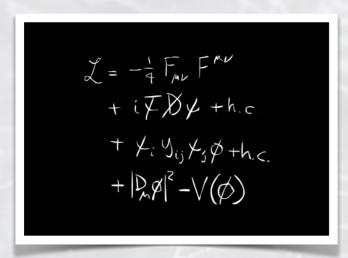


Charged lepton flavour violation

Jonathan Kriewald

Jožef Stefan Institut


DISCRETE 2022 Baden-Baden 7.-11. November 2022

Flavour violation in SM

Flavour and CP violation: SM

Flavour in the Standard Model: interactions (and transitions) between fermion families

Gauge interactions are flavour universal

Yukawas Y_{ij}^u , Y_{ij}^d and Y_{ij}^ℓ encode all flavour dynamics

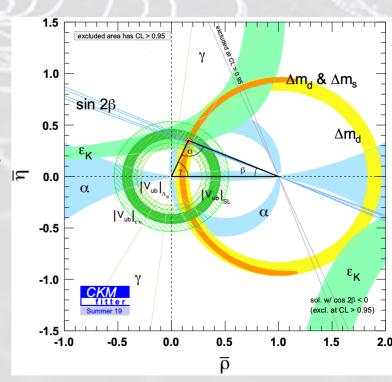
(Masses, mixings and CP violation)

SM quark sector:

6 massive states

flavour violated in charged current interactions $V_{
m CKM}^{ij}W^{\pm}ar{q}_iq_j$

total baryon number is conserved in SM interactions

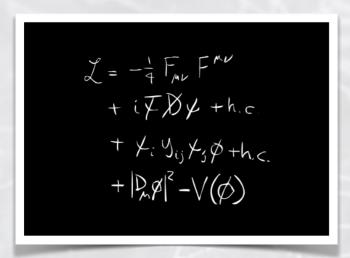

CP violation: δ_{CKM} and θ_{QCD}

(not enough to explain BAU from baryogenesis)

CKM paradigm extensively probed:

Meson oscillations & decays, β decays, CP violation...

Few tensions, CAA, $V_{cb},\,V_{ub},\,\dots$ see talks by Markus Prim and Andreas Crivellin



Flavour violation in SM

Flavour and CP violation: SM

Flavour in the Standard Model: interactions (and transitions) between fermion families

Gauge interactions are flavour universal

Yukawas Y_{ij}^u , Y_{ij}^d and Y_{ij}^ℓ encode all flavour dynamics

(Masses, mixings and CP violation)

SM quark sector:

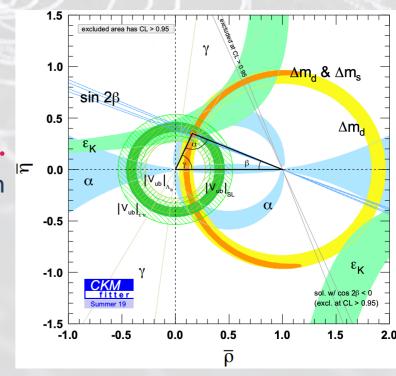
6 massive states

flavour violated in charged current interactions $V_{\mathrm{CKM}}^{ij}W^{\pm}\bar{q}_{i}q_{j}$

total baryon number is conserved in SM interactions

CP violation: δ_{CKM} and θ_{QCD}

(not enough to explain BAU from baryogenesis)


CKM paradigm extensively probed:

Meson oscillations & decays, β decays, CP violation...

Few tensions, CAA, V_{cb} , V_{ub} , ... see talks by Markus Prim and Andreas Crivellin

SM lepton sector: neutrinos are strictly massless

- Conservation of (total) lepton number and lepton flavour
- Lepton flavour universality only broken by Yukawas
- No intrinsic CPV sources (tiny) lepton EDMs @ 4-loop

Flavours: beyond SM

Lepton flavour and CP violation beyond SM

Strong arguments in f(l)avour of New Physics!

Observations unaccounted for in SM: ν -oscillations, Dark matter,

baryon asymmetry of the Universe

(and several theoretical caveats...)

How to unveil the NP model at work?

⇒Test SM symmetries with flavour observables:

(c)LFV, lepton flavour universality violation, ...

Flavours: beyond SM

Lepton flavour and CP violation beyond SM

Strong arguments in f(l)avour of New Physics!

Observations unaccounted for in SM: ν -oscillations, Dark matter,

baryon asymmetry of the Universe

(and several theoretical caveats...)

How to unveil the NP model at work?

⇒Test SM symmetries with flavour observables:

(c)LFV, lepton flavour universality violation, ...

- ν -oscillations 1st laboratory evidence of New Physics!
 - New mechanism of mass generation? Majorana fields?
 - New sources of CP violation?

Flavours: beyond SM

Lepton flavour and CP violation beyond SM

Strong arguments in f(l)avour of New Physics!

Observations unaccounted for in SM: ν -oscillations, Dark matter,

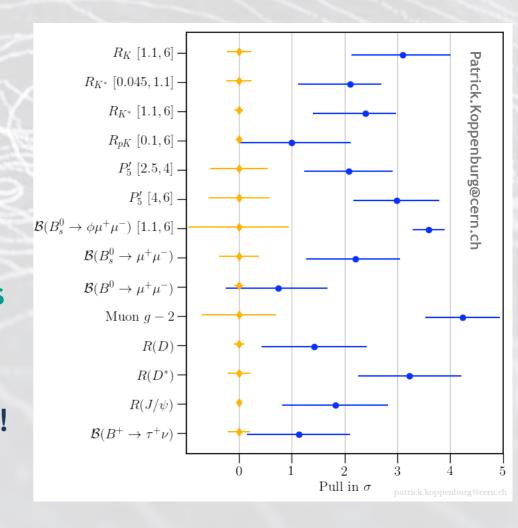
baryon asymmetry of the Universe

(also some theoretical caveats...)

How to unveil the NP model at work?

⇒Test SM symmetries with flavour observables:

(c)LFV, lepton flavour universality violation, ...


- ν -oscillations 1st laboratory evidence of New Physics!
 - New mechanism of mass generation? Majorana fields?
 - ▶ New sources of CP violation?

Currently many tensions with SM related to charged leptons

$$\triangleright (g-2)_{\mu,e}$$
, B-meson anomalies, ...

Leptons are uniquely versatile and sensitive probes of NP!

- ▶ Abundantly available, many different observables
- Unprecedented future experimental prospects

Flavours & New Physics

Lepton flavour & CP with massive neutrinos

Neutrinos oscillate ⇒ neutral lepton flavour violated, neutrinos are massive, new sources of CPV?

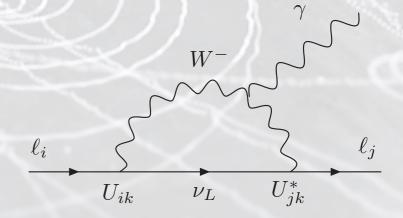
Extend SM to accommodate $\nu_{\alpha} \leftrightarrow \nu_{\beta}$: ad-hoc 3 $\nu_{R} \Rightarrow$ Dirac masses, "SM_{m_{\nu}}", U_{PMNS}

In $SM_{m_{\nu}}$: flavour-universal lepton interactions, lepton number conserved

Flavours & New Physics

Lepton flavour & CP with massive neutrinos

Neutrinos oscillate ⇒ neutral lepton flavour violated, neutrinos are massive, new sources of CPV?


Extend SM to accommodate $\nu_{\alpha} \leftrightarrow \nu_{\beta}$: ad-hoc 3 $\nu_{R} \Rightarrow$ Dirac masses, "SM_{m_{\nu}}", U_{PMNS}

In SM_{m_n} : flavour-universal lepton interactions, lepton number conserved

cLFV possible ... but not observable! BR($\mu \to e \gamma$) $\propto |\sum U_{\mu i}^* U_{e i} m_{\nu_i}^2 / m_W^2| \simeq 10^{-54}$

EDMs still tiny... (2-loop from δ_{CP} , $|d_{\ell}| \sim 10^{-35} ecm$)

 \Rightarrow any cLFV signal would imply non-minimal New Physics! (Not necessarily related to m_{ν} generation)

Lepton flavours offer a plethora of observables and probes of New Physics

⇒ Negative search results: allow to place tight bounds on New Physics

Outline

- Leptons: a gateway for New Physics
- (Dis)entangling cLFV sources
- **Conclusions**

Jonathan Kriewald IJS

Leptons: a gateway for New Physics

Jonathan Kriewald IJS 8 Nov 2022

Muons in the SM

Muons: a long history

Muon (aka mu-meson or mesotron) discovered in cosmic rays in 1937

Early searches and limits on $\mu(e^*) \rightarrow e \gamma$ decay (Hincks, Pontecorvo 1947)

 \Rightarrow hypothesis of ν_{μ} , second lepton family

Since then: μ one of the **best understood SM** particles:

Mass $m_{\mu} = 105.6583755 \pm 0.0000023~{
m MeV}$, Lifetime $\tau_{\mu} = 2.1969811 \pm 0.0000022~{\mu s}$

Magnetic moment: $(g-2)/2 = (11659206.1 \pm 4.1) \times 10^{-10}$ (BNL + FNAL)

Electric dipole moment: $|d_{\mu}| \lesssim 1.8 \times 10^{-19} ecm$ (BNL)

Michel decay: ${\rm BR}(\mu^- \to e^- \bar{\nu}_e \nu_u) \approx 100\,\%$ (determination of G_F)

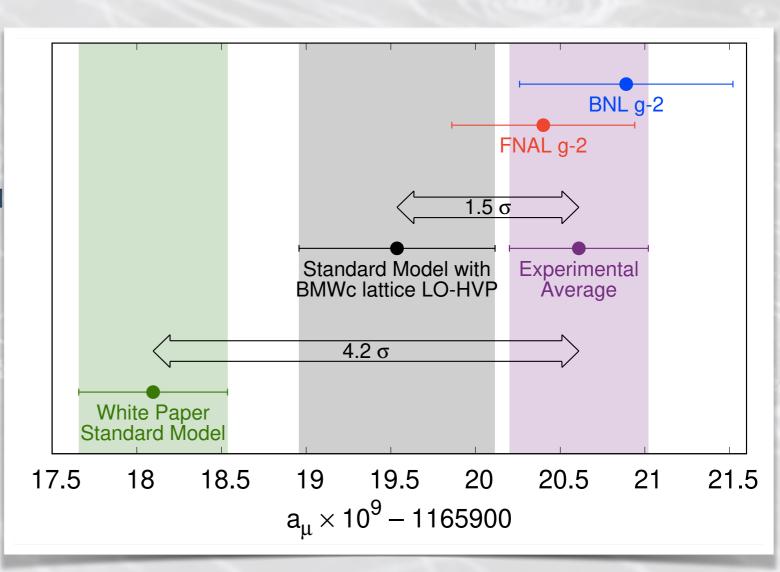
Rare SM decays: ${\rm BR}(\mu^- \to e^- \bar{\nu}_e \nu_\mu \gamma) = (6.0 \pm 0.5) \times 10^{-8}$

