion from $D^{*+} \rightarrow D^0 \pi_{\text{tag}}^+$ and $D^{*-} \rightarrow \overline{D}{}^0 \pi_{\text{tag}}^-$ coming from primary verteces

The asymmetry, made of the number of reconstructed D^0 and \overline{D}^0 , is defined as

$$
A = \frac{N(D^{0} \to f) - N(\overline{D}^{0} \to \overline{f})}{N(D^{0} \to f) + N(\overline{D}^{0} \to \overline{f})}
$$

and it is related to the CP asymmetry as

$$
A = A_{CP} + A_D(\pi) + A_P(D^{*+})
$$

nuisance asymmetries

LHCb-PAPER-2022-044

Prompt D^{*+} decay

production asymmetry

$$
A_P = \frac{\sigma(D) - \sigma(\overline{D})}{\sigma(D) + \sigma(\overline{D})}
$$

reconstruction asymmetry

$$
A_D = \frac{\epsilon(f) - \epsilon(\bar{f})}{\epsilon(f) + \epsilon(\bar{f})}
$$

The strategy

The $D^0 \rightarrow K^-K^+$ data sample corresponds to 5.9 fb⁻¹ of integrated luminosity recorded during RUN-2

Two sets of control samples to cancel nuisance asymmetries C_{D^+} : already used in RUN-1 $\mathcal{C}_{D^+_S}$: new sets of decay modes to improve precision and cross-check

$$
C_{D^{+}}: A_{CP}(D^{0} \to K^{-}K^{+}) = A(D^{*+} \to D^{0}(K^{-}K^{+})\pi_{\text{tag}}^{+}) - A(D^{*+} \to D^{0}(K^{-}\pi^{+})\pi_{\text{tag}}^{+})
$$

$$
+ A(D^{+} \to K^{-}\pi^{+}\pi^{+}) - A(D^{+} \to \overline{K}^{0}\pi^{+}) + A(\overline{K}^{0})
$$

 $C_{D_s^+}$: $A_{CP}(D^0 \to K^-K^+) = A(D^{*+} \to D^0(K^-K^+) \pi_{\text{tag}}^+) - A(D^{*+} \to D^0(K^- \pi^+) \pi_{\text{tag}}^+$ $+A(D_s^+ \to \phi \pi^+) - A(D_s^+ \to \overline{K}^0 K^+) + A(\overline{K}^0$

A kinematic weighting procedure has been applied to all the data samples

21 $A(\overline{K}^0)$ is the kaon detection asymmetry including mixing and CPV

The strategy

The $D^0 \rightarrow K^-K^+$ data sample corresponds to 5.9 fb⁻¹ of integrated luminosity recorded during RUN-2

Two sets of control samples to cancel nuisance asymmetries C_{D^+} : already used in RUN-1 $\mathcal{C}_{D^+_S}$: new sets of decay modes to improve precision and cross-check

$$
\mathbf{C}_{D+}: \quad A_{CP}(D^0 \to K^-K^+) = +A(D^{*+} \to (D^0 \to K^-K^+) \pi_{soft}^+) - A(D^{*+} \to (D^0 \to K^- \pi^+) \pi_{soft}^+) + A(D^+ \to K^- \pi^+ \pi^+) - [A(D^+ \to \overline{K}^0 \pi^+) - A(\overline{K}^0)]
$$

$$
\mathbf{C}_{\mathbf{D}\mathbf{s}+}: \quad A_{CP}(D^0 \to K^-K^+) = +A(D^{*+} \to (D^0 \to K^-K^+) \pi^+_{soft}) - A(D^{*+} \to (D^0 \to K^- \pi^+) \pi^+_{soft})
$$

$$
+A(D^+_s \to \phi \pi^+) - [A(D^+_s \to \overline{K}^0 \ K^+) - A(\overline{K}^0)]
$$

