

Latest results from the CUORE experiment

Mattia Beretta on behalf of the CUORE collaboration *University of California Berkeley*

309/11/2022 – DISCRETE 2022 – Neutrinos session 9/11/2022 – DISCRETE 2022 – Neutrinos Session

Physics focus: double beta decay

Second order weak process: $(A,Z) \rightarrow (A,Z+2)$

2νββ: 0νββ:

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}$

Predicted and measured

 $T^{2ν}$ _{1/2}: 10^{18} – 10^{21} γ

$(A,Z) \rightarrow (A,Z+2) + 2e^-$ Prohibited in SM ($\Delta L = 2$) Limits: $T^{2\nu}_{1/2}$ > $10^{24} - 10^{26}$ y

 $m_{\nu}\neq 0$ $\nu\equiv\overline{\nu}$ W ⁻

Main goal for the CUORE experiment

Physics focus: double beta decay

Second order weak process: $(A,Z) \rightarrow (A,Z+2)$

Searched in double electron spectra

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}$

 $(A,Z) \rightarrow (A,Z+2) + 2e^-$

Low Background Few counts expected

Detecting energy as temperature increase

CUORE detector: 988 crystals simultaneously operated

Cryogenic **U**nderground **O**bservatory for **R**are **E**vents

The first tonne-scale operating cryogenic 0νββ decay experiment

19 towers \rightarrow 13 floors \rightarrow 4 crystals

> Controlled materials Clean environment

Custom cryostat for cryogenic operation

Hosted in Gran Sasso underground laboratory Shielding from cosmic rays

The cryogenic system is controlled and functioning Only 7.7% down time (mostly before 2019) \rightarrow 92.3% live time

> 64.7% of total time is **live physics time** Not including calibration and periodic tests

Data organized in subsequent datasets - O(month)

Delimited by calibrations with ²³²Th+⁶⁰Co

15 datasets included in the analysis 934/988 (94.5%) channels included on average in the analysis

TeO₂ exposure = 1038.4 kg \cdot y 130 Te exposure = 288 kg \cdot y

Offline data analysis procedure – for each dataset

Response modelled on the 2615 keV line from ²³²Th chain

Accounts for non idealities

Calibration FWHM resolution: (7.78 ± 0.03) keV at 2615 keV

Background resolution rescaled to the Q_{value}: (7.8 ± 0.5) keV at 2527 keV

Preserve only 0νββ candidate events with best possible efficiency

Anticoincidence cut (AC)

0νββ leaves all energy in a crystal

Select events accordingly

Efficiency = 99.3% Time resolution is ±5ms

Combined with the probability of a 0νββ event in a single crystal Containment probability = 88.3% from MonteCarlo simulations

Pulse shape discrimination (PSD)

Reconstruct the pulse with single PCA component

Unblinded background data – region of interest (ROI)

0νββ results

Number of toy experiments

Corresponding limits on m_{ββ}

Oscillation parameters from NUFIT 2020 are used. All limits are at 90% C.L. and 3σ uncertainty is shown on the inverted and normal hierarchy bands.

2*v***ββ results – from 300.7 kg·y** [10.1103/PhysRevLett.126.171801](https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevLett.126.171801&v=22b3d5f3)

Best measurement for 130 Te 2νββ

Fit of Monte Carlo simulations to the background spectrum

Reconstruct and disentangle the contributions

CUORE is the first tonne-scale operating cryogenic 0νββ decay experiment

Stable data taking increasing towards 5 yr

CUORE has analyzed 1 ton γ r of data

Best limit on ¹³⁰Te 0νββ

Initial background model defined

Best measurement of ¹³⁰Te 2νββ

Next steps

Background model on the full statistics, update of 0ν results with increased statistics

Other physics analyses

… while working on the next generation 0νββ experiment

[arXiv:1907.09376](https://arxiv.org/abs/1907.09376)

The CUORE Upgrade with Particle IDentification (CUPID)

Physics goal:
$$
T^{0\nu}_{1/2} > 10^{27}
$$
 yr

CUORE experience: ton scale cryogenic bolometer

CUPID-Mo and CUPID-0 experience with cryogenic scintillators

Thank you for your attention from all the CUORE collaboration

Backup slides

309/11/2022 – DISCRETE 2022 – Neutrinos session

Experimental sensitivity

Maximum measurable half-life at a given C.L.

Isotope Mass Energy resolution Background Mass scalability High isotopic abundance High purity materials Rejection techniques $\Delta \sim \frac{9}{1}$ at Q_{value} 2νββ induced background

Maximized through cryogenic calorimeters

Detecting energy as temperature increase

Energy resolution

Provided by the technique

Background

Control of materials

Isotope Mass

¹³⁰Te has **~**30% natural istotopic abundance Multiple modules

Thermometer is made of neutron transmutation doped germanium

Optimum filter – more in depth

Digital filter deconvolving the noise

Transfer function that maximizes SNR

PCA says that the average pulse is the main component

Using a single component to reconstruct the pulse

Error given by the difference with rescaling

$$
RE = \sqrt{\sum_{i=1}^{n} (\mathbf{x}_i - (\mathbf{x} \cdot \mathbf{w}) \mathbf{w}_i)^2}
$$

Error is normalized with respect to energy

Goal: cover the region where 0νββ is expected

Random fraction of 2615keV events moved around the Qvalue

Encryption of the original event energies

Events are decrypted after the analysis is fixed

24

Systematic uncertainties due to the variation of nuisance parameters

Included one by one in the fit, checking effects on the outcome

Discrepancies of the PSD efficiency between single calorimeters

Efficiencies in the analysis and relative uncertainties

[36] C. Alduino et al. (CUORE), Phys. Rev. C 93, 045503 (2016), arXiv:1601.01334 [nucl-ex].

Resolution scaling and energy bias → **included as nuisances in the 0νββ fit**

Energy resolution scales with energy

Used to get the resolution at QValue

Energy bias due to imperfect calibration

Fed to the fit as nuisance parameter

Both dataset dependent

Systematic uncertainties effect on the 0νββ result

Effects evaluated with toy experiments

Double beta decay and nuclear structure

ββ decay is suppressed with respect to β decay, and it is therefore difficult or impossible to observe

β decay is forbidden for certain even-even nuclei, so ββ decay may be seen

 $Z+1$

 $Z+2$

0νββ formulas and theoretical references

Corresponding limits on m_{ββ}

Oscillation parameters from NUFIT 2020 are used. All limits are at 90% C.L. and 3σ uncertainty is shown on the inverted and normal hierarchy bands.

Theoretical importance of 0νββ searches

Different possible generator masses and couplings to neutrinos

⚫ All BSM features → **new phenomenologies**

Theoretical importance of 0νββ searches

- ⚫ Each model leads to **different predictions** with respect to the physics of 0νββ
- ⚫ Two different main scenarios:

Preserve only 0νββ candidate events with best possible efficiency

Anticoincidence cut (AC)

0νββ leaves all energy in a crystal Select events accordingly

Time resolution is ±5ms

 $Efficiency = 99.3\%_{Anticolicidence} \cdot 88.3\%_{containment}$

Efficiency uncertainties included in the final fit

Pulse shape discrimination (PSD)

Reconstruct the pulse with single PCA component

0νββ results

Number of toy experiments