 $BR(\mu^- \to e^- \bar{\nu}_e \nu_\mu e^+ e^-) = (3.4 \pm 0.4) \times 10^{-5}$

Bound states: Muonium $(\mu^+e^-) \sim$ QED and gravity tests

Muonic atoms: search for P violation

Lepton flavour hints of NP


See yesterday's talk by Andreas Crivellin

Flavour precision: deviations in

$$(g-2)_{\mu}$$
 around 4σ ?

or NP needed in $e^+e^- \rightarrow \text{hadrons}$?

see e.g. Darmé et al. [2112.09139], Di Luzio et al. [2112.08312]

Recent LQCD results seem to confirm BMWc

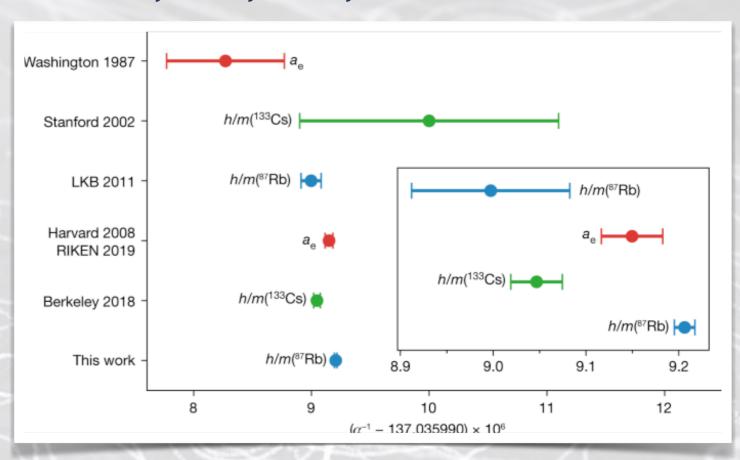
(Mainz & ETMC)

Lepton flavour hints of NP

> Flavour precision: deviations in

$$(g-2)_{\mu}$$
 around 4σ ?

or NP needed in $e^+e^- \rightarrow \text{hadrons}$?


see e.g. Darmé et al. [2112.09139], Di Luzio et al. [2112.08312]

ightharpoonup Deviations in $(g-2)_e$ or α_e ??

 5.4σ discrepancy in α_e determinations?

⇒ Violation of lepton universality??

See yesterday's talk by Andreas Crivellin

(2018)
$$\Delta a_e^{\text{Cs}} = -0.88(36) \times 10^{-12} \sim -2.3\sigma$$

(2020)
$$\Delta a_e^{\text{Rb}} = +0.48(30) \times 10^{-12} \sim + 1.7\sigma$$

Lepton universality (MFV) suggests:

$$\Delta a_e / \Delta a_\mu \simeq m_e^2 / m_\mu^2 = +2.4 \times 10^{-5}$$

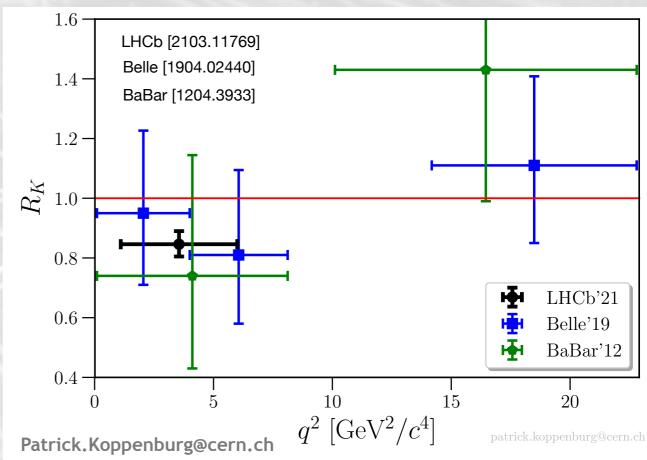
But
$$\Delta a_e^{Cs} / \Delta a_{\mu} = -3.3 \times 10^{-4} !$$

Lepton flavour hints of NP

Flavour precision: deviations in

$$(g-2)_{\mu}$$
 around 4σ ?

or NP needed in $e^+e^- \rightarrow \text{hadrons}$?


see e.g. Darmé et al. [2112.09139], Di Luzio et al. [2112.08312]

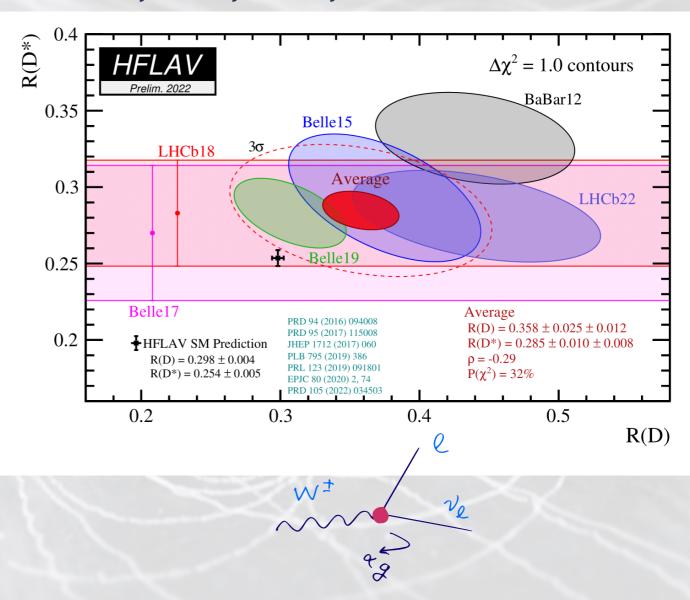
- \triangleright Deviations in $(g-2)_e$ or α_e ??
 - 5.4σ discrepancy in α_e determinations?
- ⇒ Violation of lepton universality??
- ightharpoonup Deviations in $R_{K^{(*)}}$ around 3σ ,

More tensions in $b \rightarrow s\mu\mu$

⇒ Violation of lepton universality??

SM: $R_K = R_{K^*} \simeq 1$

Exp:
$$R_K^{[1.1,6]} = 0.846^{+0.044}_{-0.041}$$
 [LHCb]


Exp:
$$R_{K^*}^{[1.1,6]} = 0.69_{-0.07}^{+0.11} \pm 0.05$$
 [LHCb]

Lepton flavour hints of NP

- Flavour precision: deviations in
 - $(g-2)_{\mu}$ around 4σ ?
 - or NP needed in $e^+e^- \rightarrow \text{hadrons}$?
- see e.g. Darmé et al. [2112.09139], Di Luzio et al. [2112.08312]
- \triangleright Deviations in $(g-2)_e$ or α_e ??
 - 5.4σ discrepancy in α_e determinations?
- ⇒ Violation of lepton universality??
- \blacktriangleright Deviations in $R_{K^{(*)}}$ around 3σ ,
- More tensions in $b \rightarrow s\mu\mu$
- ⇒ Violation of lepton universality??
- ightharpoonup Deviations in $R_{D^{(*)}}$ around 3σ ,
- ⇒ Violation of lepton universality??

See yesterday's talk by Andreas Crivellin

SM:
$$R_D \simeq 0.299 \pm 0.004$$
 , $R_{D^*} \simeq 0.254 \pm 0.005$

Exp:
$$R_D = 0.358 \pm 0.025 \pm 0.012$$

$$R_{D^*} = 0.285 \pm 0.010 \pm 0.008$$

Lepton flavour hints of NP

See yesterday's talk by Andreas Crivellin

Flave
(g −
or N
see e.g. Da
Deviation
5.4σ
⇒ Viola
More to

 \Rightarrow Viola.

S. Glashow, D. Guadagnoli & K. Lane '14:

"[...] any departure from lepton

universality is necessarily associated with

the

Violation of lepton flavour conservation.

No known symmetry principle can protect
the one in the absence of the other"

[1411.0565]

ightharpoonup Deviations in $R_{D^{(*)}}$ around 3σ ,

⇒ Violation of lepton universality??

Exp: $R_D = 0.358 \pm 0.025 \pm 0.012$

SM: $K_D \simeq 0.299 \pm 0.004$, $K_{D*} \simeq 0.234$

 $R_{D^*} = 0.285 \pm 0.010 \pm 0.008$

R(D)

Muons & cLFV

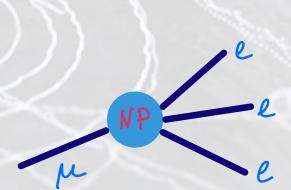
cLFV decays

Any cLFV signal necessarily implies the presence of New Physics!

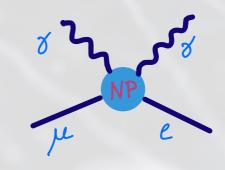
cLFV decay
$$\mu^+ \rightarrow e^+ \gamma$$
:

Clean event signature: back-to-back $e^+\gamma$, with $E_{\gamma}=E_{e^+}\simeq m_{\mu}/2$

Current bound: BR($\mu \rightarrow e\gamma$) $\lesssim 4.2 \times 10^{-13}$ (MEG)


Future prospects: BR($\mu \rightarrow e \gamma$) $\lesssim 6 \times 10^{-14}$ (MEG II)

Event signature: 3 electrons in coincidence, with $\sum p_e = (m_\mu, \vec{0})^T$


Current bound: BR($\mu \rightarrow eee$) $\lesssim 1 \times 10^{-12}$ (Sindrum)

Future prospects: $BR(\mu \rightarrow eee) \lesssim 10^{-15(16)}$ (Mu3e)

More cLFV decays:

$$\mu^+ \rightarrow e^+ \gamma \gamma$$
, $\mu^+ \rightarrow e^+ X (\rightarrow \gamma \gamma, e^+ e^-)$, $\mu \rightarrow ea$ (ALPs), ...