Same "color" indicates particles with equalized kinematics

Weigthing procedure before LHCD-PAPER-2022

LHCb-PAPER-2022-044

A multi-dimension and iterative algorithm is developed to ensure a good matching between all the particles involved in the various decays

LHCb-PAPER-2022-044

Signal yields

C_{D^+} method

Reduction factors correspond to the statistical power of each data sample after the weighting

24 Large reduction factors are due to the large difference in kinematics among the various decays

$\mathcal{C}_{D^+_S}$ method

Systematic uncertainties

LHCb-PAPER-2022-044

Fit model: alternative signal and background fitting models evaluated

Peaking background: impact estimated by fitting $m(KK)$

Secondary decays: the presence of D meson from B decays estimated using IP distributions

Kinematic weighting: evaluated the residual difference after the weighing

Neutral kaon asymmetry: accuracy tested with a data-driven approach

Charged kaon asymmetry: $K-K^+$ residual asymmetry from $D_s^+ \to \phi \pi^+$

LHCb-PAPER-2022-044

Final results

The value of the CP asymmetries are

 $C_{D^+}: \mathcal{A}_{CP}(K^-K^+) = [13.6 \pm 8.8 \text{ (stat)} \pm 1.6 \text{ (syst)}] \times 10^{-4},$ $C_{D_s^+}: \mathcal{A}_{CP}(K^-K^+) = [2.8 \pm 6.7 \text{ (stat)} \pm 2.0 \text{ (syst)}] \times 10^{-4}.$

with a total correlation corresponding to $\rho = 0.06$

First evidence for direct CP violation

Combining this measurement with the ΔA_{CP} and ΔY_f LHCb measurements

$$
a_{K^-K^+}^d = (7.7 \pm 5.7) \times 10^{-4}
$$

\n
$$
a_{\pi^-\pi^+}^d = (23.2 \pm 6.1) \times 10^{-4}
$$

\nwith $\rho(a_{KK}^d, a_{\pi\pi}^d) = 0.88$
\n
$$
a_{\pi^0}^d = 0.004
$$

\n
$$
a_{\pi^0}^d = 0.004
$$

This is the first evidence of CP violation (3.8σ) in an individual charm meson decay

LHCb-PAPER-2022-044

U-spin symmetry

 $a_d^{KK} + a_d^{\pi\pi} \neq 0$ at the level of 2.7 standard deviation

g **LHCb combination**

LHCb-CONF-2022-003

LHCb-CONF-2022-003

Charm and beaty combination

173 observables to determine 52 parameters

Combination based on frequentist approach (also Bayesian analysis performed in the previous combination) JHEP12(2021) 141

Charm observables also included

Results

LHCb-CONF-2022-003

Results

 $x = \left(0.398_{-0.049}^{+0.050}\right)$ % $y = (0.636_{-0.019}^{+0.020})\%$

Improvements of about 6% on xand 38% on yto the previous combination

$$
\begin{aligned}\n\left|\frac{q}{p}\right| &= \left(0.995^{+0.015}_{-0.016}\right) \\
\phi &= \left(2.5 \pm 1.5\right)^\circ \\
a_d^{KK} &= \left(9.0 \pm 5.7\right) \times 10^{-4} \\
a_d^{\pi\pi} &= \left(24.0 \pm 6.2\right) \times 10^{-4}\n\end{aligned}
$$

Evidence for CPV in $a_d^{\pi\pi}$ at 3.6 σ UNIVERSITÀ DI ROLOGNA

Conclusions

- The LHCb experiment plays an important role in the determination of CP violation in beauty and charm decays
- Today the latest measurements on CPV in beauty and charm
	- Large CP violation observed in the $B^+ \rightarrow hh'h'$ decay and in specific resonances and Dalitz regions
	- First evidence of CP violation in an individual charm decay, $D^0 \rightarrow \pi^- \pi^+$
	- Last combination of the CKM parameter γ and charm parameters
- LHCb-Upgrade-I commissioning is proceeding well and important milestones have been achieved so far

