

Latest results from the CUORE experiment

Mattia Beretta on behalf of the CUORE collaboration

University of California Berkeley

Physics focus: double beta decay

Second order weak process: $(A,Z) \rightarrow (A,Z+2)$

2νββ:

$$(A,Z) \to (A,Z+2) + 2e^{-} + 2\overline{\nu}$$

Predicted and measured

$$T^{2v}_{1/2}$$
: $10^{18} - 10^{21}$ y

Ονββ:

$$(A,Z) \to (A,Z+2) + 2e^{-}$$

Prohibited in SM ($\Delta L = 2$)

Limits: $T^{2v}_{1/2} > 10^{24} - 10^{26} \text{ y}$

Main goal for the CUORE experiment

Physics focus: double beta decay

Second order weak process: $(A,Z) \rightarrow (A,Z+2)$ Searched in double electron spectra

2νββ:

$$(A,Z) \to (A,Z+2) + 2e^{-} + 2\overline{\nu}$$

Ονββ:

$$(A,Z) \to (A,Z+2) + 2e^{-}$$

Energy resolution

At the Q_{value}

Total energy of the transition

Low Background Few counts expected

Cryogenic calorimeters: detector concept

Detecting energy as temperature increase

Crystal (TeO₂) containing $0v\beta\beta$ candidate (130Te) Kept at ~ 10mK **Energy deposition** increases temperature Detected with resistive thermometer μK sensitivity

Thermometer is made of neutron transmutation doped germanium

CUORE detector: 988 crystals simultaneously operated

Cryogenic Underground Observatory for Rare Events

The first tonne-scale operating cryogenic 0vββ decay experiment

 \rightarrow 13 floors

 \rightarrow 4 crystals

Controlled materials
Clean environment

Hosted in Gran Sasso underground laboratory Shielding from cosmic rays

Data taking and duty cycle

The cryogenic system is controlled and functioning

Only 7.7% down time (mostly before 2019) \rightarrow 92.3% live time

64.7% of total time is live physics time

Not including calibration and periodic tests

CUORE is taking data stably

Aim: 5 yr of livetime

CUORE has analyzed 1 ton.yr of data

best limit on 0vββ of ¹³⁰Te

Data organized in subsequent datasets - O(month)

Delimited by calibrations with ²³²Th+⁶⁰Co

15 datasets included in the analysis 934/988 (94.5%) channels included on average in the analysis

TeO₂ exposure =
$$1038.4 \text{ kg} \cdot \text{y}$$

 130 Te exposure = $288 \text{ kg} \cdot \text{y}$

Calibration data: detector response and energy resolution

Response modelled on the 2615 keV line from ²³²Th chain

Accounts for non idealities

Calibration FWHM resolution:

 (7.78 ± 0.03) keV at 2615 keV

Background resolution rescaled to the Q_{value}:

 (7.8 ± 0.5) keV at 2527 keV

Preserve only 0νββ candidate events with best possible efficiency

Anticoincidence cut (AC)

Ovββ leaves all energy in a crystal

Select events accordingly

Time resolution is ±5ms

Efficiency = 99.3%

Combined with the probability of a 0νββ event in a single crystal

Containment probability = 88.3% from MonteCarlo simulations

Pulse shape discrimination (PSD)

Reconstruct the pulse with single PCA component

Difference is discrimination metric

Efficiency = 96.4%

 β/γ due to radioactive contaminations and ¹³⁰Te $2\nu\beta\beta$

α events due to close contaminations

Unbinned Bayesian fit

Simultaneous on all datasets

Nuisance parameters as systematics

Includes uncertainties on efficiencies

Best fit value:

$$\Gamma^{0v} = (0.9 \pm 1.4) \cdot 10^{-26} \text{ yr}^{-1}$$

No evidence of the decay

Bayesian limit (90% C.I.):

 $T^{0v}_{1/2} > 2.2 \cdot 10^{25} \text{ yr}$

Corresponding half-life limit

Median sensitivity:

 $T^{0v}_{1/2} > 2.8 \cdot 10^{25} \text{ yr}$

Evaluated from toy Monte Carlo
We had a background over fluctuation

Oscillation parameters from NUFIT 2020 are used. All limits are at 90% C.L. and 3σ uncertainty is shown on the inverted and normal hierarchy bands.

Best measurement for ¹³⁰Te 2vββ

Fit of Monte Carlo simulations to the background spectrum

Reconstruct and disentangle the contributions

Summary

CUORE is the first tonne-scale operating cryogenic $0\nu\beta\beta$ decay experiment Stable data taking increasing towards 5 yr

CUORE has analyzed 1 ton-yr of data

Best limit on ¹³⁰Te 0νββ

Initial background model defined

Best measurement of ¹³⁰Te 2vββ

Next steps

Background model on the full statistics, update of 0v results with increased statistics

Other physics analyses

... while working on the next generation $0v\beta\beta$ experiment

Scintillating crystal (Li_2MoO_4) enriched in $Ov\beta\beta$ candidate (^{100}Mo)

Operated as a cryogenic calorimeter

Cryogenic calorimeter used as light detector

Particle identification with pulse shape and light output

Main residual background in CUORE

Discrimination of degraded α particles

Physics goal: $T^{0v}_{1/2} > 10^{27} \text{ yr}$

CUORE experience: ton scale cryogenic bolometer

CUPID-Mo and CUPID-0 experience with cryogenic scintillators

Thank you for your attention from all the CUORE collaboration

>110 scientists from 27 institutions in 4

Constantly improving towards the next generation experiments

Backup slides

Necessary qualities of a 0vββ detector

Experimental sensitivity

Maximum measurable half-life at a given C.L.