Muons & cLFV

Muonic bound states & muonic atoms


Any cLFV signal necessarily implies the presence of New Physics!

$$\triangleright$$
 cLFV $\mu^- \rightarrow e^-$ conversion: $\mu^- + (A, Z) \rightarrow e^- + (A, Z)^{(*)}$

Event signature: single mono-energetic e^- , with $E_e \simeq \mathcal{O}(100 \, \text{MeV})$

Current bound: $CR(\mu \rightarrow e, Au) \lesssim 7 \times 10^{-13}$ (Sindrum II)

Future prospects: $CR(\mu \rightarrow e, Al) \lesssim \mathcal{O}(10^{-17} - 10^{-18})$ (Mu2e, COMET) (also DeeMe)

 \triangleright Coulomb enhanced $\mu^-e^- \rightarrow e^-e^-$ decay: $\Gamma \propto \sigma_{\mu e \rightarrow e e} v_{\rm rel} [(Z-1)\alpha_e m_e]^3$

Clean event signature: back-to-back e^- pair, with $E_e \simeq m_\mu/2$ Koike et al. [1003.1578]

Experimental status: NEW observable!

(to be studied at COMET phase I?)

Large Z enhancement, very complementary to $\mu \to eee \& \mu \to e\gamma$ Uesaka et al. [1508.05747]

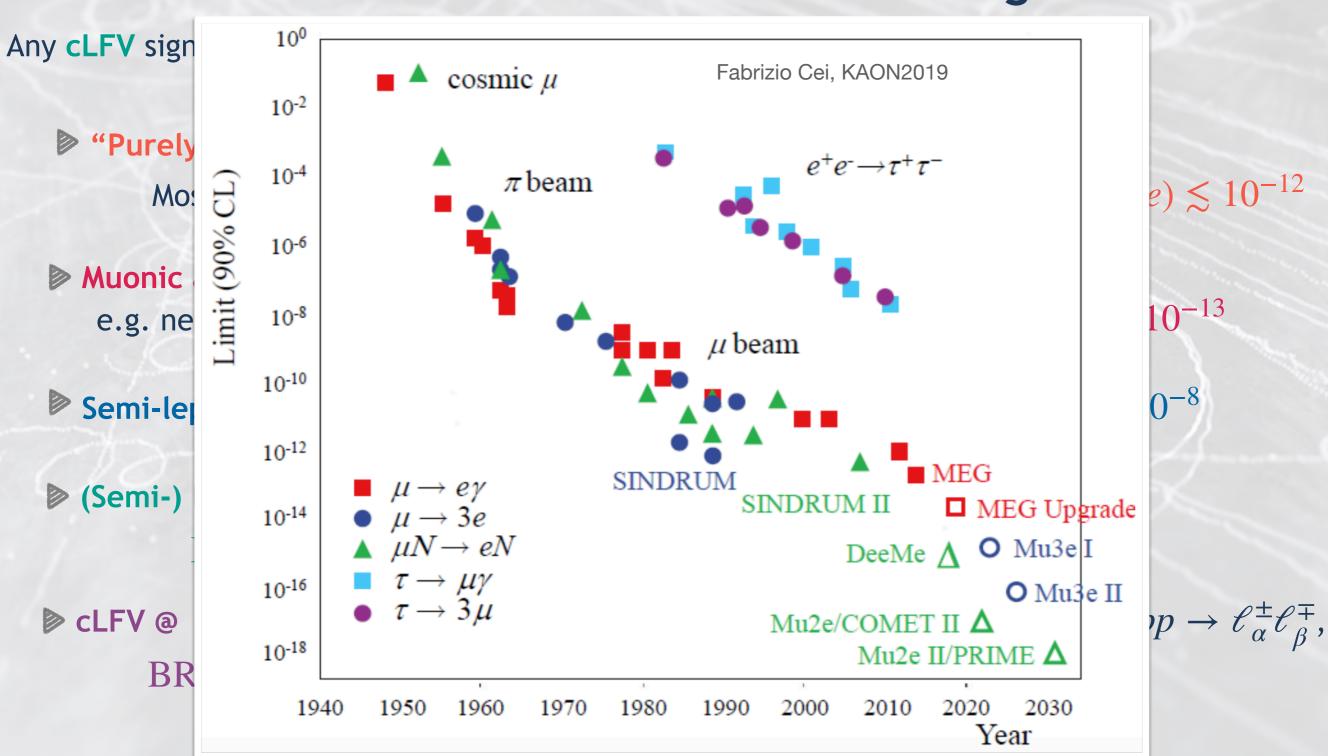
▷ cLFV & LNV $\mu^{-} - e^{+}$ conversion: $\mu^{-} + (A, Z) \rightarrow e^{+} + (A, Z - 2)^{*}$

Complicated event signature, NMEs poorly known... but: strong correlation with $0\nu2\beta!$

Muonium: $Mu(\mu^+e^-) \to \overline{Mu}(\mu^-e^+)$ oscillation, $Mu(\mu^+e^-) \to e^+e^-$ decay $P(Mu \rightarrow \overline{Mu}) \lesssim 8 \times 10^{-11}$ (Willmann et al. '99)

cLFV everywhere

cLFV observables across all sectors and energies


Any cLFV signal necessarily implies the presence of New Physics!

- Purely" leptonic cLFV observables: $\ell_{\beta} \to \ell_{\alpha} \gamma, \ell_{\beta} \to \ell_{\alpha} \ell_{\gamma} \ell_{\gamma'}$ Most stringent exp. bounds: $\mathrm{BR}(\mu \to e \gamma) \lesssim 4.2 \times 10^{-13}$, $\mathrm{BR}(\mu \to e e e) \lesssim 10^{-12}$
- Muonic atoms: many "nuclear-assisted" cLFV observables e.g. neutrinoless μe conversion $(\mu^- N \to e^- N) : \text{CR}(\mu e, \text{Au}) \lesssim 7 \times 10^{-13}$
- ▶ Semi-leptonic cLFV τ decays: $\tau \to P\ell', \tau \to V\ell'$; $\mathrm{BR}(\tau \to \phi\mu) \lesssim 8.4 \times 10^{-8}$
- Semi-) leptonic cLFV meson decays: $M \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}$, $M \to M' \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}$; BR $(K_L \to \mu^{\pm} e^{\mp}) \lesssim 4.7 \times 10^{-12}$, BR $(B_{(s)} \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}) \lesssim \mathcal{O}(10^{-5})$
- ▶ cLFV @ higher energies: $Z \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}$, $H \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}$, high- p_T di-lepton tails $pp \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}$, BR $(Z \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp}) \lesssim \mathcal{O}(10^{-6})$

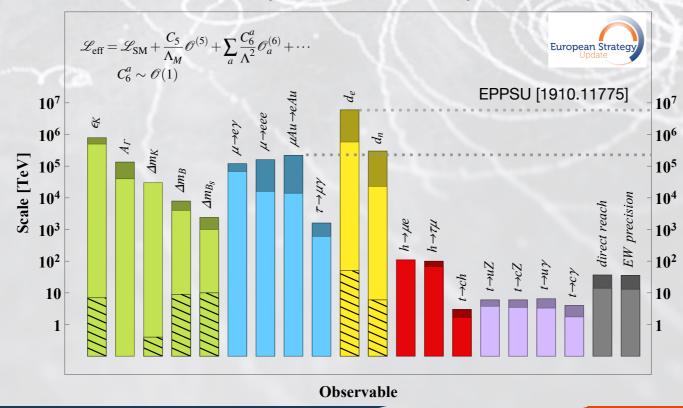
cLFV everywhere

cLFV observables across all sectors and energies

Probing large scales

The probing power of flavour violation

Paving the way to the SM: from prediction of charm to the existence of 3 families!


 \Rightarrow Indirect probes of much higher scales: e.g. top mass in $K^0 - \bar{K}^0$ oscillations

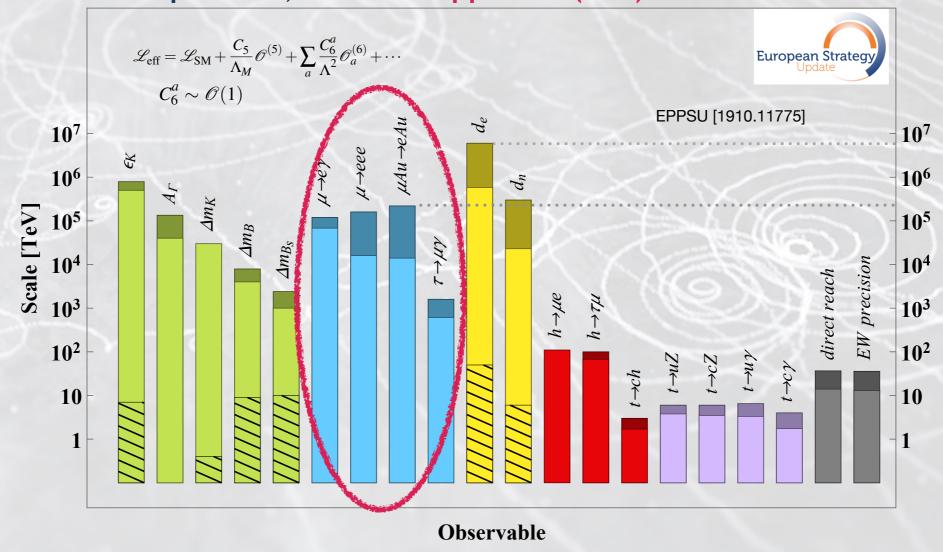
SM interpreted as a low-energy limit of a (complete, yet unknown) NP model

- ⇒ Study various classes of well-motivated models
- ⇒ Model-independent, effective approach (EFT)

$$\mathscr{L}^{\text{eff}} = \mathscr{L}^{\text{SM}} + \sum_{n \geq 5} \frac{1}{\Lambda^{n-4}} \mathscr{C}^{n}(g, Y, \dots) \mathscr{O}^{n}(\ell, q, H, \gamma, \dots)$$

Cast current data in terms of \mathscr{C}^6_{ij} and $\Lambda_{\mathrm{NP}}:\mathscr{C}^6_{ij}\approx 1\Rightarrow$ bounds on Λ_{NP}

Jonathan Kriewald IJS


Probing large scales

The probing power of flavour violation

SM interpreted as a low-energy limit of a (complete, yet unknown) NP model

- ⇒ Study various classes of well-motivated models
- ⇒ Model-independent, effective approach (EFT)

Probe scales much higher than direct collider reach!

⇒possibly indirect NP signals long before (direct) discovery LHC...

(Dis)entangling cLFV sources

Jonathan Kriewald IJS 8 Nov 2022

cLFV & leptoquarks

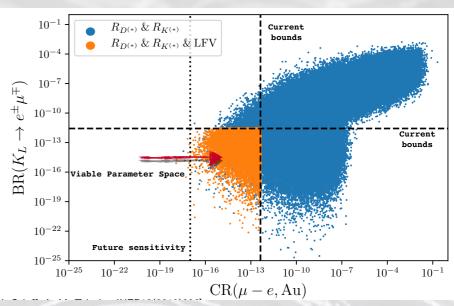
Leptoquarks — flavour anomalies and muon cLFV

ightharpoonup Minimal SM extension via single vector LQ (V_1^{μ})

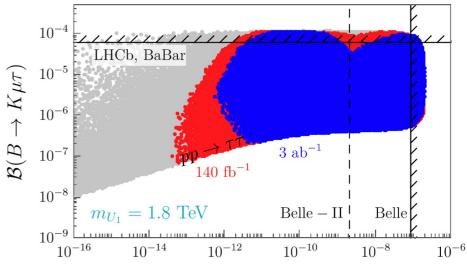
explain both $R_{K^{(*)}}$ and $R_{D^{(*)}}$ at tree-level

Strongly constraining observables:

 $K_L \rightarrow e\mu$ and $\mu - e$ conversion in nuclei


⇒ viable regimes within sensitivity of Mu2e and COMET

("Natural" Pati-Salam scales pushed to $\gtrsim 100 \, \mathrm{TeV}$)


Flavour + $\underset{p_T}{\text{high}}_{p_T}$ di-lepton tails: predict lower bounds on $B \to K\mu\tau \& \tau \to \phi\mu$ (close to current limit)

Minimal SM extensions via 1 or 2 scalar LQs: explain both $\Delta a_{\mu} \& \Delta a_{e}$, $\mu \rightarrow e \gamma$ crucial to identify viable scenarios!!!

Doršner et al. [2006.11624]

Hati, JK, Orloff, Teixeira [1907.05511]

Angelescu et al [2103.12504] $\mathcal{B}(\tau \to \mu \phi)$

Testing m_{ν} with cLFV

Neutrino mass generation

Mechanisms of m_{ν} generation: account for oscillation data

and ideally address SM issues — BAU (leptogenesis), DM candidates, ...

Many well motivated possibilities, featuring distinct NP states (singlets, triplets)

Realised at very different scales $\Lambda_{\rm EW}
ightharpoonup \Lambda_{\rm GUT}$

⇒ Expect *very* different phenomenological impact

Compare "vanilla" type I seesaw vs. low-scale seesaw:

 $\mathcal{O}(10^{10-15} \text{ GeV})$ High scale:

Low scale: $\mathcal{O}(MeV - TeV)$

Theoretically "natural" $Y^{\nu} \sim 1$

"Vanilla" leptogenesis

Decoupled new states

Finetuning of Y^{ν} (or approximate LN conservation)

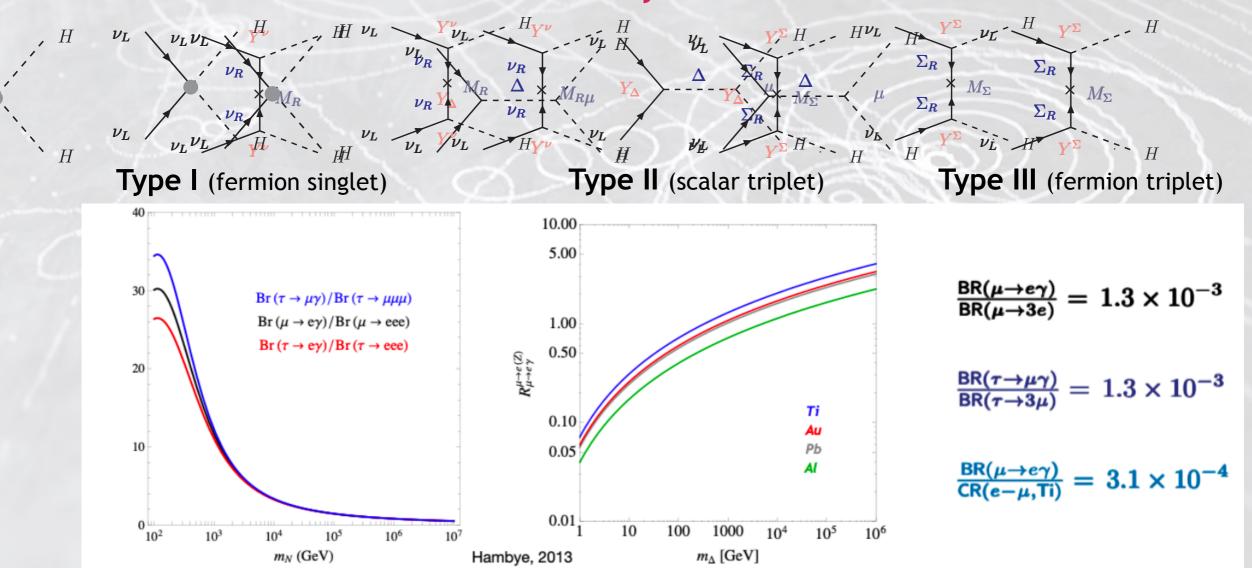
Leptogenesis possible (resonant, ...)

New states within experimental reach!

Collider, high-intensities ("leptonic observables")

⇒ low-scale seesaws (and variants): non-decoupled states, modified lepton currents!

⇒ rich phenomenology at colliders, high intensities and low energies testability!!


(Also expect tight constraints)

Peculiar cLFV patterns

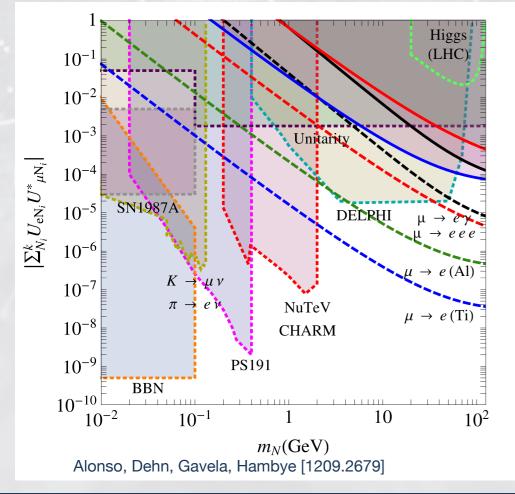
Disentangle seesaw mass models - correlations matter

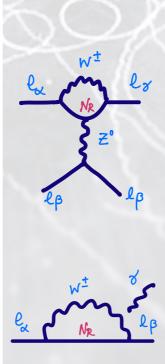
- \triangleright Models of m_{ν} (and leptonic LFV) predict/accommodate extensive ranges for cLFV...
 - In the absence of direct NP discovery **correlations** might allow to disentangle models and provide important **complementary information** to direct searches!
- Seesaw realisations: distinctive signatures for numerous cLFV observables ratios of observables to identify seesaw mediators & constrain their masses!

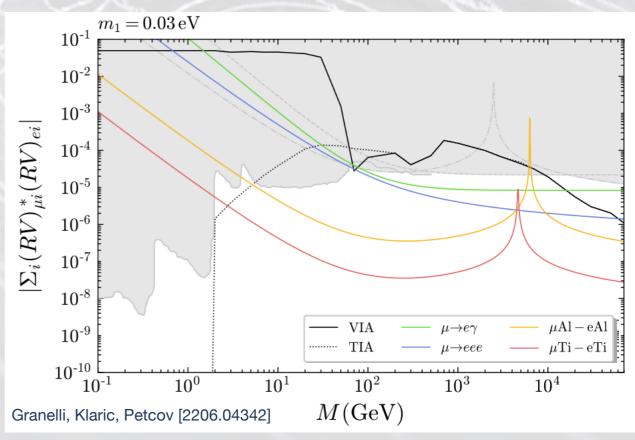
Probing seesaws

Low-scale type I seesaw

Extend SM with 3 "heavy" RH Majorana neutrinos: $\text{MeV} \lesssim m_{N_i} \lesssim 1-100~\text{TeV}$


Spectrum & mixings:


$$m{m}_{m{
u}} \simeq -v^2 Y_{
u}^T m{M}_{m{N}}^{-1} Y_{
u}$$
 , $m{\mathcal{U}}^T \mathcal{M}_{
u}^{6 imes 6} m{\mathcal{U}} = \mathrm{diag}(m_i)$


$$\mathcal{m{U}} = egin{pmatrix} m{U_{
u
u}} & U_{
u N} \ U_{N
u} & U_{NN} \end{pmatrix} \,, \quad m{U_{
u
u}} \simeq (1-\eta) \, m{U_{
m PMNS}} \,$$

Heavy states do not decouple ⇒ neutral and charged leptonic currents modified

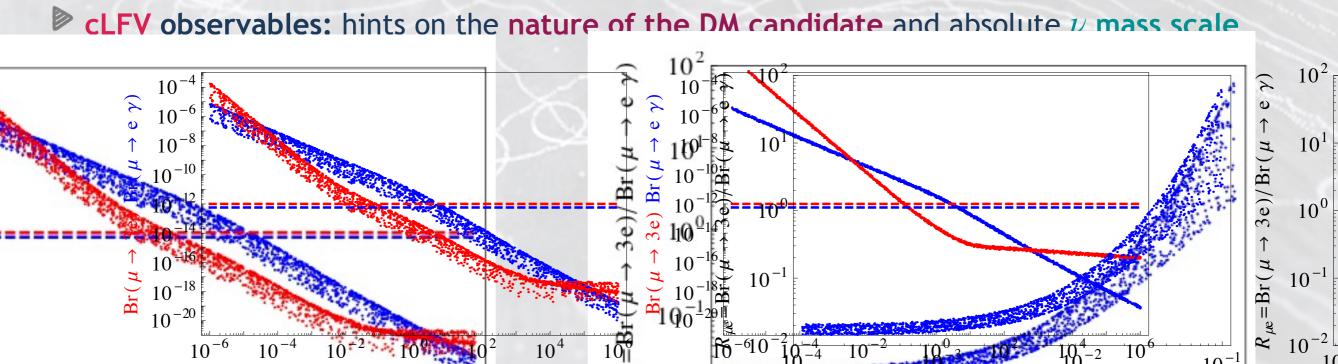
Rich phenomenology at high intensities and at colliders