$$S_{0
u} \propto \sqrt{rac{M \cdot T}{B \cdot \Delta}}$$

Isotope Mass

Mass scalability

High isotopic abundance

Energy resolution

$$\Delta$$
 ~ ‰ at Q_{value}

2v $\beta\beta$ induced background

Background

High purity materials

Rejection techniques

Maximized through cryogenic calorimeters

Cryogenic calorimeters: detector concept

Detecting energy as temperature increase

Energy resolution

Provided by the technique

Background

Control of materials

Isotope Mass

¹³⁰Te has ~30% natural istotopic abundance Multiple modules

Thermometer is made of neutron transmutation doped germanium

Optimum filter – more in depth

Digital filter deconvolving the noise

Transfer function that maximizes SNR

PSD trough PCA

PCA says that the average pulse is the main component

Using a single component to reconstruct the pulse

Error given by the difference with rescaling

$$RE = \sqrt{\sum_{i=1}^{n} (\mathbf{x}_i - (\mathbf{x} \cdot \mathbf{w}) \mathbf{w}_i)^2}$$

Error is normalized with respect to energy

Goal: cover the region where 0vββ is expected

Random fraction of 2615keV events moved around the Qvalue

Encryption of the original event energies

Events are decrypted after the analysis is fixed

Bayesian fit with BAT software

Using non-negative uninformative priors for the rates

How 0vββ systematics are treated

Systematic uncertainties due to the variation of nuisance parameters

Included one by one in the fit, checking effects on the outcome

Discrepancies of the PSD
efficiency between single
calorimeters

Prior
Gaussian
Multivariate
Multivariate

Efficiencies in the analysis and relative uncertainties

Total analysis efficiency	92.4(2)%
Reconstruction efficiency	96.418(2)%
Anticoincidence efficiency	99.3(1)%
PSD efficiency	96.4(2)%
Containment efficiency	88.35(9)% [36]

Resolution scaling and energy bias \rightarrow included as nuisances in the 0v $\beta\beta$ fit

Energy resolution scales with energy Used to get the resolution at QValue

Energy bias due to imperfect calibration Fed to the fit as nuisance parameter

Both dataset dependent

Systematic uncertainties effect on the 0vββ result

Fit parameter systematics				
Systematic	Prior	Effect on the Marginalized $\Gamma_{0\nu}$ Limit	Effect on $\hat{\Gamma}_{0\nu}$	
Total analysis efficiency I	Gaussian	0.2%	< 0.1%	
Analysis efficiency II	Gaussian	0.3%	< 0.1%	
Containment efficiency	Gaussian	0.2%	< 0.1%	
Isotopic abundance	Gaussian	0.2%	< 0.1%	
Q_{etaeta}	Gaussian	$< 0.1 \cdot 10^{-27} \text{ yr}^{-1}$	$< 0.1 \cdot 10^{-27} \text{ yr}^{-1}$	
Energy bias and Resolution scaling	Multivariate	$0.2 \cdot 10^{-27} \text{ yr}^{-1}$	$0.1 \cdot 10^{-27} \text{ yr}^{-1}$	

Effects evaluated with toy experiments

Double beta decay and nuclear structure

ββ decay is suppressed with respect to β decay, and it is therefore difficult or impossible to observe

β decay is forbidden for certain even-even nuclei, so ββ decay may be seen

Ονββ formulas and theoretical references

 χ = stechylometric coeff. η = isotopic abundance

Corresponding limits on m_{BB}

Bayesian limit (90% C.L.):

$$T^{0v}_{1/2} > 2.2 \cdot 10^{25} \text{ yr}$$

Most recent NME

$$m_{\beta\beta}$$
 < (90-305) meV

Oscillation parameters from NUFIT 2020 are used. All limits are at 90% C.L. and 3σ uncertainty is shown on the inverted and normal hierarchy bands.

Theoretical importance of 0vββ searches

Different possible generator masses and couplings to neutrinos

All BSM features → new phenomenologies

Theoretical importance of 0vββ searches

Black Box

- Unpacked differently by different mass models
- Indipendent by the model chosen

- Each model leads to different predictions with respect to the physics of $0\nu\beta\beta$
- Two different main scenarios:

Preserve only 0νββ candidate events with best possible efficiency

Anticoincidence cut (AC)

Ovββ leaves all energy in a crystal Select events accordingly

Efficiency = 99.3%_{Anticoincidence} · 88.3%_{containment}

Time resolution is ±5ms

Efficiency uncertainties included in the final fit

Pulse shape discrimination (PSD)

Reconstruct the pulse with single PCA component

Difference is discrimination metric

Efficiency = 96.4%

Unbinned Bayesian fit

Simultaneous on all datasets

Nuisance parameters as systematics

Best fit value:

$$\Gamma^{0v} = (0.9 \pm 1.4) \cdot 10^{-26} \text{ yr}^{-1}$$

No evidence of the decay

Bayesian limit (90% C.I.):

 $T^{0v}_{1/2} > 2.2 \cdot 10^{25} \text{ yr}$

Corresponding half-life limit

Median sensitivity:

 $T^{0v}_{1/2} > 2.8 \cdot 10^{25} \text{ yr}$

Evaluated from toy Monte Carlo
We had a background over fluctuation