Connection to DM

Scotogenic models — connection to dark matter

Scotogenic models: a link between neutrino mass generation and dark matter!

minimal realisations: extend SM by (inert) scalar doublet η


and RH neutrinos $N_{\!R}$

Additional \mathbb{Z}_2 symmetry: neutrino masses @ 1-loop

avour *m*

dark matter candidate (η or N_R)

[Review on phenomenology of generalised scotogenic models: Hagedorn et al, 1804.04117]

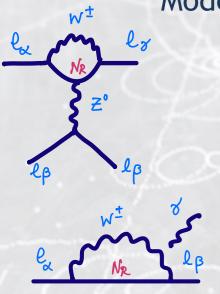
Determination of $R_{\mu e}$ = BR($\mu \to 3e$)/BR($\mu \to e\gamma$) \Rightarrow hints on lightest neutrino mass m_{ν_1}

 $\xi = (m_N/m_{\eta^+})^2$

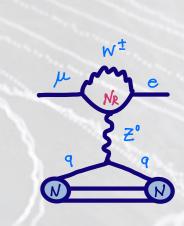
 m_1 [eV]

10

Peculiar cLFV patterns


cLFV signals — correlations matter

Synergy of cLFV observables very important: probe different operators/topologies


 $BR(\mu \to e\gamma), BR(\mu \to eee), CR(\mu - e, N)$ correlated by common topologies:

 γ dipoles & anapoles, Z penguins, tree-level contributions,... \Rightarrow 4-fermion operators

Model-dependent: certain topologies dominate, tree-level cont. might be present

Model	$\mu o eee$	$\mu N o e N$	$\frac{\mathrm{BR}(\mu{ ightarrow}eee)}{\mathrm{BR}(\mu{ ightarrow}e\gamma)}$	$rac{\mathrm{CR}(\mu N ightarrow e N)}{\mathrm{BR}(\mu ightarrow e \gamma)}$
MSSM	Loop	Loop	$\approx 6 \times 10^{-3}$	$10^{-3} - 10^{-2}$
Type-I seesaw	Loop*	Loop*	$3 \times 10^{-3} - 0.3$	0.1-10
Type-II seesaw	Tree	Loop	$(0.1-3)\times10^3$	$\mathcal{O}(10^{-2})$
Type-III seesaw	Tree	Tree	$\approx 10^3$	$\mathcal{O}(10^3)$
LFV Higgs	$Loop^\dagger$	Loop ^{*†}	$\approx 10^{-2}$	$\mathcal{O}(0.1)$
Composite Higgs	$Loop^*$	Loop*	0.05 - 0.5	2 - 20

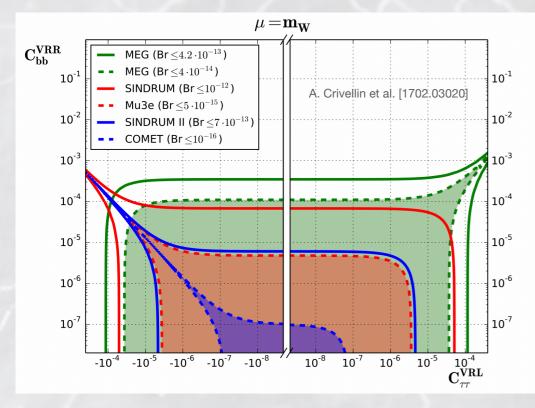
Calibbi et al. [1709.00294]

⇒ study correlations/ratios of cLFV observables, might find peculiar cLFV patterns

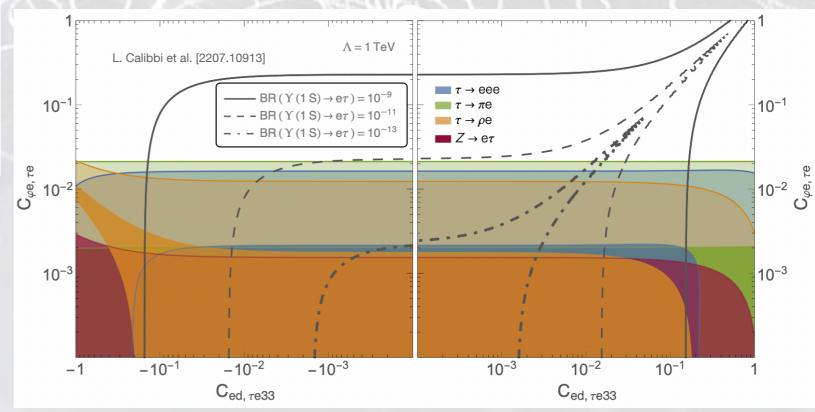
⇒ provide complementary information to direct searches

In EFT: RGE leads to operator mixing, need to consider as many observables as possible

to constrain
$$\mathscr{L}^{\text{eff}} = \mathscr{L}^{\text{SM}} + \frac{\mathscr{C}^5 \mathcal{O}^5}{\Lambda_{\text{LNV}}} (m_{\nu}) + \frac{\mathscr{C}^6 \mathcal{O}^6}{\Lambda_{\text{CLFV}}^2} (\ell_i \leftrightarrow \ell_j) + \dots + \frac{\mathscr{C}^9 \mathcal{O}^9}{\Lambda_{\text{LNV}}^5} (0\nu 2\beta) + \dots$$


Peculiar cLFV patterns

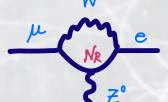
cLFV signals — correlations matter


In EFT: RGE leads to operator mixing, need to consider as many observables as possible

to constrain
$$\mathcal{L}^{\text{eff}} = \mathcal{L}^{\text{SM}} + \frac{\mathscr{C}^5 \mathcal{O}^5}{\Lambda_{\text{LNV}}} (m_{\nu}) + \frac{\mathscr{C}^6 \mathcal{O}^6}{\Lambda_{\text{CLFV}}^2} (\ell_i \leftrightarrow \ell_j) + \dots + \frac{\mathscr{C}^9 \mathcal{O}^9}{\Lambda_{\text{LNV}}^{'5}} (0\nu 2\beta) + \dots$$

Going beyond 2-operator-limits, see e.g. M. Ardu, S. Davidson and M. Gorbahn [2103.07212, 2202.09246, ...]

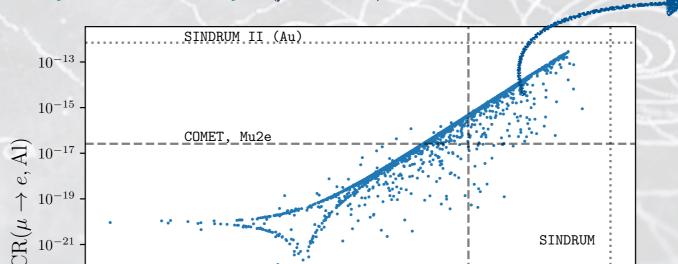
Beyond tree-level: interesting connections to semi-leptonic operators



The impact of CP violating phases — no more correlations

cLFV signatures: ratios of observables to identify mediators & constrain their masses!

But - CP violating phases do matter! And impact naïve expectations...


Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times5}$, CPV phases)

Observables dominated by common topology: Z-penguins

 $\mu - e$ conversion in nuclei

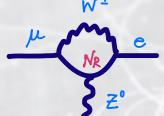
Strong correlation (CP conserving)

 $m_4 = m_5 = 1 \text{ TeV}$

CP conserving

Mu3e 10^{-23} 10^{-25} - 10^{-21} 10^{-23} 10^{-25} 10^{-19} 10^{-15} 10^{-17} $BR(\mu^- \rightarrow e^- e^+ e^-)$ Abada, **JK**, Teixeira [2107.06313]

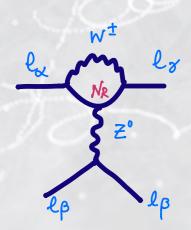
Observation of $\mu \rightarrow 3e$ ⇒ observation of $\mu - e$ conversion



The impact of CP violating phases — no more correlations

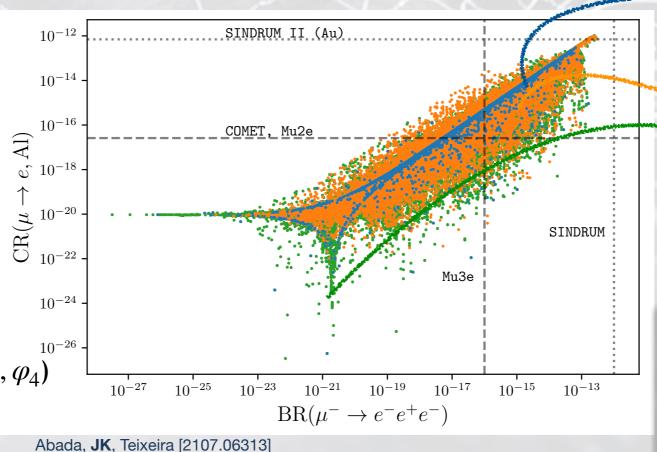
cLFV signatures: ratios of observables to identify mediators & constrain their masses!

But - CP violating phases do matter! And impact naïve expectations...


Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

Observables dominated by common topology: Z-penguins

 $\mu - e$ conversion in nuclei



$$m_4 = m_5 = 1 \text{ TeV}$$

CP conserving

• CPV phases (random $\delta_{\alpha 4}, \varphi_4$)

• CPV phases (grid $n\pi/4$)

Strong correlation (CP conserving)

Loss of correlation! (CP violating)

Observation of $\mu \rightarrow 3e$ \implies observation of $\mu - e$ conversion

The impact of CP violating phases — no more correlations

cLFV signatures: ratios of observables to identify mediators & constrain their masses!

But - CP violating phases do matter! And impact naïve expectations...

Some illustrative benchmark points - CP conserving (P_i) and CPV variants (P'_i)

	$BR(\mu \to e\gamma)$	$BR(\mu \to 3e)$	$CR(\mu - e, Al)$	$BR(\tau \to 3\mu)$	$BR(Z \to \mu \tau)$
P_1	3×10^{-16} o	1×10^{-15} \checkmark	9×10^{-15} \checkmark	2×10^{-13} o	3×10^{-12} o
P' ₁	1×10^{-13} \checkmark	2×10^{-14} \checkmark	1×10^{-16} \checkmark	1×10^{-10} \checkmark	2×10^{-9} \checkmark
P_2	2×10^{-23} o	2×10^{-20} o	2×10^{-19} o	1×10^{-10} \checkmark	3×10^{-9} \checkmark
P_2'	6×10^{-14} \checkmark	4×10^{-14} \checkmark	9×10^{-14} \checkmark	8×10^{-11} \checkmark	1×10^{-9} \checkmark
			3×10^{-9} X		
P_3'	8×10^{-15} o	1×10^{-14} \checkmark	6×10^{-14} \checkmark	2×10^{-9} \checkmark	1×10^{-8} \checkmark

Abada, **JK**, Teixeira [2107.06313]

 P_3 : only cLFV τ decays in allowed region; cLFV μ transitions already experimentally disfavoured Regime of large mixing angles excluded?

 P_3' : all considered cLFV transitions currently allowed, $\mu \to e \gamma$ beyond sensitivity!

(Non)-observation of cLFV observable(s) \Rightarrow not necessarily disfavour HNL extension!

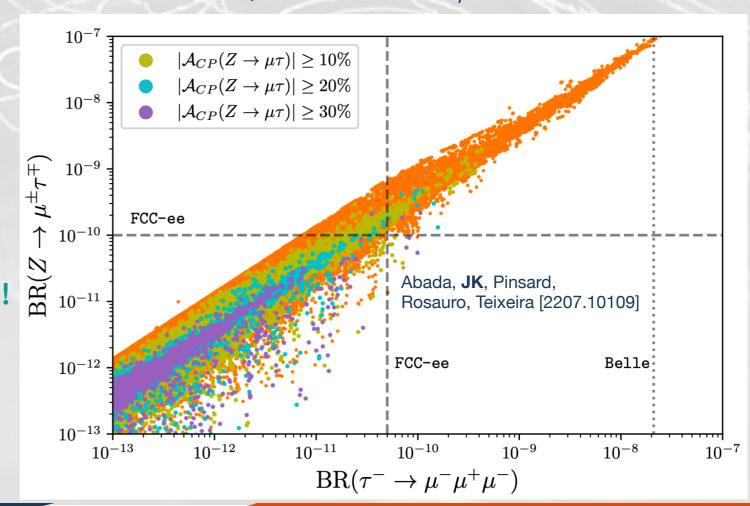
CP-asymmetries

Correlations broken, large mixing angles still possible, how do we "tag" the presence of CPV?

Benchmark points (with different mixing)

 P_1 (CP-conserving), P_2 (CP-violating) lead to identical cLFV predictions!

Observable	$\mu \to eee$	$\mu - e \text{ (Al)}$	$ au o \mu\mu\mu$	$Z o \mu au$
$P_{1,2}$ prediction	2×10^{-15}	5×10^{-14}	1×10^{-10}	2×10^{-10}


Abada, **JK**, Pinsard, Rosauro, Teixeira [2207.10109]

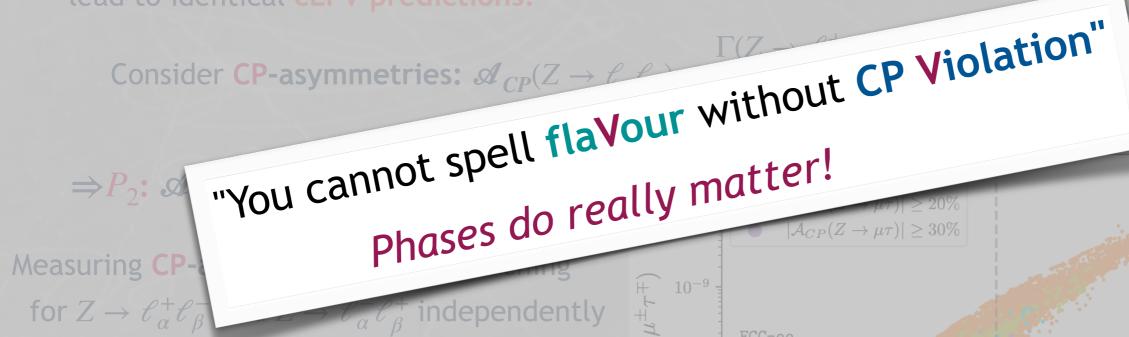
$$\text{Consider CP-asymmetries: } \mathscr{A}_{\mathit{CP}}(Z \to \ell_{\alpha} \ell_{\beta}) = \frac{\Gamma(Z \to \ell_{\alpha}^+ \ell_{\beta}^-) - \Gamma(Z \to \ell_{\alpha}^- \ell_{\beta}^+)}{\Gamma(Z \to \ell_{\alpha}^+ \ell_{\beta}^-) + \Gamma(Z \to \ell_{\alpha}^- \ell_{\beta}^+)}$$

$$\Rightarrow P_2$$
: $\mathcal{A}_{CP}(Z \to \mu \tau) \simeq 30 \%$!

Measuring **CP-asymmetries, i.e.** searching for $Z \to \ell_{\alpha}^+ \ell_{\beta}^-$ and $Z \to \ell_{\alpha}^- \ell_{\beta}^+$ independently might allow to constrain **CPV** phases and can help to identify the source of cLFV!

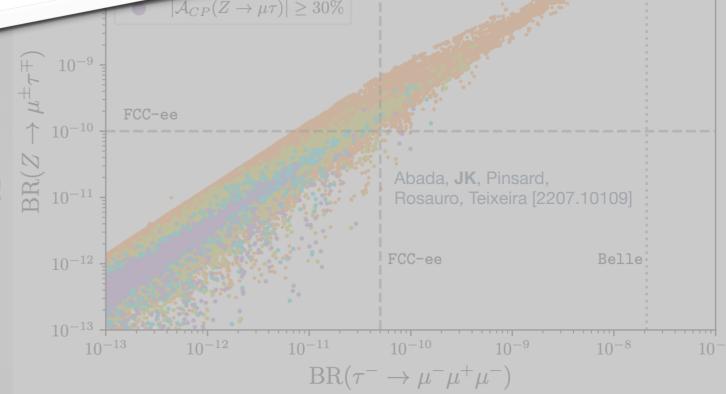
CP (T)-asymmetries have also been considered in angular distributions of $\mu \to eee$ (see Bolton & Petcov [2204.03468])

CP-asymmetries


Correlations broken, large mixing angles still possible, how do we "tag" the presence of CPV?

Benchmark points (with different mixing)

lead to identical cLFV predictions!


Observable	$\mu \rightarrow eee$	$\mu - e$ (Al)	$ au o \mu\mu\mu$	$Z o \mu au$
$P_{1,2}$ prediction	2×10^{-15}	5×10^{-14}	1×10^{-10}	2×10^{-10}

osauro, Teixeira [2207.10109]

might allow to constrain CPV phases and can help to identify the source of cLFV!

angular distributions of $\mu \rightarrow eee$ (see Bolton & Petcov [2204.03468])

Concluding remarks

Currently intriguing hints of New Physics related to lepton flavour observables

- $(g-2)_{\mu}$ (and $(g-2)_{e}$???) puzzles, rapid EXP and TH progress
- **B**-meson decay anomalies (& $(g-2)_{\mu,e}$) might signify the breakdown of lepton universality!
- ▶ LFUV might imply cLFV!

cLFV observables crucial to probe countless models,

many of them related to mechanisms of m_{ν} generation, leptogenesis, DM, ...

But: need to consider correlations beyond leading order, effects of CPV,

to disentangle sources of cLFV

Very exciting future ahead,

leave no flavoured stone unturned:)

Thank you!

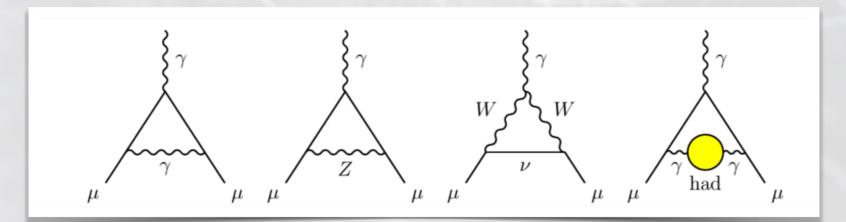
Jonathan Kriewald IJS 8 Nov 2022 26

Backup

Jonathan Kriewald IJS 8 Nov 2022

Anomalous magnetic moments

Magnetic moment: particle's tendency to align with a magnetic field


$$\overrightarrow{\mu_{\ell}} = \mathbf{g_{\ell}} \frac{e}{2 \, m_{\ell}} \, \overrightarrow{s}$$

 $\overrightarrow{\mu_{\ell}} = \mathbf{g_{\ell}} \frac{e}{2 m_{\ell}} \overrightarrow{s}$ $\mathbf{g_{\ell}} \sim \text{gyromagnetic ratio (Landé factor)}$ Dirac's prediction: $\mathbf{g_e} = 2$

$$\textbf{SM electromagnetic current:} \quad \mathcal{J}_{\mu} = \overline{\ell}(p') \left[\gamma_{\mu} \textcolor{red}{F_1}(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{\ell}} \textcolor{blue}{F_2}(q^2) + \gamma_5 \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{\ell}} \textcolor{blue}{F_3}(q^2) + \gamma_5 (q^2\gamma_{\mu} - \rlap/q q_{\mu}) \textcolor{blue}{F_4}(q^2) \right] \ell(p)$$

- **@ tree-level:** $F_1(0) = 1$; $F_{2,3,4}(0) = 0 \Rightarrow g_{\ell} = 2(F_1(0) + F_2(0)) = 2$
- @ higher orders: quantum corrections to $F_2(0) \Rightarrow$ anomalous magnetic moment

Higher-order (SM) corrections from QED, EW (W^{\pm}, Z and Higgs)

Δa_{μ} and New Physics

Muon anomalous magnetic moment circa 2022

Anomalous magnetic moment of the muon: from theory to experiment and back

$$a_{\mu}^{\text{SM}} = \frac{1}{2} \left(g_{\mu} - 2 \right) = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{had}}$$
 in conflict with BNL & FNAL? Or not?

$$\Delta a_{\mu} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = ?$$

Full **QED** $\mathcal{O}(\alpha^5)$ - 12672 diagrams!

'\	and the state of t	AND THE PERSON NAMED AND THE P	
	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$	
QED total	116 584 718.931	0.104	
EW market	153.6	1.0	
HVP	6845	40	
HLbL	92	18	
SM total	116 591 810	43	

EW completed at 2-loop (3-loop negligible)

Hadronic: smaller than QED, but dominate theoretical uncertainties!

HVP - evaluated from dispersion relations & data-driven input from $e^+e^- \rightarrow$ hadrons $(a_\mu$ "White paper" HVP result)

Rapid LQCD progress!

BMW 2021: $10^{11} \cdot a_{\mu}^{LQCD} = 7075 (55)$

 $\Rightarrow 2.1\sigma$ tension!

2022: confirmation by Mainz & ETMC

HLbL - recent progress, from hadronic models to dispersive framework, 1st LQCD results!

Δa_u and New Physics

Muon anomalous magnetic moment circa 2022

Anomalous magnetic moment of the muon: from theory to experiment and back

$$a_{\mu}^{\text{SM}} = \frac{1}{2} \left(g_{\mu} - 2 \right) = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{had}} \text{ in conflict with BNL & FNAL? Or not?}$$

 $\Delta a_{\mu} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = ?$

Recent LQCD results seem to confirm BMWc

 \Rightarrow New tensions with $e^+e^- \rightarrow$ hadrons scattering

New Physics needed elsewhere? see e.g. Darmé et al. [2112.09139], Di Luzio et al. [2112.08312]

MUonE experiment to conclusively measure **HVP!**

Standard Model with BMWc lattice LO-HVP 4.2 σ White Paper Standard Model 21.5 19 19.5 18.5 20 20.5 17.5 $a_{II} \times 10^9 - 1165900$

New Physics needed for g-2? or not?

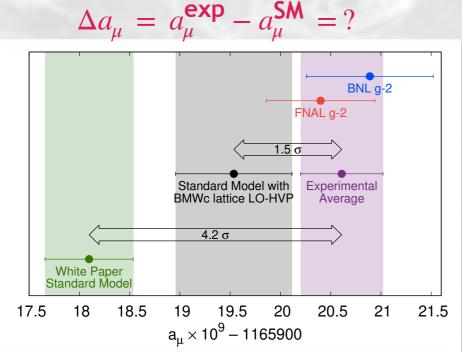
$$\mathscr{H}_{\mathsf{eff}}^{\mathsf{NP}} \sim \frac{C_{a_{\mu}}^{\mathsf{6}}}{\Lambda_{\mathsf{NP}}^{2}} \left(\bar{\Psi}_{\mu} \, \sigma_{\alpha\beta} \, \Psi_{\mu} \right) \, F^{\alpha\beta} H$$

If $\Delta a_{\mu} \sim \mathcal{O}(\text{few }\sigma) \approx 2 \times a_{\mu}^{\text{SM}}$, weak $\Rightarrow \Delta a_{\mu} \approx \frac{C_{a_{\mu}}^{6}}{\Lambda_{NP}^{2}} (m_{\mu} \text{v})$ Loop-induced, chirality-flipping,

Typically $\Lambda_{NP} \sim \text{few} \times 100 \text{ GeV}$

Typically $\Lambda_{\rm NP} \sim {\rm few} \times 100~{\rm GeV}$

⇒ Huge impact for flavour pheno!


For recent "model survey" see e.g. Athron et al. [2104.03691]

$\Delta a_{\mu,e}$ and New Physics

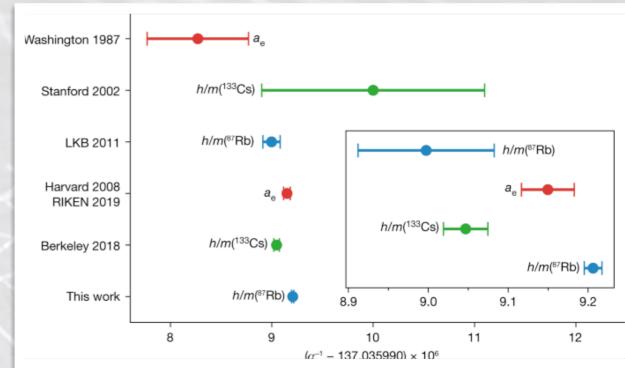
Anomalous magnetic moments: muon and electrons

Anomalous magnetic moment of the muon

Recent experimental progress on α_e & α_e :

(2018)
$$\Delta a_e^{\text{Cs}} = -0.88(36) \times 10^{-12} \sim -2.3\sigma$$

(2020)
$$\Delta a_e^{\text{Rb}} = +0.48(30) \times 10^{-12} \sim + 1.7\sigma$$


Lepton universality (MFV) suggests:

$$\Delta a_e / \Delta a_\mu \simeq m_e^2 / m_\mu^2 = +2.4 \times 10^{-5}$$

But $\Delta a_e^{Cs} / \Delta a_u = -3.3 \times 10^{-4} !$

⇒Hint of violation of lepton universality?

New Physics: badly needed? or not?

Difference of **5.4** σ in determination of α_e ???

Explaining both Δa_e^{Cs} & Δa_{μ} in simple BSM is very hard... ... but possible! e.g. scalar leptoquarks, axions, light Z', etc.

Lepton flavour universality

Accidental "symmetry" in the SM: couplings of electroweak gauge bosons are "blind" to lepton flavour

⇒Lepton Flavour Universality (LFU)

Construct observables sensitive to LFUV:

e.g. ratios of EW gauge boson decays:

$$R_Z^{\alpha\beta}, R_W^{\alpha\beta} = \frac{\Gamma(Z \to \ell_\alpha^+ \ell_\alpha^-)}{\Gamma(Z \to \ell_\beta^+ \ell_\beta^-)}, \frac{\Gamma(W \to \ell_\alpha \nu)}{\Gamma(W \to \ell_\beta \nu)}, \text{ in SM: } R_Z^{\alpha\beta}, R_W^{\alpha\beta} \simeq 1$$

$$R_Z^{\mu e} = 1.0001 \pm 0.0024 \text{ (LEP)}$$
 $R_W^{\mu e} = 0.996 \pm 0.008 \text{ (ATLAS)}$

$$R_Z^{\tau\mu} = 1.0010 \pm 0.0026 \text{ (LEP)}$$
 $R_W^{\tau\mu} = 1.070 \pm 0.026 \text{ (LEP)}$

$$R_Z^{\tau e} = 1.0020 \pm 0.0032 \text{ (LEP)}$$
 $R_W^{\tau e} = 1.063 \pm 0.027 \text{ (LEP)}$

$$R_W^{\tau\mu} = 0.992 \pm 0.013 \text{ (ATLAS)}$$

 \Rightarrow Place strong bounds on New Physics: e.g. neutrino mass models modifying W-vertex ...

Lepton flavour universality: leptonic meson decays

Accidental "symmetry" in the SM: couplings of electroweak gauge bosons are "blind" to lepton flavour

⇒Lepton Flavour Universality (LFU)

Violation of LFU also signals the presence of NP!

Construct observables sensitive to LFUV:

Kaon sector:
$$R_K^{\ell} = \frac{\Gamma(K \to e\nu)}{\Gamma(K \to \mu\nu)} \propto \frac{m_e^2}{m_{\mu}^2}$$

$$R_K^{\text{SM}} = (2.477 \pm 0.001) \times 10^{-5}$$

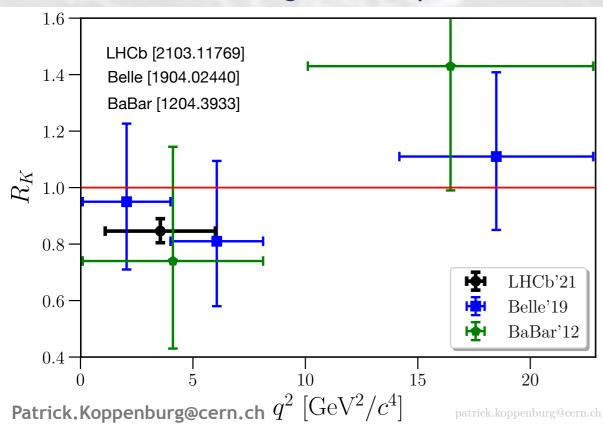
$$R_{\nu}^{\text{exp}} = (2.488 \pm 0.009) \times 10^{-5}$$
 [NA62]

[NA62]

Pion sector:
$$R_{e/\mu}^{\pi} = \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))}$$

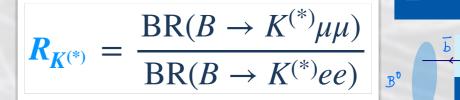
$$R_{\pi}^{\text{SM}} = (1.2354 \pm 0.0002) \times 10^{-4}$$

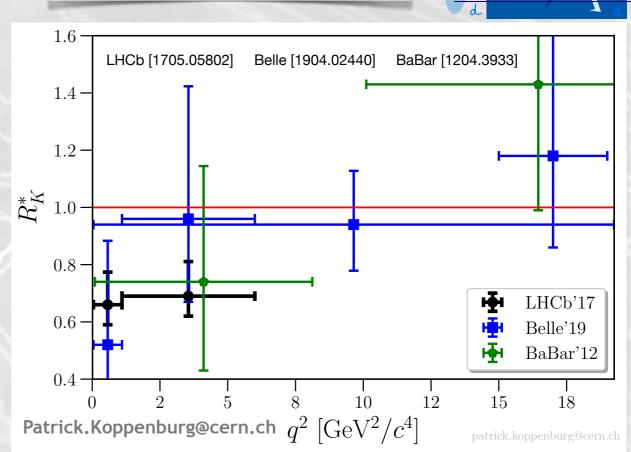
$$R_{\pi}^{\rm exp} = (1.2327 \pm 0.0023) \times 10^{-4}$$
 [PiENu]


⇒New Physics contributions can be at most $\mathcal{O}(10^{-3})!!!$

(Similar observables for τ decays...)

Lepton flavour universality: semi-leptonic mesor LHCb


Violation of LFU signals the presence of NP!



Theoretically clean: hadronic uncertainties (mostly) cancel in ratios

SM:
$$R_K = R_{K^*} \simeq 1$$

Exp:
$$R_K^{[1.1,6]} = 0.846^{+0.044}_{-0.041}$$
 [LHCb]

Exp:
$$R_{K^*}^{[1.1,6]} = 0.69_{-0.07}^{+0.11} \pm 0.05$$
 [LHCb]

 $\Rightarrow 2-3\sigma$ smaller than SM! Hint on LFUV New Physics coupled to muons?

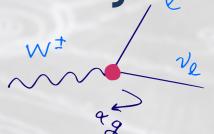
(Many other observables in $b \to s\ell\ell$ also in tension with SM)

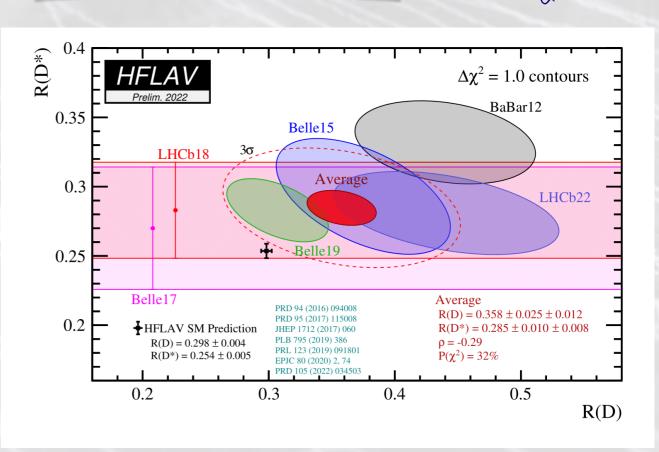
See yesterday's talk by Andreas Crivellin!

ik|hef

Lepton flavour universality: semi-leptonic meson decays

Violation of LFU signals the presence of NP!


Theoretically clean: hadronic uncertainties (mostly) cancel in ratios


SM:
$$R_D \simeq 0.299 \pm 0.004$$
 , $R_{D^*} \simeq 0.254 \pm 0.005$

Exp:
$$R_D = 0.358 \pm 0.025 \pm 0.012$$

$$R_{D*} = 0.285 \pm 0.010 \pm 0.008$$

$$\mathbf{R}_{\mathbf{D}^{(*)}} = \frac{\mathrm{BR}(B \to D^{(*)} \tau \nu)}{\mathrm{BR}(B \to D^{(*)} \ell \nu)}$$

 \Rightarrow combined: $\sim 3\sigma$ larger than SM!

Hint on LFUV New Physics coupled to tau leptons?

See yesterday's talk by Andreas Crivellin!

A "3+2" neutrino toy model

Simplified "toy models" for phenomenological analyses: SM + $\nu_{\rm s}$

Ad-hoc (low-energy) constructions: SM extended via n_S Majorana massive states

No assumption on mechanism of mass generation

Well-defined interactions in physical basis

Phenomenological low-energy limit of complete constructions (type I seesaw, ISS, ...)

Hypotheses: 3 active neutrinos + 2 sterile states $n_L = (\nu_{Le}, \nu_{L\mu}, \nu_{L\tau}, \nu_s^c, \nu_{s'}^c)^T$

interaction basis \iff physical basis $|n_I\rangle = \mathcal{U}_{5\times 5} |\nu_i\rangle$

 $n_{L} = (\nu_{Le}, \nu_{L\mu}, \nu_{L\tau}, \nu_{s}^{c}, \nu_{s'}^{c})^{T}$ $|n_{L}\rangle = \mathcal{U}_{5\times5} |\nu_{i}\rangle$

Left-handed lepton mixing $ilde{m{U}}_{\mathsf{PMNS}}$

 3×3 sub-block, non-unitary!

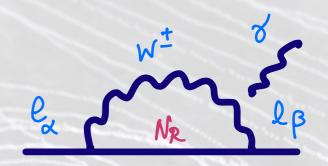
Active-sterile mixing $U_{\alpha i}$ 3×5 rectangular matrix

$$\mathcal{U}_{e1} \quad \mathcal{U}_{e2} \quad \mathcal{U}_{e3} \quad \mathcal{U}_{e4} \quad \mathcal{U}_{e5} \ \mathcal{U}_{\mu 1} \quad \mathcal{U}_{\mu 2} \quad \mathcal{U}_{\mu 3} \quad \mathcal{U}_{\mu 4} \quad \mathcal{U}_{\mu 5} \ \mathcal{U}_{\tau 1} \quad \mathcal{U}_{\tau 2} \quad \mathcal{U}_{\tau 3} \quad \mathcal{U}_{\tau 4} \quad \mathcal{U}_{\tau 5} \ \mathcal{U}_{s1} \quad \mathcal{U}_{s2} \quad \mathcal{U}_{s3} \quad \mathcal{U}_{s4} \quad \mathcal{U}_{s5} \ \mathcal{U}_{s'1} \quad \mathcal{U}_{s'2} \quad \mathcal{U}_{s'3} \quad \mathcal{U}_{s'4} \quad \mathcal{U}_{s'5} \ \end{pmatrix}$$

$$\mathcal{U} = R_{45} R_{35} R_{25} R_{15} R_{34} R_{24} R_{14} R_{23} R_{13} R_{12} \times \operatorname{diag}(1, e^{i\varphi_2}, e^{i\varphi_3}, e^{i\varphi_4}, e^{i\varphi_5})$$

Would-be PMNS no longer unitary, leptonic $oldsymbol{W}$ and $oldsymbol{Z}$ vertices modified

Physical parameters: 5 masses [3 light (mostly active) & 2 heavier (mostly sterile) states] 10 mixing angles, 10 CPV phases (6 Dirac δ_{ij} , 4 Majorana φ_i)


The impact of CP violating phases

cLFV processes mediated by HNL at loop-level

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

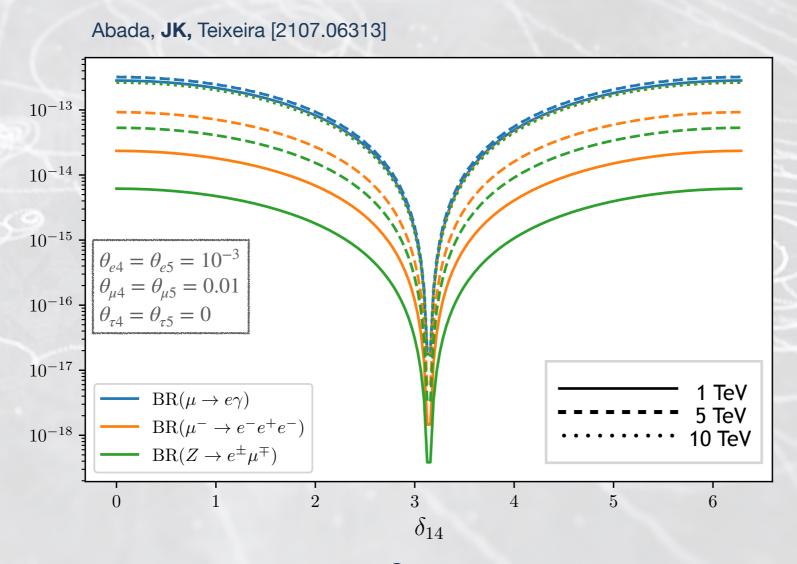
Radiative decays: BR($\mu \to e\gamma$) $\propto |G_{\gamma}^{\mu e}|^2$

$$G_{\gamma}^{\mu e} = \sum_{i=4,5} \mathcal{U}_{ei} \mathcal{U}_{\mu i}^* G_{\gamma} \left(\frac{m_{N_i}^2}{m_W^2} \right)$$

Assume (for simplicity & illustrative purposes): $m_4 \approx m_5$ and $\sin \theta_{\alpha 4} \approx \sin \theta_{\alpha 5} \ll 1$

$$|G_{\gamma}^{\mu e}|^2 \approx 4 \sin^2 \theta_{e4} \sin^2 \theta_{\mu 4} \cos^2 \left(\frac{\delta_{14} + \delta_{25} - \delta_{15} - \delta_{24}}{2}\right) G_{\gamma} \left(\frac{m_{N_i}^2}{m_W^2}\right)$$

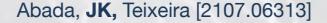
 \Rightarrow Radiative decays: rate depends only on Dirac phases; full cancellation for $\Sigma \delta = \pi$

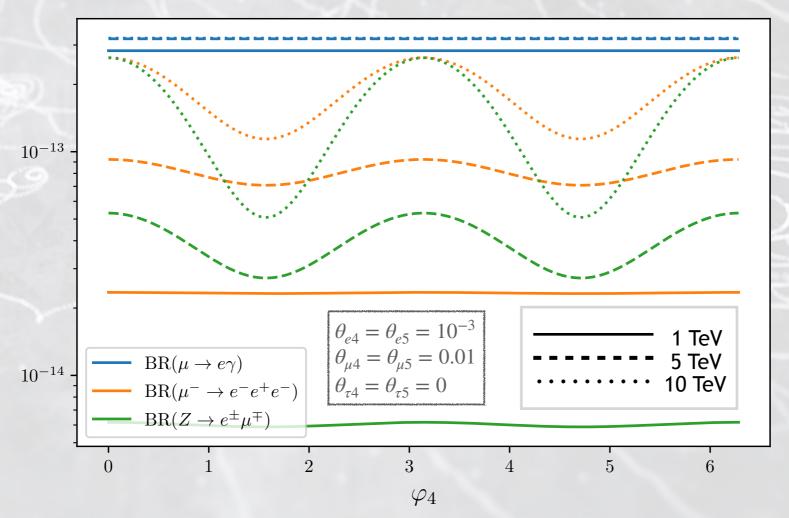

(Other form factors - more involved expressions, depend also on Majorana phases $\phi_{4,5}$)

The impact of CP violating phases: Dirac

cLFV processes mediated by HNL at loop-level

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)


 \Rightarrow Full cancellation of the rates for $\delta_{14}=\pi$, similar results for other (Dirac) phases



The impact of CP violating phases: Majorana

cLFV processes mediated by HNL at loop-level

Consider "3+2" toy model (addition of 2 heavy sterile states; leptonic mixing $\mathcal{U}_{5\times 5}$, CPV phases)

 \Rightarrow Milder dependence, γ -penguin independent of Majorana phases